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In Newtonian mechanics the ten classical integrals of the equations of motion of a system of interacting
point particles can be related to the invariance of the corresponding Lagrangian under the ten infinitesimal
transformations of the Galilei group. Systems described by approximately relativistic equations [such
as the Darwin equations in special relativity and the Einstein-Infeld-Hoffmann (EIH) equations in general
relativity ] also possess ten integrals of equivalent physical significance; previous work has established
similar relations with invariance properties of the Lagrangian for only seven of these, but not for the three
expressing the uniform motion of the center of mass. It is shown here that for any Lagrangian whatever
which is a function of the particle positions and velocities alone, and which is invariant under the infini-
testimal time and space translations, it is possible to find an additional exact invariance under a three-
parameter set of infinitesimal transformations (which, in general, depends on a functional rather than a
function). The transformations define a velocity which for approximately relativistic systems can be inter-
preted as that of their center of mass; for such systems the three conservation laws following from this
transformation express the constancy of this velocity. A number of examples are given; for the Darwin and
EIH equations, the conservation laws agree with those previously obtained directly from these equations.
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I. INTRODUCTION

NY Newtonian system of point particles with
gravitational interactions possesses ten integrals
which are algebraic functions of the positions and
velocities, the so-called “classical integrals.”* One of
these corresponds to the conservation of energy, three
to the conservation of linear momentum, three to the
conservation of angular momentum, and three ex-
press the uniform motion of the center of mass (c.m.).
Similar integrals exist for any interactions derivable
from a potential depending only on the mutual
separations.

These integrals can be readily obtained by direct
integration of Newton’s equations of motion. However,
new aspects of their significance emerge through their
derivation, on the basis of Noether’s theorem,*3 from
the invariance properties of the Lagrangian under the
infinitesimal transformations of the inhomogeneous
Galilei group.?* The integrals are related, respectively,

* Research supported in part by the National Science Founda-
tion. Most of the work was done during a summer stay of J.
Stachel at Temple University, whose hospitality is gratefully
acknowledged.

1 For an elementary derivation see, e.g., R. Kurth, Introduction
to the Mechanics of Stellar Systems (Pergamon Press, Inc., New
York, 1957), Chap. III. A detailed discussion is given by A.
Wintner, The Analytical Foundations of Celestial M echanics
(Princeton University Press, Princeton, N. J., 1947), Chap. V.

2 E. Noether, Nachr. Akad. Wiss. Gottingen, IT Math.-Physik.
KI. 235 (1918).

3 A simplified discussion with examples is given by E. L. Hill,
Rev. Mod. Phys. 23, 253 (1951); for a more general discussion
see A. Trautman, in Gravitation, edited by L. Witten (Wiley-
Interscience, New York, 1962), Chap. 5, or in Brandeis Summner
Institute in Theoretical Physics, 1964 (Prentice-Hall, Inc., Engle-
wood Cliffs, N. J., 1965), Vol. 1, Chap. 7.

¢E. Bessel-Hagen, Math. Ann. 84, 258 (1921). This paper
includes a slightly more general formulation of Noether’s theorems
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to the time translation, space translations, space
rotations, and the Galilei transformations between
inertial systems in relative motion.

The Lorentz group is a ten-parameter group, as is
the Galilei group. If the equations of motion of a
special relativistic system of point particles can be
derived from a “Fokker-type” variational principle®7
describing direct particle interactions, this system too
possesses ten integrals which are constants of the
motion.® However, the forces acting in such a system
do not depend on the simultaneous positions of the
particles only; thus the constants of the motion do not
depend on the position and velocities of the particles
at any single time, in sharp contrast to the Newtonian
conserved quantities, but involve integrals extended
over the world lines of the particles. It has been shown
that (except for the trivial case of no interaction) these
constants of the motion of special relativistic dynamics
must always be of this type.®
than stated in Ref. 2; it, too, is credited to Noether. We shall use
this formulation throughout.

6 First found for point changes by A. D. Fokker, Z. Physik 58,
386 (1929). It involves half-retarded plus half-advanced inter-
actions, and integrals over functions of two invariant parameters
such as proper times. It is these features which we consider
characteristic of ‘“Fokker-type” principles, in agreement with
common usage in special relativity.

6 F'or the case of mesic interactions, see P. Havas, Phys.
Rev. 87, 309 (1952); 91, 997 (1953), and references given there.

7 Such a variational principle can be obtained also in a Lorentz-
invariant approximation method in the general theory of relativity,
as shown by P. Havas and J. N. Goldberg, Phys. Rev. 128, 398
(1962).

8 For the explicit form of these integrals see J. W. Dettman and
A. Schild, Phys. Rev. 95, 1057 (1954).

9 For a discussion of this problem see P. G. Bergmann, in
the article on Special Relativity, in Encyclopedia of Physics,

edited by S. Fliigge (Springer-Verlag, Berlin, 1962), Vol. III,
Part B1.

1636



185

However, there are other ways of describing rela-
tivistic direct particle interactions which are more
closely analogous to the Newtonian description; in
particular, in expressing all quantities entering the
equations of motion at a single time.”® Such equations
can be either exact ones,'2 or approximate ones ob-
tained in the course of an expansion of a set of exact
equations (which might be those of a theory of direct
particle interactions or of a field theory with sources)
in powers of v/c, such as those studied by Darwin in
electrodynamics'® or by Einstein, Infeld, and Hoffmann
(ETH) in the general theory of relativity.14!5 The exact
equations known so far either do not follow from a
variational principle in a simple and direct manner,!
or involve a Lagrangian including derivatives of all
orders.”* Nothing is known about their integrals and we
shall not consider them here. The approximate equa-
tions, on the other hand, are known to follow from
variational principles involving the particle positions
and velocities only.!3:15:16

The question thus arises whether these approximately
relativistic variational principles, or indeed also some
Newtonian variational principles involving more general
forces than those considered above, allow ten conserva-
tion laws similar to those of the standard Newtonian
theory. This question has been partly answered in the
affirmative a long time ago; it was found that the
approximately relativistic Lagrangian for the EIH
equations as well as its generalization to rotating
bodies'’+!® is invariant under time translations as well
as space translations and space rotations, which by
Noether’s theorem implies conservation of energy and
of linear and angular momentum.’®1” However, these
Lagrangians are not exactly invariant under either the
usual Galilei transformations or the Lorentz transforma-
tions relating different intertial systems; thus the c.m.
theorem was first obtained by Fichtenholz!®19 as a

10 For a brief review of the various methods see P. Havas, in
Statistical Mechanics of Equilibrium and Non-Equilibrium, edited
by _)I Meixner (North-Holland Publishing Co., Amsterdam,
1965), p. 1.

1 D. G. Currie, Phys. Rev. 142, 817 (1966) ; R. N. Hill, J. Math.
Phys. 8, 201 (1967). Variational principles for such equations can
be obtained by methods such as those proposed by P. Havas,
Nuovo Cimento Suppl. 5, 363 (1957) and Bull. Am. Phys. Soc. 1,
?()37 ()1956); see also E. H. Kerner, Phys. Rev. Letters 16, 667

1966).

2 D. Hargreaves, Trans. Cambridge Phil. Soc. 22, 191 (1917);
see also E. H. Kerner, J. Math. Phys. 3, 35 (1962).

18 C. G. Darwin, Phil. Mag. 39, 537 (1920).

( 14 A, Einstein, L. Infeld, and B. Hoffmann, Ann. Math. 39, 66
1938).

15 For a detailed review see L. Infeld and J. Plebahski, Motion
and Relativity (Pergamon Press, Inc., New York, 1960) and, from
a different point of view, V. Fock, The Theory of Space Time
and Gravitation (Pergamon Press, Inc., New York, 1959).

16 T. G. Fichtenholz, Zh. Eksperim. i. Teor. Fiz. 20, 233 (1950).

1; W. Tulczyjew, Acta Phys. Polon. 18, 37 (1959); V. Fock, in
Ref. 15.

17 W, Tulczyjew, Acta Phys. Polon. 18, 37 (1959); V. Fock,
in Ref. 15.

18 R. Michalska, Bull. Acad. Polon. Sci., CL. III, 8, 237 (1960).

¥ . G. Fichtenholz, Dokl. Akad. Nauk SSSR 64, 325 (1949).

The case of only two particles was treated earlier by V. A. Fock,
ibid. 32, 28 (1941).
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direct consequence of the approximate equations of
motion rather than as a consequence of any invariance
properties of the Lagrangian.

Recently, the question of these invariance properties
was reconsidered® and a rather complex set of finite
transformations (not forming a group) leaving the
equations of motion invariant was suggested. However,
no attempt was made to use the corresponding in-
finitesimal transformations to obtain the c.m. theorem
from the Lagrangian.

In the case of the seven conservation laws known to be
a consequence of Noether’s theorem for the approxi-
mately relativistic Lagrangians, the conservation laws
follow (as they should) from an exact invariance under
infinitesimal transformations, which happen to be the
same transformations as those familiar from Newtonian
theory, and generate a group of finite transformations
which forms a subgroup of the Galilei group as well as
the Lorentz group. One would not expect the remaining
three transformations to belong to the Galilei group,
and one might think that they should be related to
the Lorentz group. In studying this question, we have
found that for any Lagrangian which is a function of
the particle positions and velocities alone, and which
is invariant under the infinitesimal time and space
translations (but not necessarily the rotations), it is
possible to find an additional exact invariance under a
three-parameter set of infinitesimal transformations.
These are not general transformations like the others
considered above, but specific ones dependent on the
particular Lagrangian under consideration and which
define a velocity interpretable as that of the c.m. of the
system, which need not form the generators of a finite
group of transformations. The three conservation laws
following from these transformations are similar to the
Newtonian c.m. theorem.

As noted before, the ten exact general constants of
the motion cannot be functions of a single time only.
Thus, for any systematic approximation method such
as those considered above, conceivably it will no longer
be possible at some stage of the approximation pro-
cedure to obtain such functions. However, it is still
possible for the first seven conservation laws at the
stage considered in the examples of Sec. V containing
interactions. For the remaining three it is also possible
in general if we only consider the c.m. theorem; for the
c.m. coordinate, on the other hand, it is possible only
because certain expressions happen to be integrable,
if use is made of the approximate equations of motion
in all the cases for which such equations are known.

II. NOETHER’S THEOREM

The fundamental connection between the invariance
properties of a variational principle and the conserva-

2§, Chandrasekhar and G. Contopolous, Proc. Roy. Soc.
(London) A298, 123 (1967).
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tion laws has been expressed in two theorems by
Noether,? referring to the invariance under a finite and
an infinite continuous group, respectively. In the pre-
sent context we are only concerned with the first case
of a group G, depending on p parameters. Furthermore,
we shall restrict ourselves to the consideration of an
integral

dxt

pi=—

, 1
dat @

I=/L(l,x",vi)dt, i=1---N,

extended over a one-dimensional region only, and not
containing higher derivatives of the functions x%(¢)
than the first. In the following, ¢ is always interpreted
as the time. As usual, we introduce the Lagrangian
derivatives

Li=————. (2)

We now consider the infinitesimal transformations
{=t+dt,

i 3
a't=xt-0xt,

©)

where 8¢, 6x* are functions of ¢, %, v* depending linearly
on the infinitesimal parameters of G,.

Then Noether’s first theorem states*?': If [ is
invariant under the infinitesimal transformations of G,
up to a divergence, there exist precisely p linearly
independent combinations of the Lagrangian deriva-
tives which are divergences. Conversely, if $ such com-
binations are divergences, there exists a set of p linearly
independent infinitesimal transformations which leave
I invariant up to a divergence. These transformations
generate a G, provided the éx’ depend on the »? at
most linearly, and on no derivatives of the v*.

Since we are concerned with the one-dimensional
case only, “divergence” here is equivalent to a total
time derivative. In particular, then, if

(7 d_c_
L'd! =Ldt+ y dt, 4)
t

where L’ is the same function of the transformed
variables (3) as L is of the untransformed ones, we have

dr/oL AL
—[(————_v’—-L)Sl——ﬁaﬂ%—C:l=Li(6xi—vi5t) , (5)
dtL\gv* dv*

where summation over ¢ is understood.

It should be noted that the statement of the theorem
concerns the expressions (5), which are a direct con-
sequence of the invariance (up to a divergence) of (1)
under (3), and nof any conservation laws; such laws

2t The derivation and statement of this theorem in Ref. 4 are
entirely correct; however, Eq. (4) is stated incorrectly and Eq. (5)
incompletely. For the correct forms see Refs. 3, which unfortunate-
ly do not give a complete statement of the theorem.
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only follow if the Euler-Lagrange equations
Li=0 , (6)

are satisfied. This, from (5), indeed leads to conserva-
tion laws. However, Noether’s theorem does 7ot claim
to make a statement on the total number of conserva-
tion laws following from invariance under G,, but (as
explicitly noted by Noether herself) only on the number
of linear combinations of the L; which become diverg-
ences. This distinction has been almost universally
overlooked in the literature of physics, which has led to
numerous misunderstandings.

In the usual statement of Noether’s theorem for an
integral of the form (1), the infinitesimal transforma-
tions are taken to be functions of the variables at time
¢t only. However, nothing in the derivation of the
theorem has to be changed if the infinitesimal trans-
formations are functionals, i.e., involve integrals over
the time,22 and thus do not generate a G, in general,
as long as these transformations are linearly indepen-
dent. The use of such transformations will lead to
expressions (5) which involve these same functionals.
In general, one might expect that this will also be the
case for the conservation laws following from (S5) by
imposition of the Euler-Lagrange equations (6). How-
ever, situations may arise in which the use of (6) will
reduce the functionals to functions of a single time,
and thus lead to conservation laws of the usual type.
This is indeed the case for the approximately relativistic
equations considered in Sec. V.

III. GALILEI GROUP AND NEWTONIAN
CONSERVATION LAWS

We now consider the case of Newtonian point mech-
anics in the Lagrangian form.?® We restrict ourselves to
Cartesian coordinates and denote the position vector
of the kth particle by rx, with components x,%, and we
now use x;* (=1, 2, 3, k=1---n) in place of the ¥
quantities x%. Then

L=T-V,
n dl‘k

T=3 2 mwvi2, vi=—o, (7
k=1 dt

V=322 Valra), ra=|t—r.

#k

The infinitesimal transformations of the Galilei
group are of the form (3), and the customary choice of

22 Transformations involving functionals and the related con-
servation laws have been considered independently in a different
context by J. N. Goldberg and E. T. Newman, J. Math. Phys. 10,
369 (1969).

% For the specific case of Newton’s law of gravitation, the
method and results of this section are due to Bessel-Hagen (Ref. 4)
and can also be found in Hill (Ref. 3). The generalization to
arbitrary potentials of the form (7) is trivial.
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ten independent transformations is

dt=71, 0&x;'=0, ®
8t=0, ouii=ao, 9)
8t=0, dmi=Bixt, (Bi=—BY, (10)
8t=0, dxii=~'t, (11)

where 7, of, 8%, ¥ are ten independent infinitesimal
parameters. The transformations (8)-(10) clearly leave
L invariant, whereas for (11) we obtain

ac
L’dt'=Ldt+7dt, C=3 mwy'wit. 12)
A %,k

Using Eq. (5) together with (6), we get the conservation
laws corresponding to (8)-(11)

dE )
—=0, E=Y prvi—L, pi=—0y, (13)
dt k Vg’

dP

—=0, P=Y p;, (14)
dt k

dJ

—=0, J=X n.Xp, (15)
dt k

dM

dt k

The first three relations of course express the conserva-
tion of energy and of linear and angular momentum.
Equation (16) can be rewritten, introducing the
(constant) total mass M and the c.m. coordinate R,

aM
—-—-—::0, M=MR—'Pt,
dt
(17
MREZ My, MEZ mr
k k
or, using (14),
dR P
—=V=—=const, (18)
dt

which is the familiar form of the c.m. theorem. How-
ever, it should be noted that it is the form (16) which
is a consequence of Noether’s theorem, and the forms
(17) and (18) have been arrived at by using the defini-
tions for M and R. Other definitions would have led
to other, equally valid, forms; in particular, M and
thus V could differ from the values indicated by
constants.

IV. CENTER-OF-MASS THEOREM FOR
GENERAL VELOCITY-DEPENDENT
LAGRANGIANS

We now consider instead of (7) a general Lagrangian
L= L(x;‘—xkl, 'Ukl). (19)

LAGRANGIANS AND CENTER-OF-MASS THEOREM. I
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From its form it is clear that it is invariant under the
transformations (8) and (9), and thus we still have the
laws of conservation of energy and linear momentum
(13) and (14). To maintain the law of conservation of
angular momentum (15) we would have to require that
x:'—x;! and v,! only enter (19) in a form invariant under
(10), i.e., only in combinations involving scalars (or
pseudoscalars) constructed from r;—r; and v;. While
this will be the case for all the examples to be considered,
this requirement is not needed for the derivation of the
results of this section.

Instead of the Galilei transformations (11) we now
consider a 3-parameter set of infinitesimal transforma-
tions, parametrized by e,

€
0t =—
62

'R, 5l'k=£l, R(l)E/tV[l‘k(t-)]di, (20)

where V is a velocity vector which depends on the time
only through the particle variables in a manner to be
determined ; the position vector R then is a function or a
functional of these variables depending on whether Vdi
is a perfect differential or not. The constant velocity ¢
will be taken to be the velocity of light in the later
examples, but regardless of this interpretation it is
needed for dimensional reasons if R is to represent a
position.

Clearly x;}(#)—x4!(¢) is unchanged under the trans-
formation (20). For the transformed velocities we have

dxy't dwxy't di d(xk’—l—elt)/ € -1
v'l= = = 1+—- V)
awda a4\ &

€
=‘l)kl+€l—-2)kl —2V (21)
c
to first order in e.
In addition, we must take into account the change in
the “volume element” d:

dz'=d¢<1+i-v). (22)
62

Because of the infinitesimal character of & the changes
due to (21) and to (22) are additive, i.e.,

£
0L=L'dt'—Ldt= (L’—L)dt+L~;~ Vds. (23)
c

Furthermore, L’ differs from L only in the terms due to
(21) which arise from the terms in L containing v;, and
which involve ¢ only linearly, since it is infinitesimal;

thus
aL €
Ll_L:Z—'(El—'Z)kl""V>. (24)
E Quil c?
Inserting this into (23) we get
oL € oL
6L=[(L—Z ~—vk’>H-V+Z e":ldt. (25)
k 6vk‘ 2 k 6vk‘
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If we wish the transformation (20) to leave the integral
I invariant, this expression must vanish, and because
the three components of e are independent, this must
be the case for each factor of € separately, or

oL

a‘l)ki

=0.

l[L—z —af—vkl] Vf+§ (26)

¢ k OV
Because of the definitions (not the constancy) of E and
P given in Eqgs. (13) and (14), this can be written
E
—V—-P=0. (27)
62

We recognize this as being of the form (17) of the c.m.
theorem (with M replaced by E/c?) ; however, it isnot a
theorem, but a condition determining the transforma-
tion (20) in such a way as to make 6L vanish. Although
in general we cannot integrate it explicitly we can still

define R as Plr ()]
R(t)=/ -——[rk()_ >
E[r. ()]

which is to be evaluated along an arbitrary path in
configuration space. However, no use need be made of
this expression at any stage. As noted in Sec. II, Eq. (5)
still holds for such a functional.
To obtain the c.m. theorem, we substitute (20) into
(5) and get, using the definitions (13) and (14) again,
aM E
—=0, M=—R-Pi,
dt c?

(28)

(29)

which because of the constancy of E and P expressed
in (13) and (14) is equivalent to (27). However, the
conservation law (29), unlike the condition (27),
depends on the Euler-Lagrange equations of motion
(6), and thus Eq. (28) must be integrated along a path
allowed by these equations. Treating both P and E as
constant, we of course simply obtain (29), but do not
obtain an expression for R in terms of the particle
variables. To get such an expression, we must keep P
or E or both in the form (13) and (14) under the in-
tegral in (28) and use (6) in the integration only.

In all the applications considered in this paper, it is
sufficient, though not necessary, to treat only E as
constant and to evaluate

62 t ) .
R()=— / PLr. () i (30)

with the help of the equations of motion.

It might appear strange that we obtained the c.m.
theorem in this section from an exact invariance of 7
under the transformation (20), whereas in the preceding
section we obtained the corresponding theorem (16)
from an invariance up to a divergence [Eq. (12)] under
the transformation (11). However, we can obtain
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Egs. (17) or (18) by the method of this section by simply
replacing the Lagrangian (7) by L—23_ muc® This does
not change either the equations of motion or any of
the theorems (13)-(16); it only changes the explicit
form of E in (13) by the additional constant term
"% mac® (irrelevant in the Newtonian context), and the
definition of M to X i mu+Ex/c?, where Ey is the
Newtonian energy. Nevertheless, clearly this pro-
cedure is artificial for Lagrangians which are Galilei-
invariant (up to a divergence); our procedure, though
formally general, is natural and convenient only in the
context of approximately relativistic equations such as
those treated in the next section. We shall return to this
point in Sec. V A.

We also note that formally we could have maintained
a closer analogy with the procedure of the preceding
section by maintaining the transformations (11) and
defining the expression C as a functional rather than a
function; indeed this would be the functional
e S'P[x(i)]di, i.e., the expression (30), apart from a
constant factor. Then by Eq. (15) we would arrive at a
conservation law involving this functional, which
reduces to a function if Eq. (30) is integrable by use of
the equations of motion. Although this procedure
formally maintains all ten Galilei transformations, it
appears less natural than the one used in this section,
which leads to a c.m. velocity determined by Eq. (27)
whether or not Eq. (30) is integrable. Furthermore, it
is also less general, since it does not yield the form (28).

The essential point of our considerations is that, as
noted in Sec. ITI, the usual transformation (11) leads
to a conservation law (16) expressed in terms of the
individual coordinates of the particles and their
derivatives; the c.m. theorem (17) is arrived at by
defining the c.m. in terms of these coordinates. Our
transformation (20), in contrast to this, directly yields
a conservation law (29) involving a “c.m.” coordinate;
the expression for this quantity in terms of the in-
dividual coordinates and their derivatives requires an
additional integration (28) or (30).

It should also be noted that in going from the form
(16) to the c.m. theorem (17) or (18), use had to be
made of the law of conservation of mass, which has no
connection with any invariance properties of the
Lagrangian. The form (29), on the other hand, is
equivalent to (27) by virtue of the law of conservation
of energy, which does follow from an invariance prop-
erty of the Lagrangian.

V. APPLICATIONS

In this section, we first discuss the case of non-
interacting particles in subsection A, a case which can
be treated exactly. We then expand the results ob-
tained in powers of (v/¢)? and briefly discuss the problem
of systematic approximations. The other subsections
treat cases of interacting particles to order (v/c)?, for
special-relativistic . equations in subsections B and C,
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for general-relativistic ones in subsections D and E.
Included are all cases of nonrotating interacting
particles whose approximate equations of motion have
been discussed in the literature. The c.m. theorem is
found to have the same form in all cases, as discussed
at the end of this section.

A. Noninteracting Particles

We first consider the exact special relativistic
Lagrangian appropriate for the form (1) for » free
particles with rest masses m,

L==3% m[1— (v/c)’]", (1)

where v;=]|v;|. This is clearly invariant under the
transformations (8)-(10), implying the conservation
laws (13)-(15). The transformation (20) leads to the
conservation law (29), where,

P=3 muvi/[1— (vi/c)* ]2, (32)
k
E=% m*/[1— (v/c)* ]2 33)
k
The equations of motion (6) imply
dvi/dt=0; (34)

thus Eq. (28) or (30) can readily be integrated to give
R >k maxy/[1— (vi/c)* ]2
S me/[1—(0/0) ]

which is the obvious relativistic generalization of Eq.
(17), with all Newtonian masses replaced by the
relativistic ones. For a single particle, R coincides with
the position r, and dR/d¢ with v, as in the Newtonian
case. While these properties are physically desirable,
we note that just as in the Newtonian case, there is an
element of arbitrariness in the form (35); it would be
different if L and thus E were changed by the addition
of an arbitrary constant, which of course would not
influence the equations of motion (6).

It is instructive for our later examples to consider
the approximate Lagrangians obtained by expanding
(31) in powers of (v/c¢)? and keeping terms up to order /.
We then have

gl o))

where (;) are the usual binomial coefficients, and thus

35)

1 % 2p\2GD

Pz=2 meZJ(—-l)fH< >(—"> Vi (37)
k =1 7 c

and

E=eT Y mk(zj'—1><—~1w(i)(3'f)ﬁ. (38)

k 7=0 4

LAGRANGIANS AND CENTER-OF-MASS THEOREM. I

1641

Equation (37) can be rewritten, using the relation
between binomial coefficients, as

@7)

=0

Pi=% m T @ j—1)(—1)ﬁ1€><v—:)ﬁvk.

‘Because Eq. (34) still holds, Eq. (30) can be integrated

as before to yield

£ E -2V
R—m— P o)

1 N /\%

£ 2 @i-n(-0(")()

k 7=0 ] c
It should be noted that while this expression is an exact
consequence of the invariance of L under the trans-
formation (20), the numerator and the denominator are
of different orders in (v/c¢)?; thus it would be more in
the spirit of an approximation procedure to remedy
this by terminating the series in the denominator at
j=1—1. This would have the advantage that R; would
agree with the definition (17) and that R; would repre-
sent the generalization to order / of that definition,
with all Newtonian masses replaced by the approximate
relativistic masses to that order, and that in the case
of a single particle R and V would then coincide with
r and v, in agreement with the exact result just
discussed.

Precisely the same difference in powers of ¢ will arise
in all further examples, and has already been encount-
ered at the end of Sec. IV. It always arises, although
the expressions for P and E entering the conservation
law (29) [as obtained from the conservation laws (13)
and (14)] are of the same order in (v/c)%, because it is
not E itself, but the total mass £/¢?, which appears in
(29) and in the expression (30) for the c.m. coordinate
R. Thus, if we terminate the series in E/c? at j=1—1,
we will in all subsequent examples with interactions
regain the Newtonian result (17) in lowest order (I=1),
as we should, without the need for a redefinition of M
noted in the previous section. This indicates that the
method outlined there, while perfectly general, is
particularly appropriate within the framework of an
approximation procedure.

We also note that because (39) and similar expressions
in the examples below are approximations, it would be
appropriate to replace the ratio of the two power series
by a single such series. However, in addition to being
cumbersome, the resulting expression would be far less
instructive, and therefore we shall not carry out the
division.

B. Electromagnetic Interactions

We now consider the case of # particles of masses m
and electric charges e;z. If their interaction is half-
retarded plus half-advanced, the exact equations of
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motion can be derived either from a manifestly Lorentz-
invariant variational principle,® or, as shown by Har-
greaves,? from one which involves an integral over a
single time just as for Newtonian mechanics. If only
terms up to (v/c)? are kept in the latter variational
principle, it reduces to that obtained later independently
by Darwin.!® To this order the equations are the same
whether we consider time-symmetric interactions, or
purely retarded or purely advanced ones, as radiation
terms are of higher order. We then have

1 €6k
Ve=-2.2—,

2 ik oy

Lp=Ly—Ve+Ip, (40)

where L, is given by (36) with /=2, and
ViI; ) Vi1 )
(virrn) e e) ] (a1)

Tik

1 eer
Ip=—3%3% I:Vrvrf-

4:62 =k Vi
From the invariance of Lp under (8) and (9) we get

(Vz' . ri:)rik:l (42)

Vik

€6k
P= P2+ IS [

2¢% =k 1
and
E=FEyt-Vet+Ip, (43)
where P, and E; are given by (37) and (38) with /=2.
The equation of motion are, from (2) and (6),

dp;, €; 1 (Vi . r,-k) (Vk . rik)
—=—-eka Z——{l I_Vi'Vk T :”,
dt =k Vg, 202|_ T

(44)

D\ 2 eier, (Vi Tir)Tar
pk_mk[1+ ( > ]Vk‘l""— Z ljvrf‘“—-—]
¢ 2¢% =k 1y 7

We now have to apply Eq. (30) to Eq. (42) to obtain R.
Unlike the case of noninteracting particles, the expres-
sion for P cannot be readily recognized as a total
derivative; however, we can easily verify that R is
given by?

§R=Z {mk[l—}— <c>:|+i > eieklrk- (45)

k 2¢? ik Yik

Differentiating this expression with respect to ¢ we
obtain

2 ) Fmz il

1 avy eiey,
+—2 > I:m;cv/a————% > —ri- (vi—vk)]rk.
¢

k dt 7=k 7’ik3

24 For a different derivation of Eq. (45) see L. Landau and E.
Lifshitz, Classical Theory of Fields (Addison-Wesley Publishing
Co. Readmg, Mass., 1962), 2nd_English ed., p. 194. We shall
discuss the method used in Sec. VI.
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The second of these sums can be rewritten, using Eq.
(44) for my, dvi/dt. Since we need retain only terms of
order (v/c)? it is sufficient to insert the Newtonian
approximtion of Eq. (44). We then get

1 €€
- Z —"Ezvk'rik_l_ (Vi'_Vlc) 'rik:lrk,
2¢2 ik oyl
or

1
——rx-

2% =k ryd

Vi) ro e,

which because of the double summation and the defini-
tion of r;; can be rewritten

e Z > _—{E(V Fvi) o e[ (vitve) -1 )

4¢? =#x opyd

= —— Z Z _[(Vl‘i—Vk) rlk]rkl

4% =k pyp3

€€

= Z Z —<vz rzk)rzk

262 =k pyd

Thus indeed we obtain Eq. (42) and the expression (45)
is correct to the order required.

It should be noted that while in the presence of
interactions the contribution of the potential energy
to the fotal energy (43) is to be expected, the fact that
the equivalent contribution to the total mass can be
split into contributions localized at the positions ry
(which can be interpreted as due to the potential
energy of the kth particle in the field of all others) as
indicated in (45) could not be readily anticipated.
However, we shall encounter this feature in all other
cases as well, as discussed at the end of this section.

C. Other Special Relativistic Interactions

Some time ago Bagge? considered the problem of
finding a Lagrangian for N particles correct to order
(v/¢)* which would allow arbitrary two-body inter-
actions and would take account of the binding energy
of the system. With some simplifications and a slight
change in notation his Lagrangian can be written

Lp=L,—V+I3, =522 Valra)
ik
(46)
1 (Vi tin) (Vi tiz) Vi
IB=_ZZ|:VUCV¢'V1C— ],
4¢2 ik ik drix,

where V. is an arbitrary function of its argument. For
special choices of V' this Lagrangian reduces to Lp
or to the Lagrangian appropriate for a vector meson
field; in general it gives the interactions to order (v/c)?
following from a field theory described by a four-vector,

2 E. Bagge, Z. Naturforsch. 1, 361 (1946).
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as noted by Bopp (according to Bagge).?® The trans-
formations (8) and (9) lead to

1 AV (Vi Ta)tix
P=P2+——; >3 [Vikvk— _——‘"~:| 47

2¢* ik ¥ ik Yik
and

E=Eyt+V+Is. (48)

The equations of motion follow from (2) and (6) as
before, but as we shall only require the Newtonian
approximation, we shall not give them here. In analogy
to Eq. (45) we now define

§R=§ {mk[1+(1’£>2]+_1_ 5 V} (49)

c c 2¢% i#k

To verify that this expression satisfies Eq. (30) we
differentiate it with respect to ¢, and as in Subsec. B
obtain two sums; the first of these contains V' instead
of eser/rsr and the second one, after insertion of the
Newtonian approximation for dv/d¢, becomes a sum
of terms proportional to 7;' dV/dry rather than to
—ezer/ra3. Otherwise, the calculations are identical, and
lead to the required Eq. (47).

For interactions to order (v/¢)? following from a field
theory described by a scalar rather than a four-vector
the Lagrangian corresponding to Bopp’s is

Ls=Ly—V+Is, (50)
1
Is=—3% 2 ['Ui2+7)k2_vi'vk:|vz‘k
4¢? ik
(Vi tin) (Ve tin) AV (51)

ik drik

with ¥ and V;; as above, as will be shown elsewhere.
The transformation (8) and (9) leads to the same mo-
mentum (47) as before, and to

E=Eyt+V+Is; (52)

thusjwe obtain the same expression (49) for the c.m.
as before.

D. Gravitational Interactions

In the general theory of relativity, the equations of
motion are not independent of the field equations. The
exact form of the equations of motion for a system of
particles is not known, but we can only proceed by
approximation methods. Because we are concerned here
with equations resembling the Newtonian ones, we
shall only consider the slow-motion approximation for
monopole particles, which leads to the well-known
EIH equations in the first post-Newtonian order in
9/c.41526 These can be derived from a variational

26 The history of the slow-motion approximation is very complex,
and will be described elsewhere by one of us (P.H.). We only note
here that whereas the correct form of the EIH equations was
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principle!®1®; we shall use a Lagrangian of the form?”

Le=Ly—Vet+ia,

Gmimy, G my (53)
Vem—t LE—(1-— 5 1),
=k 1y 26 =k 1y
1 Gmimk
Ig=—
4¢® ik vy
(V@"l'i )(V °T; )
X {6vk2—[7vi-Vk+_‘**‘——k - ]} , (54)
7ik?
where G is the constant of gravitation.
From the invariance under (8) and (9) we get
G MMy (Vi ra)tin
P=P, {Vk } ] (55)
2 w5k 1y, 73
and
E=EytVetie. (56)

We note that, apart from the different coupling con-
stants, the structure (55) of P is the same as in the
electromagnetic case (42). This suggests that we can
take instead of (45)

S IR

¢ c 262 itk 1y

Apart from the different coupling constants, the
proof that this is indeed the correct expression is
identical with that presented in Subsec. B. The con-
servation law (29) with (57) was obtained first by
direct integration of the EIH equations by Fichtenholz,
taking E/c? initially'® as > my, and later!s as

1\ G mam
k ¢ 262 #k Tik

i.e., the expression following from Eq. (53) if terms of
order (v/c)* are omitted, in agreement with our dis-
cussion in Sec V A. Since both these expressions are
constant it follows from our considerations in Secs. IIT
and V A that both are correct mathematically, although
they imply slightly different velocities V of the c.m.,
and there are physical reasons to prefer the form (58).

We also note that the expansion of the equations of
motion of the Lorentz-invariant approximation

L oo

first given in Ref. 14, and the corresponding Lagrangian in Ref. 16,
the equations (except for an insignificant mistake) were alread;z
obtained by W. de Sitter, M. N. R. A. S. 77, 155 (1916), and the
correct Lagrangian for IV nonrotating droplets (from which both
Ehe }Iiarzt\ldle, Lag:angizn]ang the E%H elquations follow trivially)
y H. A. Lorentz and J. Droste, Verslag. K. .
Amsterdam 26, 392 (1917). ’ g Akad. Wetensch.
*” We use the form given originally by Fichtenholz (Ref. 16)
rather .than that given in Ref. 15. The same form can also be
found in Landau and Lifshitz, Ref. 24, § 105 (the Lagrangian
given in the 1948 Russian edition in incorrect, as noted in Ref. 16
as is the one given in the 1st English edition, 1951). ’
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method”28 in powers of (v/c) ? leads to the same con-
servation law (29) with (57) and (58) as the EIH
equations to the order considered here, as will be shown
elsewhere.

E. Combined Gravitational and Electromagnetic
Interactions

The general relativistic equations of motion of
charged particles were obtained by Bazanski® on the

basis of the slow-motion approximation.®® His
Lagrangian® can be written
Leg=Ly—Ve¢—Vc¢—Vert+Ipt+ia, (59)

+ Z €iexMmj
7 ik i,k
1
)] (60)
¥ii? ik

ciex—Gmm (v rik)rik] 1)

ka T ,z

E=Ext+Vet+Vet+VertIptie.

In complete analogy to the cases treated earlier, we
can take

“rex fm14(%) ]

1 e —Gmamy,
F— 22—k
2¢% i#k ik

G (2e:er+e2)my
P

1 1
X !
Yiitik  Vikljk

We therefore have

1
P=P;+—3 2.

262 itk Tik
and
(62)

(63)

the proof that the time derivative of this quantity
equals P is identical to the one presented in Subsec. B.

To summarize the results of this section, all the cases
considered were found to lead to a conservation law
(29) with c.m. coordinates determined by

MR=3 Mti, M=> M, (64)

with
M

M=
[1— (vi/c)*]"

28 P, Havas, Phys. Rev. 108, 1351 (1957).

2 S, F. Smith and P. Havas, Phys. Rev. 138, 3495 (1965).

% S, Bazanski, Acta. Phys. Polon. 15, 363 (1966).

31 For earlier slightly incorrect treatments based on these
approximations see P. R. Wallace, thesis, University of Toronto
(unpublished); Am. J. Math. 63, 729 (1941); and B. Bertotti,
Nuovo Cimento 2, 231 (1955). The results differ from those of
Ref. 30 only in the term 7 ¢z given by Eq. (60). The difference is
irrelevant for our result (61), and also for (63) if only terms up
to order (v/c)? are kept in E/c2 .

22 S, Bazanski, Acta Phys. Polon. 15, 423 (1957) and in Recent
Developments in General Relativity (Pergamon Press, Ltd., London,
1962), p. 137.

(65)
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for free particles exactly, and

Vi 2 1
Mk = 71’Lk[1 +%<—") :|+ﬂVk
c c

for interacting particles to order (v/c)?, where V; is the
Newtonian potential energy of the kth particle in the
field of all others. Equations (64) and (66) are the
natural generalizations of the Newtonian result (17)
for the gravitational case (59), as was already noted by
Fichtenholz!®; so are Eqgs. (64) and (65) for {free
particles. For the special-relativistic cases considered in
Subsecs. B and C, however, no general argument is
known which would lead us to expect that we can ex-
press MR as a sum of localized contributions M ry, as
noted above, and of course the equations of motion (6)
are not reducible to those of particles of mass My; on
the other hand, the form of M simply expresses the
equivalence of the total mass and energy of the system.

(60)

VI. DISCUSSION

In Sec. IV it was shown that for any velocity-
dependent Lagrangian (19) invariant under the
infinitesimal time and space translations (8) and (9),
we have an additional invariance under a set of in-
finitesimal 3-parameter transformations (20), depending
on a functional R(¢) which can be expressed in the forms
(28) or (30). R is a functional of a velocity V which by
Eq. (27) is related to the total energy and momentum
in a way appropriate for the c.m. theorem. These
relations as well as the invariance are properties of the
Lagrangian whether or not the Euler-Lagrange equa-
tions (6) are satisfied; if they are, E, P, and V are all
constant. They are all determined only up to additive
constants, as noted in Secs. ITI-V. ‘

Thus we have a constant velocity V associated with
the system described by the Lagrangian (19) regardless
of the particular form of the latter function, and in this
sense we always have a c.m. theorem for a system
whose Lagrangian only depends on x;'—x;' and vl
However, to enable us to talk of a c.m. we should be
able to associate V with a particular point, not just
with the system as a whole, i.e., the position vector R
defined in (20) should be a function of the particle
variables rather than a functional, at least when it
enters the conservation law (29).

All other infinitesimal transformations (8)-(10)
considered here depend on functions rather than
functionals, whether or not the equations of motion
(6) are satisfied; if they are, the corresponding con-
servations laws (13)—(15) also only depend on functions.
On the other hand, the transformations (20) always
depend on functionals; nevertheless the corresponding
conservation law (27) always depends on functions,
just like all the others. It is only when we wish to
define c.m. coordinates R that we encounter a problem
different from the customary one. However, in all the
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examples considered in Sec. V [which include all cases
of equations of motion correct to order (v/c)? considered
in the literature] R can be expressed as a function of
the particle variables in the conservation law (29) to
that order provided only that the equations of motion
(6) are satisfied. It can not be so expressed in the trans-
formations (20) [since the Lagrangian must be invariant
whether or not (6) holds] but this is irrelevant for the
validity (or derivation) of the conservation laws.

As noted in Sec. IV, in all the examples considered
it is sufficient to consider the form (30) [rather than
the more general one (28)] for R to be able to obtain
an expression depending on the particle variables
alone. Indeed, in all cases in Secs. VB-V E involving
interactions we are always concerned with the same
functional form (47) of the total momentum in our
integral (30) in spite of the significant differences in
form of the Lagrangians. It is easy to give examples of
Lagrangians (19) which lead to total momenta of a
form differing from (47) and which do not allow ex-
pression (30) to be integrated; thus our distinction
between the forms (27) and (29) of the conservation
law is not trivial. Whether any approximately rela-
tivistic equations correct to (v/c)? and derivable from
a Lagrangian must lead to a functional form (47) and
allow (30) to be integrated, is an open question.

It is remarkable that to the order considered there
exists such a formal similarity between the conservation
laws of the special relativistic systems considered in
Secs. VB and V C and those of the general relati-
vistic ones (Secs. VA and VE), in particular of the
law (29) with (64) and (66). This formal similarity
masks a fundamental physical difference, however ; the
special relativistic equations must be interpreted in a
flat space, whose metric properties are independent of
the system of particles under consideration, whereas the
general relativistic ones hold in a curve space whose
metric is a function of the particle variables to the
corresponding order of approximation 15

Although the physical reason for the formal similarity
is not clear, the mathematical one is easy to trace and
might be worth noting. All the approximately rela-
tivistic Lagrangians of Sec. V are of the form

L=Ly,—V+I, V=33 Valra)+Valra), (67)
ik
with '

1
I=—Y 3 {[A (vi—ve)?+vi-vilVir
ik

2
(Vi . rik) (Vk . l'ik) avVi
Tik drax

where A=0 in Egs. (41) and (46), A=1 in Eq. (51),
and 4 =—31in Eq. (60). V2 is of order (v/c)? and appears
only in the general relativistic Lagrangians (53) and
(59). As it does not depend on the velocities, it does not

, (08)
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enter into the definitions of pr and P; being of higher
order, it does not enter the Newtonian equations of
motion, which are used in proving the various forms of
R. Thus it has no relevance for the c.m. theorem to
order (v/c)% The term proportional to 4 enters p; in
the form

A

2% ik
and thus does not contribute to the total momentum
P. Furthermore, it too does not enter the Newtonian
equations of motion, being of higher order.

The general form (67) with (68) could, of course, have
simply been postulated as the Lagrangian appropriate
for the description of a system of interacting particles to
order (v/c)% For the values of 4 indicated above, it
does indeed represent an approximation to that order
of exact (special or general) relativistic variational
principles. Whether this is the case for other values of
A, and whether all such approximations must be of this
form, has not been established.

The question arises how our 10-parameter set of
infinitesimal transformations (8)-(10), (20) is related
to the Galilei or Lorentz group. - The seven transforma-
tions (8)—(10) are common to all thrée sets. The Galilei
group allows the three further transformations (11)
which are the same at all points of space and inde-
pendent of the system under consideration. The cor-
responding infinitesimal Lorentz transformations are of
the form

1
ot =-—'y"xk" ) 6xk” ='Yit
62

(70)

and thus, while still independent of the system under
consideration, are not the same at all points of space.
On the other hand, our transformations (20) are the
same at all points of space just like the Galilei ones,
but do depend on the system under consideration
through the functional dependence of V and thus R on
the particle variables implied by Egs. (26) or (27).
However, as noted in Sec. IV, it is possible to modify
our procedure to maintain the form (8-11) of the Galilei
transformations (though losing some generality); thus
to some extent it is at our disposal to choose transforma-
tions more resembling one or the other of the groups in
question. Indeed, as we shall show in a later paper, it is
also possible to put the c.m. conserved vector in a form
in which it generates a group of canonical transforma-
tions in phase space which coincide with the Lorentz
transformations to order (v/c)2.

In our initial attempts to obtain the c.m. theorem by
using Noether’s theorem we applied the transformations
(70) to some of the Lagrangians considered in Sec. V.
However, they were found not to be invariant under
these transformations. Thanks to Noether’s theorem,
we only had to consider the infinitesimal transforma-
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tions of the Lagrangians (19). In a study of the EIH
equations, Chandrasekhar and Contopoulos® considered
the finite transformations of the Lagrangian given by
Egs. (50) and (51) to allow transformations to the
c.m. frame, i.e., the frame of reference in which the
total momentum vanishes. Their rather lengthy cal-
culations lead to a transformation which contains all
the terms of the finite Lorentz transformation to order
(v/c)? plus additional ones. For our present considera-
tions it is only necessary to consider the last two sections
of their paper. They quote the well-known theorem
that the equations of motion have the same form in
two sets of variables if the two Lagrangians differ
by the total derivative of some function; then they state
that this is the case for the two Lagrangians related by
their transformation, or even by the truncated Lorentz
transformation alone. However, it can be readily seen
that in their demonstration that the Lagrangians differ
by a total derivative use has to be made of the approxi-
mate equations of motion in one set of variables; these
are needed even if the transformations are infinitesimal.
Noether’s theorem, on the other hand, requires that the
two Lagrangians differ by a total derivative whether or
not the equations of motion are satisfied, as discussed
in Sec. II. Thus it seems that the transformation and
invariances considered by Chandrasekhar and Conto-
poulos have no direct bearing on those needed to obtain
the conservation laws by the Lagrangian approach
used here.33

It seems clear, however, that the conservation laws
for those Lagrangians, such as that of Darwin (see Sec.
V B), which are derivable as approximations from an
exact Lorentz-invariant Lagrangian involving inter-
actions between particles and fields could be derived
in a different way from invariance considerations. The
invariance of this Lagrangian under transformations of
the 10-parameter inhomogeneous Lorentz group leads,
via the Noether theorem, to the usual ten conserved
quantities written in terms of both particle and field
variables.#* Expansion of the field variables in terms
of the particle variables to the order in v/¢ required
(omitting infinite self-action terms) would then lead
to conservation laws valid to appropriate order when
these expansions are inserted into the conservation
laws. Although Landau and Lifshitz?* did not derive
the c.m. result for a system of charged particles inter-
acting with the electromagnetic field from invariance
considerations, they did carry out the expansion pro-

3 Theinvariance of the conservation law (29) with (57) and (58)
under the truncated finite Lorentz transformations was already
noted by Fichtenholz (Ref. 16). He also obtained the relations
between the right-hand sides of Eq. (57) in two frames of refer-
ence connected by these transformations, which agree with those
of Ref. 20.

34 Bessel-Hagen (Ref. 4) derived the ten conservation laws for
the Maxwell field from the Lagrangian using Noether’s theorem,
and wrote them down for the field interacting with ponderable
matter, but did not use a particular model for the matter (such
as charged particles) and so did not derive the conservation laws
for the interacting case from a Lagrangian,
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cedure on the rather obvious expression to be expected
in order to derive the c.m. result for the Darwin ap-
proximation (Sec. V B).

Similarly, one could approach the problem by starting
from the exact Lorentz-invariant conservation laws
following from “Fokker-type” variational principles,®
and expanding them in powers of v/¢c. Furthermore, the
interaction terms in the equation of motion for the kth
particle following from such principles can be expressed
in terms of “adjunct fields” (which are integrals over
the entire motion of all but the kth particle) ; similarly,
the conservation laws can be expressed in terms of an
“adjunct field theory’” as sums over contributions from
each particle separately plus those arising from ad-
junct field tensors.?5:3¢ These conservation laws are
equivalent on the one hand to those written directly in
terms of particle variables alone, and on the other to
those of the corresponding field theory with sources in
which infinite self-action terms have been omitted.
Thus it can be expected that both in field theory and in
the theory of direct particle interactions we must also
arrive at the same approximate conservation laws.

We might contrast the approaches just sketched and
those of this paper by saying that in this paper we deal
with exact symmetries of approximate Lagrangians,
while the other approaches would use approximations to
the consequences of symmetries of exact Lagrangians.
Some aspects of the alternative approaches are cur-
rently being investigated, in part in collaboration with
H. Woodcock.

It is possible to generalize the method of this paper,
both to Lagrangians (19) describing systems of particles
with forces depending on higher orders of v/¢ (such
as the “post-post-Newtonian” equations of motion in
general relativity) or on derivatives of the velocities!?:36
and to Lagrangians describing continua.’%:%7 For the
particular case of the post-Newtonian general rela-
tivistic perfect fluid in adiabatic motion, the c.m.
theorem (whose form follows from the work of Fock!$)
has been derived from transformations analogous to
(20); this work will be described in a paper with T.
Pascoe. The form of the c.m. theorem has not been
established in any of the other cases mentioned in this
paragraph.

¥ In electrodynamics this was shown first by J. Frenkel, Z.
Phys. 32, 518 (1925) and J. L. Synge, Trans. Roy. Soc. Can. 34,
1 (1940); an alternate form of the energy-momentum tensor was
suggested by J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys.
21, 425 (1949).

36 For Lagrangians such as that considered in Ref. 12 describing
electromagnetic interactions as infinite series involving the v and
their derivatives, no such derivatives appear to order 1/¢?, and
thus to that order the Lagrangians are of the type considered in
this paper.

37 The seven conservation laws corresponding to the transfor-
mations (8)-(10) have been derived by Noether’s theorem for the
post-Newtonian general relativistic perfect fluid in adiabatic
motion by T. Pascoe and J. Stachel, Bull. Am. Phys. Soc. 14, 69
(1969). The results agree with those obtained by S. Chandrasek-
har [Astrophys. J. 141, 1488 (1965)] by direct integration of the
equations of motion.
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In this paper we have used Noether’s theorem to
derive the c.m. theorem from the invariance of the
Lagrangian under a 3-parameter set of infinitesimal
transformations which will not, in general, generate a
finite group of transformations in configuration space.
We could use instead the Hamiltonian formalism and
consider canonical transformations in phase space.
Then it proves possible to define a 3-parameter Abelian
group of canonical transformations in phase space
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(existing independently of any particular Hamiltonian,
of course) whose generators, for Hamiltonians conserv-
ing total energy and momentum, reduce to the genera-
tors of symmetry transformations corresponding to the
ones we have used in the Lagrangian approach. These
transformations, as well as the canonical symmetry
transformations generated by the c.m. constants of the
motion considered here will be discussed in a separate
paper.
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Shear-Free Gravitational Radiation
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It is shown that, with the exception of the Schwarzschild metric, gravitational systems described by
suitably regular vacuum solutions of Einstein’s equations admitting a shear- and twist-free congruence of
diverging null rays must be radiative. Robinson and Trautman have demonstrated the existence of type-II
solutions of this kind, which describe radiating gravitational systems with bounded sources. However,
attempts to display an explicit radiative solution through specilaization to conformally spherically sym-
metric, Kerr-Schild, conformally Kerr-Schild, and type-D space times lead to singular metrics. Finally,
important physical properties of these systems, including energy, angular momentum, radiation flux, and

trapped surfaces, are discussed.

I. INTRODUCTION

ANY of the known solutions to Einstein’s equa-
tions are shear free.! The plane-wave type, with
divergence-free ray vectors, clearly represent an exces-
sively unphysical extrapolation of gravitational systems
with sources confined to a bounded region. Robinson
and Trautman?? were the first to investigate system-
atically shear-free vacuum metrics with diverging ray
vectors. This paper is concerned with the question:
Which types of gravitational systems with bounded
sources can be described by the Robinson-Trautman
metrics? The Schwarzschild metric provides an im-
portant example and suggests the possible existence of
other cases of physical interest. Robinson and Trautman
confined their original analysis to hypersurface-
orthogonal shear-free metrics. Although they later
generalized their approach to include twisting solu-
tions,* such as Kerr’s, we will restrict our attention here
to the twist-free case.

* National Academy of Sciences Postdoctoral Research
Associate.

t Present address: Physics Department, Illinois Institute of
Technology, Chicago, Ill.

17, Ehlers and W. Kundt, in Gravitation: An Introduction to
Current Research, edited by L. Witten (John Wiley & Sons, Inc.,
New York, 1962), Chap. 2.

2], Robinson and A. Trautman, Phys. Rev. Letters 4, 431

1960).
( 3I.)Robinson and A. Trautman, Proc. Roy. Soc. (London)
A265, 463 (1962).

47, Robinson and A. Trautman, Proceedings on Theory of
Gravitation (PWN-Polish Scientific Publishers, Warsaw, 1964),
pp. 107-114.

Since we are concerned with vacuum solutions ex-
terior to some bounded region containing sources, the
Goldberg-Sachs® theorem 1is applicable: Shear-free
vacuum metrics are algebraically special. This means
that the Weyl tensor for such solutions has particularly
simple algebraic properties. Correspondingly, there
exists a coordinate system in which the metric is also
algebraically simpler than usual. For this purpose,
Robinson and Trautman used null coordinates based
upon the shear-free family of diverging null hyper-
surfaces. Their work showed that in such a coordinate
system, the analytical properties of the metric also
simplify considerably. This feature can best be appreci-
ated in terms of some work by Newman and Unti®
concerning the Lienard-Wiechert potentials of an
accelerating charged particle in the context of special
relativity. In terms of a null coordinate system based
upon the shear-free family of null cones, #=const,
emanating from the world line of the accelerating par-
ticle, the description of the electromagnetic field be-
comes especially simple. A gauge can be found in which
the vector potential satisfies

Ae=AtUq. (1.1)
This algebraic statement is unusual from the customary
point of view of describing the radiation field as trans-

8 J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, 13
(1962).

6 E. T. Newman and T. W. J. Unti, J. Math. Phys. 4, 1467
(1963).



