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Constant Acceleration in Curved Space- Time

RONALD GAUTRZAU
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Based on an analysis of various gedankenexperiments, criteria are given that determine when a particle
moves with constant acceleration in curved space. It is shown that for a certain restricted case, the criteria
are equivalent to those for constant acceleration proposed previously by Rindler and by Marder.

According to Rindler, the particle will move with con-
stant acceleration if its world line has the property that

+ +I'=@2=const,

W o/or = n'Fo.

(2a)

(2b)

In the preceding paper, 4 concerned with the principle
of equivalence, we have obtained results which lead in
a natural Inanner to criteria that determine when a par-
ticle undergoes motion with constant acceleration in
curved space. Our criteria are more general than those
proposed by Rindler, and they include Rindler's defini-
tion as a special case.

What we have done in Ref. 4 is to analyze various
gedankenexperiments that are performed equivalently
in fiat space and in the presence of a gravitational field.
For example, we have considered the situation where an
observer measures the local velocity and acceleration of
a particle by means of the Fock radar method coupled
with a proper time clock. With the Fock radar method,
an observer rejects a light signal from the particle and

' W. Rindler, Phys. Rev. 119, 2082 (1960).' L. Marder, Proc. Cambridge Phil. Soc. 53, 194 (1957).' Greek indices range from I to 4. Latin indices range from i to
3. The signature is (+ + + —).

4 J.L. Anderson and R. Gautreau, preceding paper, Phys. Rev.
185, 1656 (1969).

' 'N Qat space, a particle following a hyperbolic tra-
~ ~ jectory defined by

(x' —x, ')' —(x'—x;4)'= 1/tt' (1)

can"be"regarded as possessing constant acceleration in
the sense that its acceleration is found to be a constant,
a, when measured by any free observer who is instan-
taneously at rest with respect to the particle. Rindler'
and Marder~ have proposed extensions of the dehnition
of constant acceleration to include also motions in
curved space-time. Rindler has shown, however, that
his definition is equivalent to one of the definitions pro-
posed by Marder, so that for our purposes it will be
sufhcient to conm. en( only on Rindler's work. In brief,
Rindler's criteria for constant acceleration in a general
space-time are as follows. I.et a particle move along a
world line x"(r) whose tangent vector is F&= dxo/dr,
and let the absolute derivative of FI' be designated by'

bI'~ dF~
+1' oPFP

87- dr

defines the distance to the particle and the time of the
measurement as

s= s(ts —tr)~ t= s(ts+tr) ~

where fl and $& are the times on the observers' clock when
the signal was sent and received.

If the observer follows a geodesic trajectory in a
curved space and the particle moves along an arbitrary
timelike world line with tangent vector FI', it is found
that the measured local velocity and acceleration are
related by

d's/dt'= U„A&L1—(ds/dt)' J"
where V& is a unit vector orthogonal to FI", i.e.,

V„V~= 1, V„F~=0.
An equivalently performed experiment in Hat space
consists of a free observer measuring, by means of the
radar method, the local velocity and acceleration of a
particle following a hyperbolic trajectory defined by
(1).For such an experiment it is found that

d's/dt'= ttL1 —(ds/dt)'jst'

For this and the other equivalent experiments discussed
in Ref. 4, one always finds a correspondence between
the acceleration constant u and the quantity U„A&,
which suggests that U„A& should be interpreted as the
gravitational acceleration.

Now the value of the quantity V„A& may change
along the particle's world line because of the nature of
the trajectory or because of the change of the direction
of U&. It seems quite natural, therefore, to regard the
particle as possessing constant acceleration if U„AI'
remains constant along its world line. It is necessary,
however, to specify a law of transport for the orthogonal
unit vector U&, for otherwise the direction of V& would
be free to change in an arbitrary manner. The condi-
tion that we shall place upon U& is that it be trans-
ported in such a manner that it does not rotate. As is
well known, this condition is realized if U& undergoes
Fermi transport' along the world line F&, i.e., if V&

satisfies

6Uo/br= U,Argo

Thus a particle will be uniformly accelerated in the di-

s J. L. Synge, Retatsssty: The General Theory (North-Holland
Publishing Co., Amsterdam, 1960), p. 15.
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rection U~ if
U„A&= const

along which any vector may be resolved. In particular,
we have

when U& is Fermi-transported along the world line F&

of the particle.
It is entirely possible that a particle may possess a

coll.st;;Lnt accclcratloll in 011e direction and have a vari-
able acceleration in a different direction. To express the
directional relationship of the acceleration, consider an
orthonormal triad

U( )
U(g')P $( t) (2')

A„U(;)&=a(;), A„U(4)&= a(4) =0.

Using (5), we have

a(.)a (~)

so that, since a(4) = a(') =0,

a(')a(;) = A„A& ~

Thus, if each a(;) is a constant, we see that

(6)

(7)

where raising and lowering of the bracketed indices
labeling each member of the triad is accomplished with
the diagonal invariant matrix

and let each member be orthogonal to the world line
Pp, e

)

P„U(,) ~——0.
If we now let each member of the orthonormal triad
propagate with Fermi transport, so that

we can define the component of the acceleration in each
of the three directions as

a(;) = A „U(;)

Thus, for the acceleration to be a constant in a par-
ticular direction specified by U(;)&, we must have
a (,) = const.

If the three a(,)'s remain constant so that the accel-
eration of the particle is a constant in three mutually
orthogonal spacelike directions, we can regard the par-
ticle as moving with absolutely constant acceleration.
What we shall now show is that our condition for ab-
solutely constant acceleration is equivalent to Rindler's
criteria for constant acceleration. To this end, we intro-
duce a fourth timelike unit vector

U(4) p= PII,

which from Eq. (3) is orthogonal to the three ortho-
normal vectors U (;)&. We thus have an orthonormal
tetrad U( )~ with the property

A A~= a'= const,

which is one of the conditions LEq. (2a)) that Rindler
imposes for constant acceleration.

To show that Rindler's other condition also follows
when all the a(;)'s are constant, we note that by multi-
plying a( ) with U(p)& and contracting with respect to
the bracketed indices, we obtain from (5)

a( ) U „)&=A"(~)

and, since a(4) =a"'= 0, we find

A u = a(s) U(.)P

Taking the absolute derivative of both sides of (8), we
have, if a(;) is a constant,

8A I'/br = (((')8 U(;))'/br.

If we now use (4) and (7), we arrive at the result that

bA I'/b~ = n'FI'

which is the other condition LEq. (2b)j imposed by
Rindler for constant acceleration.

Thus Rindler's criteria for constant acceleration are
met only when a particle possesses what we have
termed absolutely constant acceleration. Our criteria,
on the other hand, serve also to define constant accelera-
tion in the less restricted case where one or two of the
acceleration components may not be constant.
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