PHVYSICAL REVIEW VOLUME 185,

NUMBER 5 25 SEPTEMBER 1969

Constant Acceleration in Curved Space-Time

RoNALD GAUTREAU
Department of Physics, Newark College of Engineering, Newark, New Jersey 07102
(Received 9 May 1967)

Based on an analysis of various gedankenexperiments, criteria are given that determine when a particle
moves with constant acceleration in curved space. It is shown that for a certain restricted case, the criteria
are equivalent to those for constant acceleration proposed previously by Rindler and by Marder.

N flat space, a particle following a hyperbolic tra-
jectory defined by
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can"be regarded as possessing constant acceleration in
the sense that its acceleration is found to be a constant,
a, when measured by any free observer who is instan-
taneously at rest with respect to the particle. Rindler!
and Marder? have proposed extensions of the definition
of constant acceleration to include also motions in
curved space-time. Rindler has shown, however, that
his definition is equivalent to one of the definitions pro-
posed by Marder, so that for our purposes it will be
sufficient to comment only on Rindler’s work. In brief,
Rindler’s criteria for constant acceleration in a general
space-time are as follows. Let a particle move along a
world line x#(r) whose tangent vector is F¥=dx*/dr,
and let the absolute derivative of F* be designated by?
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According to Rindler, the particle will move with con-
stant acceleration if its world line has the property that

(2a)
(2b)

In the preceding paper,* concerned with the principle
of equivalence, we have obtained results which lead in
a natural manner to criteria that determine when a par-
ticle undergoes motion with constant acceleration in
curved space. Our criteria are more general than those
proposed by Rindler, and they include Rindler’s defini-
tion as a special case.

What we have done in Ref. 4 is to analyze various
gedankenexperiments that are performed equivalently
in flat space and in the presence of a gravitational field.
For example, we have considered the situation where an
observer measures the local velocity and acceleration of
a particle by means of the Fock radar method coupled
with a proper time clock. With the Fock radar method,
an observer reflects a light signal from the particle and
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defines the distance to the particle and the time of the
measurement as

§= %(l2~t1)7 t=%(t2+ll) )

where f; and ¢, are the times on the observers’ clock when
the signal was sent and received.

If the observer follows a geodesic trajectory in a
curved space and the particle moves along an arbitrary
timelike world line with tangent vector F# it is found
that the measured local velocity and acceleration are
related by

d*s/di?= U, A 1—(ds/dt)> ]2,
where U* is a unit vector orthogonal to F¥ i.e.,
U, U#=1, UF*=0.

An equivalently performed experiment in flat space
consists of a free observer measuring, by means of the
radar method, the local velocity and acceleration of a
particle following a hyperbolic trajectory defined by
(1). For such an experiment it is found that

d2s/de=a[1—(ds/dt)> .

For this and the other equivalent experiments discussed
in Ref. 4, one always finds a correspondence between
the acceleration constant e¢ and the quantity U,A4#
which suggests that U,4* should be interpreted as the
gravitational acceleration.

Now the value of the quantity U,4* may change
along the particle’s world line because of the nature of
the trajectory or because of the change of the direction
of U It seems quite natural, therefore, to regard the
particle as possessing constant acceleration if U,A4*
remains constant along its world line. It is necessary,
however, to specify a law of transport for the orthogonal
unit vector U#, for otherwise the direction of U* would
be free to change in an arbitrary manner. The condi-
tion that we shall place upon U* is that it be trans-
ported in such a manner that it does not rotate. As is
well known, this condition is realized if U* undergoes
Fermi transport® along the world line F# ie., if U*
satisfies

U/ 7= U, A°F®~.
Thus a particle will be uniformly accelerated in the di-

5J. L. Synge, Relativity: The General Theory (North-Holland
Publishing Co., Amsterdam, 1960), p. 15.
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rection U* if
U, A*= const

when U* is Fermi-transported along the world line F#
of the particle.

It is entirely possible that a particle may possess a
constant acceleration in one direction and have a vari-
able acceleration in a different direction. To express the
directional relationship of the acceleration, consider an
orthonormal triad

U oyuU@Dr= 55y,

where raising and lowering of the bracketed indices
labeling each member of the triad is accomplished with
the diagonal invariant matrix

ﬂ(aﬁ)=”l(“ﬂ)=diag(1, 1) 17 '_—1)?

and let each member be orthogonal to the world line
F#,
F“U@)":O. (3)

If we now let each member of the orthonormal triad
propagate with Fermi transport, so that

oU (iy#/07=U iy, A°F*, “)

we can define the component of the acceleration in each
of the three directions as

awy=A4,U@w*.

Thus, for the acceleration to be a constant in a par-
ticular direction specified by U)¥# we must have
a ;)= const.

If the three a(;)’s remain constant so that the accel-
eration of the particle is a constant in three mutually
orthogonal spacelike directions, we can regard the par-
ticle as moving with absolutely constant acceleration.
What we shall now show is that our condition for ab-
solutely constant acceleration is equivalent to Rindler’s
criteria for constant acceleration. To this end, we intro-
duce a fourth timelike unit vector

U(4)I‘=Fﬂ,

which from Eq. (3) is orthogonal to the three ortho-
normal vectors U*. We thus have an orthonormal
tetrad U ()* with the property

U “OUg*=d, U, Uw=8/, ©)
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along which any vector may be resolved. In particular,
we have

A Uwr=aw, AUw*=aw=0. (6)

Using (5), we have
‘l(a)a(a) = AuA” )
so that, since a@y=a® =0,
aWagy=A,A4*. (7
Thus, if each a(; is a constant, we see that
A, A*=a?= const,

which is one of the conditions [Eq. (2a)] that Rindler
imposes for constant acceleration.

To show that Rindler’s other condition also follows
when all the a(;)’s are constant, we note that by multi-
plying @ with Ug)* and contracting with respect to
the bracketed indices, we obtain from (5)

a("‘)U(a)"=A"
and, since ay=ae¢@®=0, we find
A“=a(")U(,~>“. (8)

Taking the absolute derivative of both sides of (8), we
have, if a(; is a constant,

5/1"/51': (l(i)ﬁU(i)"/ﬁT.
If we now use (4) and (7), we arrive at the result that
8A#/dr=0aF*,

which is the other condition [Eq. (2b)] imposed by
Rindler for constant acceleration.

Thus Rindler’s criteria for constant acceleration are
met only when a particle possesses what we have
termed absolutely constant acceleration. Our criteria,
on the other hand, serve also to define constant accelera-
tion in the less restricted case where one or two of the
acceleration components may not be constant.
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