
LAGRANGIANS AND CENTER —OF —MASS THEOREM. I

In this paper we have used Noether's theorem to
derive the c.m. theorem from the invariance of the
Lagrangian under a 3-parameter set of infinitesimal
transformations which will not, in general, generate a
finite group of transformations in configuration space.
We could use instead the Hamiltonian formalism and
consider canonical transformations in phase space.
Then it proves possible to define a 3-parameter Abelian
group of canonical transformations in phase space

(existing independently of any particular Hamiltonian,
of course) whose generators, for Hamiltonians conserv-
ing total energy and momentum, reduce to the genera-
tors of symmetry transformations corresponding to the
ones we have used in the Lagrangian approach. These
transformations, as well as the canonical symmetry
transformations generated by the c.m. constants of the
motion considered here will be discussed in a separate
paper.
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It is shown that, with the exception of the Schwarzschild metric, gravitational systems described by
suitably regular vacuum solutions of Einstein's equations admitting a shear- and twist-free congruence of
diverging null rays must be radiative. Robinson and Trautman have demonstrated the existence of type-II
solutions of this kind, which describe radiating gravitational systems with bounded sources. However,
attempts to display an explicit radiative solution through specilaization to conformally spherically sym-
metric, Kerr-Schild, conformally Kerr-Schild, and type-D space times lead to singular metrics. Finally,
important physical properties of these systems, including energy, angular momentum, radiation Aux, and
trapped surfaces, are discussed.

I. INTRODUCTION

"ANY of the known solutions to Einstein's equa-
- l tions are shear free. ' The plane-wave type, with

divergence-free ray vectors, clearly represent an exces-

sively unphysical extrapolation of gravitational systems
with sources confined to a bounded region. Robinson
and Trautman' ' were the first to investigate system-
atically shear-free vacuum metrics with diverging ray
vectors. This paper is concerned with the question:
Which types of gravitational systems with bounded
sources can be described by the Robinson-Trautman
metrics? The Schwarzschild metric provides an im-

portant example and suggests the possible existence of
other cases of physical interest. Robinson and Trautman
confined their original analysis to hypersurface-
orthogonal shear-free metrics. Although they later
generalized their approach to include twisting solu-

tions, 4 such as Kerr's, we will restrict our attention here
to the twist-free case.
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Since we are concerned with vacuum solutions ex-
terior to some bounded region containing sources, the
Goldberg-Sachs' theorem is applicable: Shear-free
vacuum metrics are algebraically special. This means
that the Acyl tensor for such solutions has particularly
simple algebraic properties. Correspondingly, there
exists a coordinate system in which the metric is also
algebraically simpler than usual. For this purpose,
Robinson and Trautman used null coordinates based
upon the shear-free family of diverging null hyper-
surfaces. Their work showed that in such a coordinate
system, the analytical properties of the metric also
simplify considerably. This feature can best be appreci-
ated in terms of some work by Newman and Unti
concerning . the Lienard-Wiechert potentials of an
accelerating charged particle in the context of special
relativity. In terms of a null coordinate system based
upon the shear-free family of null cones, I=const,
emanating from the world line of the accelerating par-
ticle, the description of the electromagnetic field be-
comes especially simple. A gauge can be found in which
the vector potential satisfies

A =AN, .
This algebraic statement is unusual from the customary
point of view of describing the radiation field as trans-

~ J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, 13
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6 E. T. Newman and T. W. J. Unti, J. Math. Phys, 4, 1467
(1963).
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verse. The vector potential given in Eq. (1.1) is purely
longitudinal, i.e., in terms of the retarded time co-
ordinate, x'=n; the only nonvanishing component of

is Ao. Only the field strengths F„„are transverse in
the radiation zone. Furthermore, Newman and Unti
found that the proportionality function A has the
analytically simple feature of possessing only two non-
zero terms in a 1/r expansion along the null cones. These
simplifications in the description of the electromagnetic
field were accompanied, of course, by making the
metrical description of Minkowski geometry more
complicated in terms of coordinates tied to a noninertial
origin. Consequently, the resulting metric does not even

asymptotically approach a metric with time-indepen-
dent components. This is why the usual description of
the radiation zone is no longer appropriate in these
coordinates.

Robinson and Trautman's description of shear-free
gravitational systems is analogous to Newman and
Unti s description of the Lienard-Wiechert potentials.
The metric geometry is both algebrically and analyti-
cally simple in terms of a null coordinate system, so tha, t
Einstein's vacuum equations take on an almost trac-
table form. Unfortunately, however, techniques for
constructing the general solution are still not available.
Robinson and Trautman gave various specialized
solutions and indicated how to obtain the most general

type E solution in their initial paper. Later, Foster and
Newman~ showed how some of these solutions could be
used to generate further solutions by means of a con-
formal mapping. In this way, they are able to find an
infinite family of type-III solutions. As indicated by
Robinson and Trautman, these algebraic types are too
specialized to represent physical systems with bounded
sources. ' For this purpose, only the most general type
of Robinson-Trautman metrics, type II, can be expected
to be suitable. Ke give a proof in Sec. II. Hence, even
with their infinite class of newly found solutions, Foster
and Newman still had to resort to an approximation
procedure in order to discuss systems with localized
sources.

On the other hand, Robinson and Trautman4 have
presented a proof of the existence of type-II solutions
with suitable regularity properties to describe bounded
systems. We discuss these regularity properties in
Sec. II and show that, except in the Schwarzschild case,
these metrics must be radiative. In addition, we rule out
the existence of suitably regular solutions of various

types, including conformally spherically symmetric
metrics, twist-free Kerr-Schild' metrics, and type-D
metrics, the Schwarzschild metric again being the only
exception.

Notwithstanding the nonexistence of explicit solu-

tions, type-II Robinson- Trautman metrics still provide
the simplest exact model of the exterior Geld of a

7 J. Poster and E. T. Newman, J. Math. Phys. 8, 189 (1967).
R. P. Kerr and A. Schild, American Mathematical Society

Symposium, New York, 1964 (unpublished).

Here I.' is the total angular momentum operator and E
is just the Gaussian curvature of a two-space with
metric W 'g~ii. For Eq. (1.2) to be a vacuum metric,
one of Einstein's equations remains to be satisfied,

ass�(lnW'), s+Wsl. 'E=0. (1.4)

For details see Appendix A.
Equations (1.2).—(1.4) display the simplicity of

shear-free systems. Knowledge of the function 8' com-
pletely determines the metric. Because 8' has no radial
dependence, this implies that an asymptotic solution is
now equivalent to a global solution. Even though these
systems are in general radiative, the transverse metric
is completely time-independent. As in the Lienard-
Wiechert case, the coordinates leading to this simplifi-
cation give an unusual metric description of the radi-
ation zone. In the customary null-coordinate treatments
of the radiation zone, such as given by Bondi et ul. ,' by
Sachs" and by Newman and Penrose, " in the limit of
large r the metric approaches a null polar coordinate
version of the Minkowski metric. This is not true of the
Robinson-Trautman metrics. In general, the shear-free
family of null hypersurfaces does not define a frame at
null infinity which in any asymptotic sense can be
considered to be inertial.

To be explicit, we word this paper to treat a family of
shear-free null hypersurfaces diverging out to future
null infinity, but all statements can be time reversed to
treat a family converging in from past null infinity.

9 H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner,
Proc. Roy. Soc. (London) A269, 21 (1962)."R.K. Sachs, Proc. Roy. Soc. (London) A270, 103 (1962)."E.Newman and R. Penrose, J. Math. Phys. 5, 566 (1962).

bounded source emitting gravitational waves. Some of
the physical properties of these systems, such as energy,
angular momentum, radiation Qux, and trapped sur-
faces, are discussed in Sec. III.

The formalism we use is very similar to those of
Robinson and Trautman4 and of Foster and Newman. 7

We adopt the same retarded time coordinate x'=I,
where the shear-free null hypersurfaces are given by
u= const. For the coordinates x~ labeling the null rays
on these hypersurfaces, we use polar coordinates x'= 8,
x'= p. For a radial coordinate along the null hyper-
surfaces we use a luminosity distance x'=r. Robinson
and Trautman and Foster and Newman use stereo-
graphic coordinates as ray labels and an affine param-
eter as radial coordinate. The transformations connect-
ing our formalism to that used by Foster and Newman
are given in Appendix A. We arrive at the metric

dP= (Ic+2fs%W)dsP+2Wdl dr+2rW, gd~ dx

rsq~sdx—"de (1.2)

where W= W(l, x ), fs' 1or 0——, q&n is the metric of
the unit sphere, and
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R„„„=r'N„„,.+r 'III„„,.+r 'II„„„.— (2 1)

Because of the algebraic special nature of shear-free
systems, the series terminates at type II. In Appendix
B, we give the key components of the Riemann tensor.
Penrose's treatment of asymptotic Qatness can be com-
bined with our regularity requirement on the I= const
hypersurfaces to show that the coordinates x = (n, r,x")
give a nonsingular description of the metric components
in Eq. (1.2). Therefore, W(l, x") must be a smooth
function on the sphere with 0&8"&~ for the correct
metric signature. Then 8' ' and in%' are also smooth
functions on the sphere.

The search for physically interesting Robinson-
Trautman metrics now reduces to finding solutions of
Eqs. (1.3) and (1.4) consistent with these smoothness
conditions on 8'. There are two distinct classes of solu-
tions corresponding to Ps'=0 or —1.We examine these
two possibilities separately.

A. Qs"=0

In this case the algebraic type is either E or III. All
scalars of the Riemann tensor vanish. The field equa-

"R.Penrose, Proc. Roy. Soc. (London) A284, 159 (1965)."R. Penrose, in Relativity, Groups, and Topology, edited by
C. De%itt and B. DeWitt (Gordon and Breach, Science Pub-
lishers, Inc., New York, 1964), p. 565.

G. REGULARITY

For the regularity conditions appropriate to the
exterior shear-free region of a bounded source system,
we impose the usual asymptotic Qatness conditions plus
the following additional restriction. We require that the
shear-free null hypersurfaces u=const form a regular
diverging family of hypersurfaces with topology S'PE'
such that consecutive members do not intersect in the
neighborhood of future null infinity. In Qat space time,
this would rule out families of null cones whose vertices
lie on spacelike or null lines but would include the more
physically interesting case of a family emanating from
a timelike line discussed in the preceding description of
the I.ienard-Wiechert potentials. This additional re-
striction is probably not necessary but it conveniently
rules out many nonphysical situations which otherwise
would require more complicated global considerations
to eliminate. It does not rule out any situations to which
the Robinson-Trautman existence theorem applies, but
we stress that by regllority in this paper we imply a
stronger condition than asymptotic Qatness alone.

Penrose" " has given a mathematically rigorous
coordinate-independent statement of the asymptotic
Qatness conditions. Using this approach, he has estab-
lished that the radial behavior of the Robinson-Traut-
Inan line element is completely consistent with asymp-
totic Qatness. '3 In the present terminology, this implies
that the Riemann tensor displays the asymptotic
"peeling" behavior' "

tion, Eq. (1.4), reduces to

so that smoothness on the sphere demands that

(2.2)

(2.3)

0= W 'L'EdQ= 8' ' 5W 5*'8' dO.

Positive definiteness of the integrand then demands that

5'W= 0. (2.4)

The smoothness conditions obtained in Eqs. (2.3) and
(2.4) are sufhcient to ensure that space time is fiat, as
may easily be checked by referring to the components
of the Riemann tensor given in Appendix B. This
establishes that there are no regular solutions of type
S or type III, except for Qat space.

Alternatively, we may arrive at this conclusion by
means of a coordinate-independent argument on a single
null hypersurface. I et I' be any null hypersurface with
topology S')&E' emanating out to future null infinity.
The total energy and momentum I' (a=0, 1, 2, 3)
measured by observers at null infinity at the retarded
time determined by I' may be calculated by invariant
means. ""The result shows that I',=0 when F is shear
free and the coeKcient II„„„is absent in Eq. (2.1).The
positive definiteness of the energy carried oG by gravi-
tational radiation implies that at later retarded times
the total energy is either zero or negative. Hence a
shear-free null hypersurface of topology S'XE' on which
the Riemann tensor is algebraically type E or III
cannot exist in any physically interesting space-time
unless the space time is Qat at all points future to the
null hypersurface.

B. Qs'= —1

In this case, the Riemann tensor is type II and the
only independent scalar invariant is

There is a singularity at r=0 unless the interior region
is appropriately filled in with matter. Here we are only

~4 E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (f966).' J. Winicour, J. Math. Phys. 9, 861 (1968).

Inserting Eq. (1.3), the expression for K in terms of W,
into Eq. (2.2) and rewriting the result using the 5
calculus' discussed in Appendix A, we find

L'K = (5'W) (5~'W) —W5'5*'IV.

Here 5 denotes the spin-weight raising operator and
5* is the spin-weight lowering operator. (Because of

typographical difficulties the 5 of earlier references
appears here as 5*.) Integration over the sphere gives
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1. Coeformally Spherically Symmetric Space Times

Any spherically symmetric geometry admits a shear-
free null hypersurface. The same will be true of any
conformally spherically symmetric geometry since the
vanishing of shear is a conformally invariant property.
Let h„, be spherically symmetric metric and put

tv e ~pv ~
f (2.6)

For any Killing vector t of the metric h„„, we have

concerned with ruling out singularities in the neighbor-
hood of null in6nity. By combining Eqs. (1.3) and (1.4),
the held equation for W may be rewritten as

6(W-'), o
——W5'5*'W —(5'W) (5*'W) . (2.5)

Robinson and Trautman based their existence theorem
for nontrivial, regular, type-II solutions on the following
lines. 4 At some initial retarded time let 8' be a smooth
positive function on the sphere. Then Eq. (2.5) will

propagate 8' smoothly for some finite time. The
Schwarzschild metric is the only explicitly solved
example. In this case, 8' is initially given as a constant
on the sphere and propagates as a constant. In the
remaining part of this section we will show that certain
additional specializations in the geometry cannot lead
to nontrivial, regular solutions of Eq. (2.5) and that a,ny
regular solution of Eq. (2.5) must be either radiative or
8chwarzschild.

for the Robinson-Trautman metric is

The radiative component of the Riemann tensor van-
ishes if and only if

(IV '5'W), p
——0. (2.11)

I.et us examine the consequences of Eq. (2.11). We
can set

(2.12)

where n is some undetermined spin-weight 2 function
which is constant in time. Putting this result into the
propagation equation (2.5), we 6nd

6(W—') o——WP5'rx+2W(5(V) (5W) . (2.13)

Dividing by 8" and differentiating, we now obtain

3(W '),po=2(5a)(W 'NV) p (2 14)

On the other hand, we may also write Eq. (2.11) in the
form

l"= (O,W ',0),
ling

—(1 1Igg11 glA)

m~= (0,0,r—'t-4).

The radiative O(r ') part of the Riemann tensor (%4
in the Newman-Unti'7 formalism) can easily be obtained
by referring to the results given in Appendix B.We find

44'=—lim rR„~e„rtl"m m~e"= —-'W(W '5*'W) . (2.10)

~ofp~=fu &of)

WP(W 4), pod' =0

5LW'(W '5W), o)=0. (2.15)
(2 7)

It is now easy to see that Eqs. (2.14) and (2.15) imply
where Z symbolizes the Lie derivative. Collinson and that
French' have proved a theorem which states that for
any empty space-time metric satisfying

the function p must be a constant except in the type-E
case. Since we are no longer concerned with type-2V
solutions, we may apply this theorem to Eq. (2.7) to
obtain

or, equivalently,

L(W '),pp+4W 'IV, pW, pjdQ=0. (2.16)

g of= const.

Single valuedness then requires that f is a constant
function on the sphere. Consequently, the metric in
Eq. (2.6) must be spherically symmetric. Application
of the SirkhoG theorem then establishes that the only
regular conformally spherically symmetric empty-space
solution is the Schwarzschild solution.

Z. Vaeishieg EaChatiee Eiensane Tensor

It is, however, clear from Eq. (2.5) that for any type-II
Robinson-Trautman metric the conservation law

(W '),odd=0 (2.17)

must hold. We can thus conclude from Eq. (2.16) that
fV is independent of time, so that lack of a radiative
Riemann tensor implies that the system is static.
Furthermore, by dividing Eq (2.13) by. W and inte-
grating, we obtain

A convenient choice of null tetrad,

g"= 2k ~~n") —2m(~m"&
) (2.8) o,o,d0=0,

"C. D. Collinson and D. C. French, J. Math. Phys. 8, 70I
(I967),

~~ K. T. Newman and T. W. J. Unti, J. Math. Phys. 3, 89I
(1962).
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so that
8'IV= n= 0.

Consequently we may express 8' in terms of an ex-
pansion in spherical harmonics,

W=a+Z b Vi„,

which cuts off at l= 1.By a rotation of polar-coordinate
axes, we may put this in the form

the form of Eq. (1.2), we have from Eq. (2.18)

dx"dx"= HdkP+ 2N~du (tr+2rW, ~du dx"
r—'q~edx "dxe, (2.19)

where II is some as yet undetermined function which
makes the right-hand side a Rat-space metric. The
relevant components of the Riemann tensor for a
general metric of the form of the right-hand side of Eq.
(2.19) are given in Eq. (B2) of Appendix B.Flatness of
this metric gives the conditions

W =a+ b cos8. 5H=H, i——(W 'O'W), 0——0.
From Eq. (1.4) we see that E must be a constant and For such metr, cs@ 0 0
from Eq. (1.3) we find that result.

so that E&0 and

4m=E 8' 'dQ,

1)l.' In'. g„„=fg„,+k„k„, (2.20)

5. Conformally Eerr Schitd M-etrics

The success of the Kerr-Schild approach to finding
new solutions suggests the possibility that the more
general metric

The aesats
3. Separable SoLutions

W= f(u)g(x")

leads to a separation of the propagation equation LEq.
(2.5)$ into two equations, one of which involves only
time dependence and the other only angular depen-
dence. It is clear, in this csae, that Eq. (2.11)holds so that
0'4' ——0. Consequently, the Schwarzschild solution is the
only regular solution of this type.

In the present case, this implies that a'&O'. This in-
equality is the sufIicient condition for the existence of a
conformal change of coordinates on the sphere" (cor-
responding to a I.orentz transformation along the polar
axis) such that in the new coordinate system b'=0

We can thus reduce the solution to the form 8"=const
and arrive at the following important result: Hey
regular RobirIsoe-TrautmarI, solutioe with a vanishieg
radiatiiie component of the niemann tensor must be the

Schwa arsschild so/utioe.

where f is an arbitrary conformal factor, might also
lead to interesting results. When k„ is a twist-free and
shear-free null vector, such metrics will again be a sub-
class of the Robinson-Trautrnan metrics being con-
sidered here. In that case, we have in analogy with Eq.
(2.19)

frt =Hdu +2Wdu dr+2rW ~du dx~ rq~sdx&dx—s

Now the metric on the right-hand side must only be
conformally flat. The relevant Weyl tensor components
can easily be calculated from Eq. (B2) of Appendix B.
Proceeding as in the Kerr-Schild case, the vanishing of
the Weyl tensor implies that 0'4 =0. Again, the only
regular solution is the Schwarzschild solution.

6. Type DSolutions-
An important subclass of type-II geometries are the

type-D metrices. In these geometries, besides the double
null eigenvector of the Riemann tensor l„ there is an
additional one, say e„, satisfying

Rsvp [cr8~]5 'V 0 (2.21)

g„„=rt„„+k„k„, (2.18)

where g„„ is the Minkowski metric and k„ is a null
vector. The vacuum field equations demand that k„be
shear free. Hence in the twist-free case the Kerr-Schild
metrics are a subclass of the Robinson-Trautman
metrics being considered in this paper. We now show
that there are no regular Kerr-Schild solutions other
than the Schwarzschild solution. Putting the metric in

"R.Sachs, Phys. Rev. 128, 285j. (1962).

4. Twist-Free Eerr-Schild Metrics

Kerr and Schild have found a way to obtain all
solutions to Einstein's equations of the form

gttV 2L(pQV) 2g (pgV)
~

Equation (2.21) implies that

E„„p,e"q"Spy =0,
EIttvp rr8 g 8 l 0 ~

(2.22)

(2.23)

The null tetrad given in Eq. (2.22) must be related to
the null tetrad previously adopted in Eq. (2.8) by a null

Let l„be the hypersurface orthogonal double null
eigenvector given in Eq. (2.8), and let v„be an inde-
pendent solution of Eq. (2.21) which is not necessarily
twist free. By completing a null tetrad based upon these
two eigenvectors, we may write
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rotation of the form

Reexpressed in terms of the original null tetrad, Eqs.
(2.23) then become

constraint will be automatically propagated. Because
the propagation equation (2.33) is now linear, explicit.
solutions can be obtained quite readily. Examples are
given by Robinson and Trautman.

Despite their attractive simplicity, we now show that
the only type-D solution which is regular at null infinity
is the Schwarzschild solution. First, we note that

E4„p n4m"npm = 3C E „p n4lvnpl )

E4 p
n4es"n pl = —

& cE4vp n4l"npl '. (2.24) OE = WO*O'TF —(O'W) (O*W) .

From this it follows that
By use of the results of Eqs. (B1) of Appendix B, Eqs.
(2.24) become

c = —,',v2rW'OE ——,'v25W,
c'=—'r'W4(W 'O'W)

+-,'rW'(5W5E/2W —O'E/4)+-'(OW)' (2.25)

so that
IV 4ri=O*PV '52W)

8' 4ggdQ=0.

Elimination of c from Eqs. (2.25) gives

5 (W'5E) =0,
(OE)'= 6(W 'O'W), p.

(2.26)

(2.27)

From the positive definiteness of the integrand, we
conclude that q= 0. The solution is static and, by previ-
ous results, either singular at null infinity or the
Schwarzschild solution.

g, p= 0. (2.32)

Consequently, the spin-weight 1 function p is time-
independent and built out of vector spherical harmonics
with /= I.We now can rewrite the propagation equation
as

12' p
——2g6*5'—6'8*g. (2.33)

The problem of finding type-D Robinson-Trautman
solutions now reduces to first finding initial conditions
for lV consistent with the constraint embodied in Eqs.
(2.30) and (2.31).Then a solution may be obtained by
propagating these initial data by Eq. (2.33). The

It is easy to show from the propagation equation (1.4)
that Eq. (2.27) follows from Eq. (2.26). Hence Eq.
(2.26) gives the necessary and suKcient conditions for
a Robinson-Trautman metric to be of type D. By
applying the operator 5* to Eq. (2.26), we find

5(E'+W'OO*E) =0. (2.28)

Combining Eq. (2.28) with the propagation equation,
we then obtain

(2.29)

We now combine Eqs. (2.26) and (2.29) to obtain

(W'OE), p= 0,

so that if the constraint equation (2.26) is satisfied at
one time, the propagation equation guarantees that it
will remain satisfied. Putting

(2.30)

we have

(2.31)
and

GI. PHYSICAL PROPERTIES

The results of Sec. lI show that, with the exception
of the Schwarzschild solution, all presently known
Robinson-Trautman solutions are not suKciently
regular to represent systems with localized sources. The
only additional simplification that appears to be com-
patible with a realistic shear-free system is axial sym-
metry, and this does not lead to any major simplification
in the propagation equation. Notwithstanding this
negative result, the existence theorem presented by
Robinson and Trautman ensures that shear-free radi-
ative exterior solutions compatible with a bounded
source do exist. For these solutions the metric must
deterministically evolve in time according to the
propagation equation in order that the shear-free
property be maintained. Therefore, "news" in the sense
of Bondi et a/. is not allowed. From this it is clear that
the Robinson-Trautman systems are not typical of the
most general type of gravitationally radiating system.
Nevertheless, they furnish a tractable model for asymp-
totically Oat radiative metrics, and it is interesting to
inquire into their physical properties.

Let us first consider the 10 constants of the motion
recently discovered by Newman and Penrose. "These
constants are constructed out of the 0(r ') part of the
Riemann tensor. Because these higher-order coefficients
are all zero for the Robinson-Trautman metrics, the
Newman-Penrose constants vanish. This result is a
specialization to the hypersurface orthogonal case of a
more general result due to Exton": The Newman-
Penrose constants are all zero for any algebraically
special space-time.

"E.T. Newman and R. Penroae, Proc. Roy. Soc. (London)
A305, 175 (1968).

A. Exton (private communication).
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Robinson and Trautman have pointed out the exis-
tence of a different conservation law

W 'dQ=O.
dl

(3.i)

Geometrically, this conservation law states that the
surface area of a 2-sphere with metric 8' 'gag is a con-
stant of the motion. It is a special case of a general
conservation law for type-II spaces which has been
discussed in detail by Jordan, Ehlers, and Sachs."

For asymptotically Qat systems, physical quantities
which have been called the asymptotic symmetry
linkages can be introduced which form a representation
of the asymptotic symmetry group or Bondi-Metzner-
Sachs group. ""In addition to the translations and
Lorentz rotations of the Poincare group, the Bondi-
Metzner-Sachs group contains an in6nite-dimensional
supertranslation subgroup. ' Consequently, besides the
energy, momenta, and angular momenta, the related
physical quantities include an infinite set of super-
momenta. The asymptotic symmetry linkages are
functionals of the spherical 2-spaces Z lying on a null
hypersurface extending out to future null infinity. They
are generalizations of the functionals considered by
Komar, "

(0

ti = '«f"—:A-+W:Af "+'Wf'"-A,

(A fA r 1Wf A—
(3.5)

The linkage functional for some spherical 2-space Z
lying on E is given by

Lr(s) =f((~"'"~—p, ,d~"rrr~)ds„. , (3.6)

where m& is any vector 6eld on Z normalized by

When P is a global Killing vector, this reduces to
Komar's integral. In the present case, if we take Z to be
a surface of constant u and r, we find the particularly
simple result

null infinity. In order to de6ne the asymptotic sym-
metry linkages corresponding to some null hypersurface
E, the descriptors are propagated along S by the pro-
jection of Killing's equation

g(~;r)h —iP

where k„ is the normal to E. Carrying this out for the
shear-free hypersurface I= const gives

dLr (Z) fP" ~dS„. =
Lr(rr, r) =(d ) 're fW 'dQ (3 7)

(Wf),P ,'W fB,B W,B——fB-—(3.3)

f(A;B)—LqABfo (3.4)

Here the colon represents two-dimensional covariant
differentiation on the unit sphere. The regular solutions
of Eq. (3.4) describe the six-parameter group of con-
formal transformations of a sphere which is isomorphic
to the orthochronous Lorentz group. The solutions of
Eq. (3.3) with f"=0 and Wf=n(xB) describe the
supertranslation subgroup. The supertranslations for
which o, only contains terms with l&1 in a spherical
harmonic decomposition form the four-parameter
invariant-translation subgroup. So far these asymptotic
symmetry descripto~ are uniquely determined only at

"P. Jordan, J. Ehlers, and R. K. Sachs, Akad. Kiss. Lit.
(Mainz) 1, 1 (1961).

22 L. A. Tamburino and J. H. Kinicour, Phys. Rev. 150, 1039
(1966).

2' A. KoDIars Phys. Rev. 113, 934 (1959).

where P is a global Killing vector, to the case where no
global symmetries but only asymptotic symmetries
exist. In the present case, applying Killing's equation
asymptotically, we 6nd for the asymptotic behavior of
the Sondi-Metzner-Sachs symmetry descriptors

(3.2)
where

We immediately see that our final result for the link-

age functional is independent of r. This is a consequence
of the general vacuum result that the asymptotic
symmetry linkages on a shear free null hype-rsurface are
independent of choice of spherical Z space W-e ma. y slide
the surface of integration freely along the null hyper-
surface without changing the linkage integrals. (Note
that Komar's functionals are completely surface-inde-
pendent in i)acuo. ) In particular, the linkage through
any finite sphere is equal to the total linkage through
the sphere at null infinity. Inserting into Eq. (3.7) the
value f= W ' appropriate to a time translation, we find
for the total energy

S(rr)=(d ) '$W 'dD. (3.8)

Taking the time derivative by means of the propagation
law, we then have for the radiative energy Qux

dZ/drr= —(16 ) 'fW '(LdW)(5"'W)dn. (3.9)

This result demonstrates unequivocally that shear-free
gravitational systems can radiate gravitational energy.
The energy loss is positive definite, as it must be in.

general for any asymptatic@lly Qat system.
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Wf=tWfj„=„,+. ,'W f~-,g W,g—f~jdu. (3.10)

It is clear that we can mix in the proper supertranslation
to make f=0 at retarded time u for the spatial rotations.
However, the angular components of the rotational
descriptors f" do not explicitly enter into the linkage
integral, Eq. (3.7). Hence, at any retarded time u there
exists a supertranslation frame for which the total angu-
lar momentum of a Robinson-Trautman system van-
ishes. More generally, the following conclusion follows
from the results of Ref. 15. For any shear free mull hy--

persurface whose Normalis adoubleeulleigenvector of the

Riemann tensor, the total angllar momentum can be trans-
formed to sero. No similar result applies to twisting shear-
free congruences. For instance, the Kerr metric, which
admits such a congruence, has nonvanishing total
angular momentum.

The result that the linkage integrals are independent
of r suggests that no incoming gravitational fields are
Rowing across the shear-free outgoing null hyper-
surfaces. In fact, Sachs's examination of algebraically
special fields was physically motivated by his recogni-
tion that they could be utilized in posing covariant
criteria for the presence of purely outgoing (or, in the
time reversed case, purely incoming) gravitational
radiation. '4 However, any definitive conclusion con-
cerning the absence of incoming radiation must be
consistent with the behavior of the Riemann tensor at
past null infinity. So far, we have restricted our analysis
to future null infinity exclusively. A study of past null
infinity would at the least require knowledge of the
behavior of the function tV in the limit u ~—~. The
propagation equation is sufficiently nonlinear and
complicated to make this a dificult task. Basically, this
equation is parabolic, like a diffusion equation. An
analysis of the linearized version of this equation
reveals that 8" smooths out its angular behavior as the
system evolves into the future. By the same token, the
angular behavior becomes more exaggerated as we trace
it back into the past. Although the linearized version is
not reliable for the propagation of a nonlinear distur-

"R.Sachs, Proc. Roy. Soc, (London) A264, 309 (1961).

The total angular momentum is not so well defined
for asymptotically Oat systems as it is in special rela-
tivity, where the ambiguity is of the form

L'=L+aX P,

the translations a mixing the momenta into the defini-
tion. In the asymptotically Oat case, the supertrans-
lations mix all of the supermomenta into the trans-
formation properties of the angular momentum. "This,
of course, is in addition to the usual transformation
properties under the homogeneous Lorentz group. In
the present case, Eq. (3.3) gives for the to component of
a rotational descriptor at retarded time I

bance through an infinite time interval, it does raise
doubts concerning the regularity of past null infinity.

Another global property of physical interest is the
existence of trapped surfaces as defined by Penrose. "
Consider a two surface given by u= const, r= f(x').
The divergence of the outgoing null rays normal to the
surface is

'-.= (Wf)-'.

The divergence of the incoming null rays normal to the
surface is

p; = —(W/f)t-1 —2(W'f) '—55*lnfj,

the over-all minus sign indicating that the null rays
converge at large distances for reasonably smooth
surfaces. However, surfaces with f)0 exist at small
distances such that all normal null rays diverge. Such
a surface is antitrapped in the sense of Penrose. In the
time-reversed case, all normal null rays would converge
and the surface would be trapped. An example of such
an antitrapped surface is given by r= f= const, where

f&min(2/W3),

the minimum being taken over the sphere. The surface
defined by

f(1—55* Inf)= 2/W' (3.11)

has the property that all of its incoming normal null

rays are divergenceless, as in the case of the Schwarzs-
child surface. Although we cannot solve the equation
for this surface explicitly, a general idea of where such a
surface occurs can be obtained by integrating Eq. (3.11)
over the sphere. We find

(f)-=2E—(f '(5f)(5*f))-
In the Schwarzschild case, this reduces to the usual
result r =2m. The presence of radiation electively
reduces the average luminosity distance at which such
a surface occurs. The important point worth emphasiz-
ing is that the Robinson-Trautman metrics provide a
simple model for nonsingular trapped surfaces whose
properties are not modified in any drastic way by the
presence of gravitational radiation.
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APPENDIX A

The Foster-Newman form of the line element is

ds'= L
—R(lnP'), 0+K+2/20/R)du'+2du dR

——,'(R'/P')dl dl, (A1)

R. Penrose, Phys. Rev. Letters 14, 57 (1965).
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where P=P(gg, f), $2o=0 or —1, and

K=4P'(lnP'), rr . (A2)

If dQ is the element of surface area on the sphere, then

The one Einstein equation remaining to be solved is

—3fo'(1nP), p+2P'K rt= 0 (A3)

Equations (A1)-(A3) completely specify the conditions
for a shear-free Robinson-Trautman system. The
coordinates x'=r, x"=(8,p) used in this paper are
related to the Foster-Newman coordinates by

t = cot-', 8 e'",
R= 2V2rP sin'(-,'8).

Straightforward transformation of Eq. (Al) leads to
Eq. (1.2), with

W=2%2P sin'(o'8).

The most direct way of obtaining the transformed
versions of Eqs (A2) and (A3) is to use the spin-weight
ladder operator 6 introduced by Newman and Penrose.
In terms of the metric of the unit sphere qAB and the
complex dyad tA,

qAB 2](A]B)

the operator 8 is de6ned by, say,

5(rlgget"tet~) =V2rlgse nHPtetD. .

where a colon represents two-dimensional covariant
differentiation on the unit sphere. Equations (A2) and
(A3) can then be easily rewritten as

K= [4P'/(1+t f')']55* lnP'
—3go'(lnP), o+ [2P'/(1+ f't )'$55*K=0

Equivalently, in the (8,p) coordinate system these
equations give Eqs. (1.3) and (1.4). The total angular
momentum operator J2 acting on a spin-weight 0
function q is given by

I p= —86

The operator 5 is used extensively in Secs. II and III.
We strictly adhere to the conventions of Newman and
Penrose, so that in a polar-coordinate system

t"=[—1/V2, i%(v2 s—in8) j,
4=qAB~ .

F00 gOA 0 g01 Hj'—1

g"= —1—W '55*W—2/op/(rWo)

g'"= (rlV) 'q"eW, ~,
gAB y

—2qAB

APPENDIX 8
Referred to the null tetrad given in Eq. (2.9), the 10

independent tetrad components of the Riemann tensor
for a type-II Robinson-Trautman metric, as displayed
in Eq. (1.2) with fop= —1, are

R„„,.n~m"n m = W(W '5'W-) o/2r+ (5W)(5K)/2r'W
—5'K/4r'+ 3 (5W)'/r'W'

R„„„n&m"nial =&25K/4r'W+3425W/2r'W', (B1

R„„„(n&l"n&l~+n&l "m&m') = 2/r'W',

R„„„.l' m"l&e =R„„„/&m"l&m =0.
For the more general metric given in the right-hand

side of Eq. (2.19), certain relevant components of the
Riemann tensor are

ROABO~A~B = g5'JI —-„'rII 1H/' —'62K
——',rW(W '5oW), p,

Roio~t = —-',v2r5(r-'H), x,

ROAB1 2~~ 'I~, 1qAB R0101 gII, 11
1 1

Rpgeet t t = p42rW 5H, —
R~eeg)t"t tet =r'[1+55*(lnW) W'Hj—

R1A 1B R1018 ~10AB R1ABC

where g is a nonsingular spin-weight +1 function. If q

has spin-weight s, then

(5*5—55*)g =2'.
For further diGerential and integral properties see
Ref. 13.

The contravariant components of the metric for the
line element in Eq. (1.2) are


