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A formulation of the principle of equivalence is given that avoids some of the difficulties in the more
usual statements of the principle. In particular, we give an operational definition of local systems for which
the principle is applicable. The relation between our statement and other statements of the principle is
discussed. To investigate the relation of our statement to general relativity, we construct model reference
frames from physical systems whose dynamics is sufficiently simple that their behavior can be described
within the framework of the general theory without the need to introduce extraneous assumptions. With
the help of these reference frames, we then show that it is possible to formulate gedankenexperiments
yielding results that satisfy our statement of the principle.

1. INTRODUCTION

T is generally accepted that the principle of equi-
valence (PE) constitutes one of the cornerstones of
general relativity. What is less generally accepted is
just what is the content of the principle, there being
almost as many formulations of the principle as there
are authors writing about it. All of these formulations
more or less take as their starting point the similarity
between inertial and gravitational forces, at least in
sufficiently small regions of space-time. It is only when
one tries to make this similarity more precise that
differences arise. Dicke! has, for example, distinguished
two principles of equivalence, a weak principle and a
strong principle. Fock,? on the other hand, considers the
PE as a heuristic principle and makes no attempt to
give it a precise form. Finally, we have the eloquent
statement of Synge?: “I have never been able to under-
stand this principle. . . . The principle of equivalence
performed the essential office of midwife at the birth
of general relativity. . . . I suggest that the midwife
be now buried with appropriate honours.”

If indeed the PE is a cornerstone of general relativity,
then it is necessary to give it a precise statement in
order to assess its role in the theory. It is also necessary
to make its content and range of validity precise if one
wishes to test its observational consequences. In this
paper we shall give a formulation of the PE that, at
least in principle, is capable of experimental verification
on the one hand, and on the other hand exhibits its
essential role in general relativity. We shall then discuss
a class of space-time measurements that can be carried
out on a simple system in and out of a gravitational
field that can serve as a basis for the implementation
of the principle as we have formulated it.

1 R. H. Dicke, in Gravitation and Relativity, edited by H.-Y.
Chiu and W. F. Hoffman (W. A. Benjamin, Inc., New York,
1964), p. 1.

V. Fock, The Theory of Space Time and Gravitation (Pergamon
Press., Inc., New York, 1959).

3 J. L. Synge, Relativity: The General Theory (North-Holland
Publishing Co., Amsterdam, 1960).
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2. FORMULATION OF A PRINCIPLE
OF EQUIVALENCE

The form of the PE that is usually accepted has been
stated most succinctly by Bergamnn.* According to him
the principle asserts that “we cannot distinguish be-
tween gravitational and inertial forces that employ
the kinetic effects of these forces on test particles at a
fixed location in space and time.” In discussing this
formulation, Bergmann is careful to emphasize its
essential character, hence the use of test bodies. Dicke
has extended the range of the statement somewhat and
called it the “strong” principle of equivalence. The
strong principle, according to Dicke, says that “in a
free-fall laboratory, if one experiments locally, one
observes the same laws of physics— including all the
numerical content—that one observes any place else,
including any gravity-free place.” Again there is
included in the Dicke statement a restriction to local
experiments.

Both Bergmann and Dicke have taken the strong PE
to be fundamental to general relativity. It is our con-
tention, however, that this is not the case, that the
strong principle is a principle separate from those that
underly general relativity, and whose validity does not
affect the validity of that theory. For us, the essential
feature of general relativity is its assertion concerning
the symmetry of all physical systems embodied in
what we have called the principle of general invariance.?
According to this principle the group of arbitrary
mappings of the space-time manifold onto itself con-
stitutes the minimum invariance group of all physical
systems. While this principle requires that the laws
of physics admit the manifold mapping group as a
covariance group as does the older principle of general
covariance it requires more, namely, that no absolute

4P. G. Bergmann, in Encyclopedia of Physics, edited by S.
Flugge (Springer-Verlag, Berlin, 1962), Vol. 4, p. 205.

5 J. L. Anderson, Principles of Relativity Physics (Academic
Press Inc., New York, 1967).
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objects appear in these laws in an essential way.® An
immediate consequence of this principle is that one
must introduce at least one additional dynamical
object into the description of physical systems over and
above those used for their description in special rela-
tivity. What the principle does not tell us is how many
such additional objects are needed or how they couple
to a given physical system. As we shall see, it is these
latter questions that are decided by the PE.

In general relativity, one introduces one additional
dynamical object, the gravitational field, to comply with
the requirements of the principle of general invariance.
The strong PE is then a statement of how this additional
field couples to other physical systems. It asserts, in
effect, that only the gravitational field, represented by
a symmetric, second-rank tensor g,,, and its first
derivatives appear in the dynamical laws describing
these systems. For this reason the strong PE can
rightly be called the principle of minimal coupling for
the gravitational field. However, it is possible to con-
struct quite reasonable dynamical laws for which the
requirement of minimal coupling is violated. In the
theory of spinning bodies developed by Mathisson,’
Papapetrou,® Tulczyjew,® and others, just such a viola-
tion occurs. In this theory, the Reimann tensor appears
explicitly in the equations governing the spin of the
body. At present there is no compelling evidence for
ruling out the possibility of the existence of such
systems, nor is there any compelling needed to do so
since their existence is quite compatible with general
relativity as we know it today.

There is, however, another version of the PE which
Dicke calls the “weak’ principle of equivalence and is
supported by the experimental evidence of the E6tvos-
type experiments. The weak principle asserts, again
quoting Dicke, “ . . . up to the great accuracy of the
Eo6tvos experiment, all bodies move along the same
geodesic paths (under the conditions for which the
experiment was performed).” Trautman!® has empha-
sized the essential role played by this weak principle,
and has generalized it in a form that appears to be
consistent with Einstein’s original views on the subject.
This generalization asserts that measurements made
on any physical system will always serve to determine
the same affine connection in a given space-time region
to the extent that one can neglect the effect of the sys-
tem on the sources of the affinity. This weak principle
makes no assertion of how the system is coupled to the
affinity and hence is not restricted in its applicability
to “local” systems. However, it does allow one to
conclude two things. One, there is a single universal

6 Roughly speaking, an absolute object affects the behavior of
other objects but is not affected by these objects in turn. For a
more rigorous definition see Ref. 5.

7 M. Mathisson, Acta Phys. Polon. 6, 167 (1937).

8 A. Papapetrou, Proc. Roy. Soc. (London) A209, 248 (1951).

9 W. Tulczyjew, Acta Phys. Polon. 18, 37 (1959).

10 A. Trautman, Usp. Fiz. Nauk 89, 3 (1966) [English transl.:
Soviet Phys.—Usp. 9, 319 (1966)].

affinity that couples to all physical systems, and two,
whatever the coupling of this affinity to any given
system, it is impossible to separate the interaction
into a dynamical and an absolute part. In order to
effect such a separation, it would be necessary that at
least one system couples only to the absolute part of
the affinity. But then we would not always measure the
same affinity. It is just this second consequence of the
weak principle that forces us to the conclusion that
there are no absolute objects in nature. This latter
conclusion, coupled with the requirement of general
covariance, constitutes the principle of general in-
variance. Thus, the weak PE together with the principle
of general invariance, in our view, constitutes the basis
of the general theory of relativity.

Nevertheless, and in spite of its possible nonuniver-
sality, the strong PE is a useful principle. Among other
things, it allows us to predict the behavior of a local
physical system in a given gravitational field from a
knowledge of its reaction to inertial force. We know,
for instance, that the rates of nuclear ‘“‘clocks” are
unaffected by strong accelerations,* and hence will be
unaffected by strong gravitational fields to the extent
that these clocks can be considered local. The problem
in applying the strong principle then lies in ascertaining
whether or not a given physical system can be con-
sidered to be local. We shall give an operational
definition of a local system and a reformulation of the
strong PE that is equivalent to the usual formulation
of the strong principle when that formulation applies.

Let S4 designate a particular physical system, e.g.,
an electromagnetic field, a spinning body, etc. Further,
let R¢n and Rp, designate reference frames in the
presence of a real gravitational field and in a flat
space-time (absence of a real gravitational field),
respectively. Finally, let R¢nS4 and Rr,Sa denote the
results of space-time measurements made on S, in
these two frames. We say that a system is a local system
if, given an Rg,, there exists an Rp,, and vice versa,
such that

RenSa=RpnSa. (2.1)

A local system thus defined allows us to establish an
equivalence relation between the class {Rg»} of gravita-
tional reference frames and the class {Rp,} of flat-space
reference frames. However, it might be that this equival-
ence relation depends upon which local system is used
to establish the relation. We take the strong PE to be
an assertion that the equivalence relation between
{R¢x} and {Rp,} is independent of which local system
is used to establish the relation.

Clearly, this statement of the PE contains within it
the essential feature of the strong principle, namely,
the similarity of gravitational and intertial effects on
local systems. Furthermore, its fulfillment is obviously
necessary for the weak principle to be valid. What is not

1 R. F. Marzke and J. A. Wheeler, in Ref. 1, p. 40.
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so obvious is that even one local system, in our sense,
exists within the framework of general relativity. The
remainder of this paper is devoted to a discussion of
measurements of space-time quantities made on a
simple system in and out of a gravitational field. With
its help we will show how to establish the equivalence
relation between references frames discussed above.
Once this relation is established for one local system,
it is then a matter of experimental verification that it
is the same for any other local system.

3. REFERENCE FRAMES

Given a complete physical theory, one can predict
the outcome of physical measurements made on any
system described by the theory. In addition, such a
theory should also be capable of describing the behavior
of the measuring devices used to observe a system with-
out recourse to additional assumptions such as ‘“‘proper
time is measured by ideal clocks.” Consequently, given
such a description of a set of space-time measuring
devices within the framework of general relativity, it
should be possible to check whether or not the PE,
as we have stated it, is consistent with this theory.
The dynamical laws governing most measuring devices
are, however, so complicated that their behavior cannot
be easily described. What we shall show now is that it
is possible to construct models of space-time reference
systems whose elements have dynamics sufficiently
simple that their behavior can be simply described
within the framework of general relativity.

The reference frames that we shall employ consist of
a Fock? “radar station,” together with a simple model
a proper-time clock proposed by Marzke and Wheeler.!!
With such a reference system it is possible to calculate
the effects of accelerations and gravitational fields on
the elements comprising it. By then analyzing various
gedankenexperiments performed with these reference
systems, we shall show that the results of these experi-
ments are indeed consistent with our statement of
the PE.

The photon clock of Marzke and Wheeler is formed
by reflecting a light signal back and forth between two
slightly separated particles. The number of clicks, i.e.,
the number of reflections of the light pulse, is taken as a
measure of the time recorded by the clock. Since the
dynamics of particles and light signals are describable
within the framework of general relativity, it is possible
to determine how the time recorded by the photon
clock will be related to the mathematical proper time.

In order to find this relationship, we consider a light
signal reflected between two particles that have an
infinitesimal coordinate separation, with one of the
particles moving along an arbitrary timelike world
with coordinates x*(7), where 7 is the mathematical
proper time along the trajectory. The separation be-
tween the two particles is allowed to vary arbitrarily,
except for the restrictions that the separation should
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remain infinitesimal and any variation in the separation
should be smooth. If one analyzes such a photon clock,?
it is found that the number of clicks on the clock are
related to the proper time along the clock’s trajectory by

1/‘ dr
2 (e’

Here 9* is a vector given by the (infinitesimal) difference
between the coordinates x*; and x.* of the particles
forming the photon clock in a direction orthogonal
to the world line of the clock, i.e.,

nudwt/dr=0. (3.2)

Thus, if the separation between the two particles is
specified, one can determine the time recorded by the
photon clock.

It is seen from (3.1) that for the number of clicks
on the photon clock to be proportional to the integrated
proper time along the clock’s world line the separation
of the particles forming the clock must vary such that
nm*=const. This condition is equivalent to Born’s
criterion of rigidity.”? Thus the clicks on a “Born rigid”
photon clock are proportional to the integrated proper
time along the world line of the clock.

The problem that now remains is now operationally
to construct a Born rigid photon clock. This problem
has been solved by Marzke and Wheeler,* who de-
veloped a method for constructing a parallel to a given
geodesic world line. Their construction employs only
light signals and intersecting world lines of free particles
and is valid even if space-time is curved. In this analysis,
Marzke and Wheeler considered only the problem of
constructing parallels to geodesic world lines, but it is
easy to show' that their analysis can be extended to
construct operationally a parallel to any given world
line. In addition, it can be shown!? that two infinitesi-
mally separated world lines rendered parallel by the
Marzke-Wheeler method satisfy Born’s criterion of
rigidity.

Having established that it is possible to construct a
proper time clock, we assume that all observers are
equipped with such a clock. We now discuss the pro-
cedure by which a particular observer makes space-time
measurements, that is, how an observer goes about
constructing a reference frame.

We consider the case where observers employ the
“radar” method of Fock? for the description of space
and time measurements. With the radar method an
observer reflects a light signal from the event that he is
interested in measuring. By recording the (proper)
time on his clock when the light signal is emitted ()
and received (f;), the observer can assign a distance s
and a time £ to the distant event by defining

s=3(t—t), =3 tt). (3.3)

12 R. Gautreau, Ph.D. thesis, Stevens Institute of Technology
(unpublished).

@3.1)

nﬂ=x2ll__xll"
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In this manner the observer can measure distances,
velocities, accelerations, etc., of particles. When used
in conjunction with a photon clock, the radar method
constitutes a space-time measuring device based on
only two primitive elements, a light signal and a
particle, and the dynamics of both of these elements is
simply describable within the framework of general
relativity. '

The above measurement prescription provides a
method by which an observer can, in principle, opera-
tionally assign coordinates to events that occur in the
space-time manifold. Whether or not these coordinates
conform to any particular criteria, for example, Born’s
criterion of rigidity, is of course immaterial. The main
function of coordinates is to catalog events, and radar
coordinates accomplish this task. Moreover, as we
show in Sec. 4, it is possible because of the simple
dynamics of the measuring devices to determine com-
pletely the results of particular types of gedanken-
experiments involving radar measurements.

4. LOCAL VELOCITY AND ACCELERATION
MEASUREMENTS

Because the dynamics of particles and light signals
are known, one should, in principle, be able to determine
the results of any experiment involving radar measure-
ments. In paractice, however, it is found that, except
for a few special cases, when one actually tries to
analyze general radar measurements made by an
arbitrary observer, the mathematics become much too
difficult to handle. Fortunately, however, the special
case where an observer makes only local measurements
can be treated in all generality.

We here use the word “local” space-time measure-
ments in the following sense. Consider an observer
moving along an arbitrary time-like world line whose
coordinates are x*(7), where 7 is the proper time along
the trajectory. Consider also a particle moving along a
second completely arbitrary world line with coordinates
%*(\p), where N, is some as yet unspecified mono-
tonically increasing parameter, and let the two world
lines intersect at x,*(\p;)=x*(r;). Local space-time
measurements are defined to be measurements made
on the particle in an infinitesimal neighborhood of the
coincidence event x#(7;)=2x,*(\p,).

Without any loss in generality, we now specify the
parameter A, as follows:

(a) If V*is timelike, choose

\p=7, (proper time);
(b) if V* is spacelike, choose
Ap=s, (proper distance); (4.1)
(c¢) if V#is null, choose

Ap=2A, (affine parameter),

where we have set V#=dx,*/d\,. Thus we may write
VuVer=—¢
e=-+1 for V* timelike
= 0 for V#nul
=—1 for V* spacelike.

(4.2)

What we shall do now is analyze local velocity and ac-
celeration measurements that are made on the particle.
The results of these measurements can be calculated by
assuming that light signals travel along null geodesics
and by using a power-series expansion to determine the
results to any desired accuracy. The values of the local
velocity and acceleration measurements can then be
obtained by taking the limit as the two world lines
coincide. To express these results we make use of a
vector U* that is proportional to the infinitesimal co-
ordinate separation between the observer and the
particle in a direction orthogonal to the world line, i.e.,

Ur=Ax*/Al, Axt=x,t(\p)—2x*(7), 4.3)
(Al?=g,,AxtAx”
with the direction of Ax* defined by
U,A*=0, Ar=dx*/dr. (4.4)

From the definition of U* it is seen that U, U*=1, so
that U* is a unit vector.

The measured velocity of the particle at the coinci-
dence event, defined as ds/di, is found to be'?

ds/di=—U,V#/A.Ve. (4.5)

From this expression, one can show that the unit vector
U* can be expressed in terms of V* and 4* as

— (ds/d)Ur=V#/A Vet A*. (4.6)

The measured acceleration of the particle, d%s/d#?, at
the coincidence event is found to be'?

ds\d?*s o+ ds\? 2
G-
dt/ de Ny di
84~ ds\*7) 32
—I—V,‘-——H:l-<—> ]} . (4.72)
or dt

Using (4.6), we can rewrite this expression in terms of
U* as

d*s oV ds\*7? oA+ ds\?
ST (VT am
ag Ny dt or dt

As is seen from inspection of (4.5) and (4.7), the
expressions for the measured local velocity and accelera-
tion are manifestly covariant. This, of course, is to be
expected, since all measurements are defined oper-
ationally and are independent of any coordinates. It
is also seen from (4.7) that if both x*(7) and x,*(A\,)
are geodesic world lines, i.e., if §4#/67=06V*#/67=0, the
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TasLE I. Comparison of varjous equivalent local gedankenexperiments performed in flat space and in an arbitrary gravitational field.

Type of experiment

Flat-space result

Gravitational-field result

Ai1: Nongeodesic observer measures the velocity d*sa dsa\* d*sy SF» dsp\?
and acceleration of a geodesic particle ——=—g| 1—-| — —=—U,—| 1—{ —
di,? diq dig? é7F dip
Asz: Nongeodesic observer measures the variation d*rs dsa dsa\? |2 d*rg 8Pk (dsp dsp\* 2
of the proper time on a geodesic clock =20 — )| 1—{ — =2U,— — )| 1-{ —
dit? dta dt, dty? 877 \dlF dtr
Bj: Geodesic observer measures the velocity d*sy ds\2 P2 d*sq SF» ds\* P2
and acceleration of a nongeodesic particle —=ga| 1—{ — =U,—| 1—( —
dts? dty dte® oTF dtg

B,: Geodesic observer measures the variation
of the proper time on a nongeodesic clock

d*rq dsy dsp\? d*rp 8F*fds¢ dsg\?
(% e
dits? dty dty dte? drr\dlg dig

measured acceleration will vanish for all values of the
measured velocity.

It is to be stressed that in calculating these expres-
sions for the measured velocity and acceleration, no
assumptions have been made concerning the “strength”
of the gravitational field or the relative magnitude of
the measured velocity. The only restriction that has
been imposed is that the measurements should be local
in the sense described above.

It should be pointed out that the acceleration ex-
pression (4.7) cannot be obtained by directly dif-
ferentiating the velocity expression (4.5) The measured
velocity (4.5) was obtained from a power-series ex-
pansion, which yielded a result of the form

ds/dt=—U,V*/AV+f1(Al)+f2(AL)?
fs(AD---, (4.8)

where the f; are known functions of 4#and V* The mea-
sured acceleration is obtained by differentiating this
expression with respect to {. It is seen, however, that
differentiation of the first-order term fi(Al) yields a
zeroth-order term that does not vanish in the limit
Al— 0; this zeroth-order term, of course, cannot be
neglected. Similarly, if the third derivative were de-
sired it would be necessary to consider the second-order
term f»(Al)?; this would have the effect of bringing
the Reimann-Christoffel tensor into the expression.

5. ANALYSIS OF LOCAL GEDANKEN-
EXPERIMENTS

In the calculation of the results of an observer’s
local velocity and acceleration measurements, no use
was made of any statement of the PE. We are free,
therefore, to use these results to illustrate that there
exist local physical systems and reference frames which
are in accord with our statement of the PE. What we
shall now do is to employ the results of Sec. 4 to describe
various gedankenexperiments that can be performed on
local systems. These experiments will define the equi-
valence of a particular set of reference frames R¢; and

Rp; that correspond to radar-station reference frames
in and out of gravitational fields. By examining a
series of gedankenexperiments performed on diffeent
local systems, we shall then demonstrate that this
equivalence relation is independent of these local
systems, as is required by our statement of the PE.

To illustrate the types of gedankenexperiments that
can be analyzed, consider an observer in an arbitrary
gravitational field moving along an arbitrary timelike
world line with tangent vector F* Let this observer
measure the local velocity and acceleration of a particle
moving along a timelike geodesic world line with
tangent vector G*. The relationship between the mea-
sured velocity and acceleration can be found by setting
A*=F* and V*=G* in (4.7b), yielding

d*s oF+ ds\?

—= _U"_I:I_<_> ]

ag 0Ty dt
Let us now analyze a similar set of measurements

carried out in a flat space. To this end, we consider a
hyperbolically accelerated trajectory described by

(wl—xd1/a)?— (0—x0)2=1/a2. (5.2)

A particle following such a trajectory has the property
that its acceleration is found to be a constant @, when
measured by any free observer who is instantaneously
at rest with respect to the particle. Hence in this sense
the particle can be considered to move with “constant”
acceleration. Consider now an observer in flat space
following such a hyperbolic trajectory who measures
the velocity and acceleration of a free particle at the
instant when it is in coincidence with him. An analysis
of this experiment,'® which makes use of only special
relativity, shows that the measured velocity and
acceleration of the free particle are related by

d?s ds\?
e atl
dr? dt

13 J. L. Anderson and R. Gautreau, Am. J. Phys. 37, 108 (1969).

(.1)

(5.3)
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If the quantity U,8F*/dr, is regarded as the gravita-
tional acceleration, then it is seen that the results of
the two gedankenexperiments described here are
identical. By our definition, the equivalence of the
gravitational field and flat-space radar-station refer-
ence frames is thereby established.

Another type of experiment that can be analyzed is
the case where the roles of observer and particle are
reversed, so that a geodescially moving observer mea-
sures the velocity and acceleration of an arbitrarily
moving particle. One can also consider a situation where
a clock is moving past an observer, and one can deter-
mine how this clock’s time is related to its velocity as
measured by the observer. A description of four such
experiments and their results is given in Table I.14

Table I shows the results of measurements made
with two different sets of radar-station reference frames.
In each set, one frame is in a gravitational field while
the other is in flat space. In one set, the frames move
alone geodesics (experiments B; and B,), while in the
other they move along nongeodesic trajectories (ex-
periments A1 and 4,). The local systems on which the
measurements are made are a particle and a proper
time clock. From Table I it is seen that when an equi-
valence relation is established between radar-station
reference frames, e.g., experiment 4, or By, this equi-
valence relation is maintained when the local system
being measured is changed, e.g., experiment A, or B..
Therefore, we see that one can demonstrate the ex-
istence of reference frames that satisfy our statement
of the PE.

In closing this section, we point out the following.
The unit vector U* is defined such that it is always
orthogonal to the world line F* ie., U,U*=1 and
U,F*=0. Therefore, the term U,6F*/é7, is a quantity
that depends only on the trajectory F* and is indepen-
dent of the geodesic world line G*. Hence the quantity

14 See Ref. 12 for a complete analysis.

U,0F#/ér, can be regarded as characterizing the
acceleration of the trajectory F* in the same manner
as the constant e characterizes the acceleration of the
hyperbolically accelerated trajectory in flat space.
Since the only restriction on the world line F* is that it
should be timelike, the trajectory F* can describe the
motion of a particle that is stationary with respect to a
source of the field or a particle that is moving about
with arbitrary motion. Hence the quantity U,0F#/ér,
can represent the gravitational acceleration produced
only by the sources of the field or produced by some
combination of field strength and accelerative motion.

6. SUMMARY

In this paper we have attempted to formulate a
statement of the principle of equivalence that is both
precise and nonempty. Our statement is equivalent to
the more usual statements of the principle in those
cases when these latter statements are applicable. In
formulating this statement we have had to introduce
the notion of a local system and equivalent reference
frames. By considering especially simple systems, we
have shown that it is possible, within the framework
of general relativity, to construct reference frames
employing these systems as measuring devices that
satisfy our statement of the principle. We emphasize
that, in order for this demonstration to be meaningful,
the behavior of these systems as measuring devices must
be determined from their dynamics and not postulated
ab initio. Thus we do not employ any such hypothesis
as Synge’s chronometric hypothesis that ideal clocks
measure proper time.
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