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Electron Bremsstrahlung in Intense Magnetic Fields

VITTQRIQ CANUTQ, HGNG-YEE CHIU, * AND LAURA FAssIo-CANUTot

Institute for Space Studies, Goddard Space Flight Center, RASA, lVew York, Eem Fork 100Z5

(Received 17 February 1969; revised manuscript received 18 April 1969)

In this paper we present detailed calculations of the most important radiation process in ponderable
matter in the presence of an intense magnetic field: the electron bremsstrahlung. This divers from an
ordinary bremsstrahlung process in that in a magnetic field the electrons are one-dimensional particles
free to move in the direction of the fieM, but bound in the plane perpendicular to the magnetic field in
quantized circular orbits with energy (in the nonrelativistic limit) in multiples of 11.9)&10 H eV, where
II is the magnetic Geld in gauss. We have obtained the emission rate and the absorption coefEcient for
Gelds much less than 10" G. This calculation is valid in the large quantum number limit.

j.. INTRODUCTION
' 'N a recent paper, ' we pointed out that departures
~ - from thermodynamic equilibrium will take place on
the surface of a vibrating magnetic neutron star with
a magnetic field in the vicinity of 10' G. This departure
from thermodynamic equilibrium will give rise to strong
radio emissions which can account for the pulsed radio
emission from recently discovered pulsars. In this paper,
we present detailed calculations of the chief process of
emission: the electron bremsstrahlung in an intense mag-
netic field. Our calculation is valid for electrons of arbi-
trary energy and for fields ((4.414&(10"G.

2. ORBITAL QUANTIZATION AND
RADIATION PROCESS

In a magnetic field the electron energy in the plane
perpendicular to the magnetic field II (the latter is taken
in the direction of the s axis) is quantized according to
the equation
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with E=2n+s+1 Here p, i.s the s component of the
momentum of the electron. The motion of the electron

along the field lines is unaffected by this quantization.
n=e'/I'ic, IIs=ni'c'/efi=4. 414&(10"G, and the other
symbols have their usual meanings. E=O, 1, 2,
characterizes the size of the electron orbit'; s=&1
characterizes the polarization of the electron spin with

respect to the direction of the magnetic field (s= 1 along
the field, s= —1 against the field. ) Equation (1), which

includes the anomalous magnetic moment of the elec-

tron, is due to Ternov, Bagrov, and Zhukovskii. ' Prop-
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I H.-Y. Chiu, V. Canuto, and L. Fassio Canuto, Nature 221,
529 (1969).

'The radius E. of the circular orbit can be shown to be
R'=2(JIq/H) (k/mc)N.' I. M. Ternov, V. G. Bagrov, and V. Ch. Zhukovskii, Moscow
Univ. BulL 21, 21 (1966).

erties of an electron gas in intense magnetic fields have
been studied extensively in several previous papers.

The nonrelativistic'limit of Eq. (1) is

E(/V, s,p, ,H)

e
—+ (Z,A) —+ e—+ (Z,A)+p. (3)

The initial state of the electron, E, differs from the
final state, X'. It is analogous to the Coulomb de-
excitation of atomic states.

(3) One-dimensional bremsstrahlung. The reaction
is similar to (3) except that the transition takes place
between two electron states of the same orbit. This type

'V. Canuto and H.-Y. Chiu, Phys. Rev. 173, 1210 (1968);
1?3, 1220 (1968); 173, 1229 (1968};H. -Y. Chiu and V. Canuto,
Phys. Rev. Letters 21, 110 (1968); Astrophys. J. 153, L157
(1968).
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Therefore, in a magnetic field an electron moves in
quantized orbits in the plane perpendicular to the field
but is free to move in the direction of the field. This
means that a "free" electron has only one degree of
freedom when it is in a magnetic field. The electrons be-
have like one-dimensional particles, and as a conse-
quence their radiation processes differ from those of
truly free electrons.

There are three fundamental electromagnetic-radia-
tion processes in intense magnetic fields:

(1) Spontaneous radiation. All electron can spon
taneously make a transition from one state E to another
state E' with E&E'. Such a transition corresponds to
the classical synchrotron radiation. It gives rise to pho-
tons of energies at multiples of 1.16)(10—'JI eV. This
will be referred to as a spontaneous magnetic transition.
No continuum emission is possible because of the orbital
quantization, The emitted radiation will have a finite
width, usually of the order of L&/X 10 ' if the field is
of the order of 10' G.

(2) Coulomb deexcitation through magnetic transi-
tion. This is similar to (1) except tha, t the emission
takes place in the Coulomb field of a nucleus (Z,A):
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FiG. 1. Feyman diagram of electron bremmsstrahlung,
illustrating the dynamical variables employed.

3. FORMULATION'

The Feyrnan diagrams for (3) are shown in Fig. 1.
We will use the 5-matrix formulation to compute the
transition probability. ' We have

s, =l )2 d4xd4y T/Z(x)Z(y, r )j, (4)

where T denotes the Wick time-ordered product, x and

y are the four-coordinates of the two vertices x and y
and r is the position vector of the nth nucleus Ze. Z(x)
is the interaction Lagrangian of quantum electro-
dynamics. ~

~( )= —O(*)v.s(*)A."&(*), (5)

~(y, -)= —W(y) A(y)A. "'(y, -), (6)

where &p(x) is the electron wave function in a magnetic
6eld (to be discussed later) and P(x)=—&Pty4, where &Pt

is the Hermitian conjugate of &p; y„are the Dirac ma-
trices and conventional meanings of t,', A, m, c are used.
A„&'&(x) is the four-potential corresponding to a real
photon (photon emission) of energy E~ (= kkc),

hc )2~y'/'
A P&(x)

I I

(&& —/ . .
Z r/skni

of transition gives rise only to a continuum emission in
the radio region.

In this paper we consider process (3). Process (1)
has been discussed in another paper. '

0 is the normalization volume, e„&"~ is the polarization
vector, X is the polarization index, and k x=—k„x)'. A„"&
is the four-potential describing the interaction between
the electron and the nucleus. In the limit of static in-
teraction, A„&'& reduces to the Coulomb potential, ' that
lsd

—ieA„&'&= i—et'&„4A4i'& e=8„4AO&'&= 8„,Ze'/I y r —
I
. (8)

The Fourier representation is easily seen to be

4s-Ze' //h
'
e
—'a &r—r &/s

~ kq
with

(10)

II»ng Eqs. (3)—(9), Eq. (4) becomes (we drop the sub-
script 2 in 5)

4s.inZe(2')'/' srr pjz '
ZZI—

(g )1/2@3/2

X d xd y p(x)p„e„&"&G(x,y)y &p(y)

XexpL —ik. x+iq (y r)//zan, —(11)

~h~~~ G(x,y) is the Green's function describing the
propagation of an electron from y to x. Strictly speak-
ing, G(x,y) should be taken as the exact propagator for
an electron in a magnetic field. It has a very complicated
expression. ' ' However, it can be shown that for a weak
fi.eld we have

G(p) = (ip i V+ m—)—
i(iP+m) —'+(iP+m) 'iV(ip+m) '+

=G (P)+G u» (12)

We are interested in 6elds of the order 10' or greater,
but much less than H 4s.414X10"G. Therefore we
can' approximate G by Go'.

&y p/&&&
—)t

G,(x,y) = d (p/&&)e" i*-.&« (13)
(27r) 4

(p/&&/) '+X,—'
where p is the four-momentum of the electron in the
intermediate state (see Fig. 1). From Eq. (11) we then
have

S=S, P g I
—

I
e' dxrdx2dxsdx4 dyrdysdysdy4 dprdpsdpsdp4

-r e kq)

XtP t(xrxsxsx4) I';f(y&ysysy4) expL —i(krxr+ksxs+ksxs+k4x4) j
XexpI ipr(xr —yr)+ips(x& —y2)+ips(x3 —y3)+ip4(x4 —y4)g exp'(r/&yr+/I2ys+qsys)/k iq r /kg, —(14)

~ H.-Y. Chiu and L. Fassio-Canuto, following paper, Phys. Rev. 185, 1614 (1969).
6 J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McQraw-Hill Book Co. New &ork 1964) pp I20—12'

The Greek indices run over 1, 2, 3, 4; the Roman indices run over 1, 2, 3 (spacial components) and correspond to the x, y, z axes
in a Cartesian coordinate system. The summation convention for repeated indices is employed. The magnetic field is in the z direction
(3 axis). The notation is as follows: q= (qI, q4) = (qI iqo).' R. Kaitna and P. Urban, Nuel. Phys. 56, 518 (1964).' J. Schwinger, Phys. Rev. 82, 664 (1951).
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where

p 4xenZ(2n. )'/2

p = and Sp= ——
A I~:,'/'Q3/'(2~) '

S0 has the dimension of (length) '. We now invoke the
Coulomb gauge condition &4&")= 0, so that the index i in
e;&"& runs only from 1 to 3. The matrix I'; is given by

ZP P ~c
I i +4+i p4 ~

2+g —2

4. WAVE FUNCTION hatt(x)

The Dirac equation for a free electron in a constant
and homogeneous external Geld,

ie
b.~.+~. ')4+~.~A =o,

Ac

was solved four decades ago. '~" We will choose the
magnetic field to be in the s direction (corresponding
to the coordinate index 3). The vector potential S„will
be chosen to be of the following gauge:

The classical expression for the energy is

/'Pii' (P2i'"=1+I—
I +I —

I +I —
I

~

&mci kmci Emci
(22)

5. EVALUATION OF 8

We now substitute Eq. (18) into Eq. (14) to evaluate
S. Integrations over x&, y&, x3, y3 x4 y4, pz, p3, and p4
can be carried out sequentially, giving

Comparing (22) with the expression of e~ in (20), we
see that the quantization replaces the energy due to the
momentum perpendicular to the field, (Pi/ mc)'
= (Pi2+P22)/(mc)' by 2n+s+ 1."If there is no inter-
action, then in the ground state with n= 0, s= —1, there
is no momentum perpendicular to the 6eld, and hence
8~= 8~=0. In the case of interaction the electron will

acquire a recoil momentum, but we can, without loss
of generality, assume that the recoil takes place in the
y direction (index 2), and put Pi=Qi=0, where Qi is
the coorespondent of I'~ for the Anal state.

0',q= —yII, 0',2= 63= 84= 0.
The initial-state wave function is"

(17) 5=So(2m)'I e;/ "& /Ip~dl —l~(&4+Q4/A P4/A)—
&Ai

P;=(I-iI-,) '/' exp(/PiyiA '+iP3y3A '+iP4yA ' —2P)

Ci&r(k)
X C~Hzr —i(k), (1g)

CaHzr(k)

.C8'zr —i($).

F;(",q.)
ye—'g r/i-& - (23)

k '+(q /A)'+(A +Q /A P /A)'—
where (qi ——ki, qa ——kg+Q, /A —P3/A)

where

Ci=nA „C2=snB„C3= sPA „C4 PP„——
n'=-'(1+ e

—') P'= -'(1—~-'),

A '=-'[1+sx(x'+2/VQ') '"]
g 2= i[1—sx(x2+2iVQ~) 7

g=P/mc, s=a1, (=y2y'"+PiA 'y '",
y

—(H/H )y,
—& g&= $2@7 g) = 1/x2/2/VQ~

Q=H/H X=0, 1, 2,

and

F;= C yt(k2 —p2) I';C;(q2/A —p, ) (24)

(20) I= dy e""Hz(yp'")

/2~q
'/'

i "e ""&H~(a/2y'") . (25)
Eyi

and C(&2—p2) and @(q~/A —p2) are spinors whose ele-
ments are Fourier-transformed with respect to k2 —p2
and q&/A —

p&, respectively. The typical integral is of the
19 form

(p) /+1/4/~l /42&v /2 (ItI f ) 1/2 jH (g) (21)

The final-state wave function is the same as the initial-
state wave function with the appropriate variables.

"I.I. Rabi, Z. Physik 49, 507 (j.928)."X.P. Klepikov, Zh. Kksperim. i Teor. Fiz. 26, 19 (1954).
"In practice the inhomogeneity and time variation of a mag-

netic field are macroscopic in nature. Unless the field changes sub-
stantially over a time interval ~10 "sec or in a distance Xz =de
Broglie wavelength of a particle, the field can be regarded as con-
stant and homogeneous. The time variation can then be treated by
adiabatic perturbation methods. If the field is generated by a
macroscopic current, as it is in sunspots and in neutron stars, then
it is impossible for the field to change substantially in a time

10 "sec or over a distance de Broglie wavelength.

I= 2x[e ~'/'&/(27ry) '/']H~(a/27'") —+

2 8(a)H~(0) 27rh(a), (26)

where we have used the following representation for
S(x):

e—x&/b

b(x) =lim
0 (f/~)1/2

"See Paper I of Canuto and Chiu (Ref. 4).

(27)

For weak magnetic fields (H«H~), y&&1, the exponen-
tial factor is of the order of 50 4, and
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The 5 Inatrix is now

5=2{2m)3Sp( —
(

2--&"+"')"(/V!1V'!) '/gi-.

Fs —(A 1 A g)ki zkg(A 1+23) —z(3E)—Ms) s

kj
Fs ————(A 3+2 3)

ks+Qs

(30)

X &zpg&z((12/)tt)&)(ps ks)~(&ts/k ps) + ( (k,+Q,)(a,+a,)+(k,+Q,)(a,—g„)

Xo{k4+Q4/A P4/k)— , (28)
(~+")(C+k")

kg
+Ass —A s —— —(As —As)), &31)

ks+Qs

F1 (3 3
—2——1)ki —(M'1+1!/Is) +iki(2 1+33), (29) with the following de6nitions:

&1=C1C1'+CsC3',

A, = (21V) '"(kg+ Q,,) (C Ci'+ C,C,'),

A 3——(2/V) '/'(C4C1' —CsCs'),

A, = (21P) '/'(k&)+Q&) (C1C,'+ C,C, '),

A g
——C1C3'+C3C1',

A, i 2(1))t'1P)——'/s(CgC4+C4Cs ),
3E,=As+34+As,

2 3= 2(1V1P) ' "(CsCs'+ C4C4'),

24= (2/V) / (kp+Qp)(CsC3 +C4C1 )
~3= (21P) '"(k3+Q3) (C1Cs'+C3C4 ),
As= (21P)'/s(C3Cg' —C)C4'),

a &0= C&ce' —C3cj',
A „=2(1V1P)'/'(CgC4' —C4Cz'),

352—-A6 —37—A8.

(32)

W= (S('/QT.
/Sqs T,(--

(
=8(2~)g~l 3—'

4,)
Substituting Eq. (33) into (35), we obtain

~= IS('/'QT=8v{2 )"(/I-)S"~(k+Q./&-F /k)
~(k4+Q4/~-F4/~) (p, (1)F,(sX,

X —,(33)
2 N+ '"(/Y!.V'!)'"(8+kg')'(C+kg')'

K;(p;(")F;('
X — . (36)

(g+k 2) s(C+k 2)32(N+N')/3{/V!/Ve!) 1/2

The transition probability is proportional to (S( . from the usual expression:
Squaring Eq. (28), we obtain

with
8=kis+ (kg+ Qs/fs) 3+(k4+ Qi//z) 3+%, ',
C=k +(k +Q./k & /&)'—

Restoring the dimensional factors in Sp from Eq. (15),
and letting &p= EY/ztzcs, we obtain

The number of ions &; appears because it can be shown

that

(g g e.pL-'q (r.—,.)j)=~, &+—g(q), (34)
0

where g(q) js the Fourier transform of the pair distribu-
tion function '4 The symbol (- ) means average over
the canonical ensemble. In the range of densities and
temperatures we are interested in, the ion-ion inter-
action can be neglected and the preceding formula

simply gives %;.
The time T appears because (8(E))g —& (T/2zr/z) B(E).

0. RADIATION RATE

The transition probability W (per electron per quan-
tum state per unit time per unit volume) is obtained

14T. L. Hill, Statistical 3Iechaszics (McGraw-Hill Book Co
New York, f956), pp. 179-188.

(
p.(1)F,

(
3

X— (37)
{1)s+k 3)2(C+k 2) 22(N+Ns)/2(/l//P& t&)1/2

and

g —p(y) p(e)
f f

I=1 g(e) P E
'QT (38)

Z(r) =Q (2zr)
—3Qk'dkdQ»

f
=Q (2zr) 3QA., 3&psdo)dQ (39)

The energy radiation rate I is obtained by multiply-
ing S' by the energy of the outgoing photon, summing
Pf over the final states of the photon and the electron,
and averaging —,'P;(' over the initial states. We have
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The summing over the initial states is performed by
summing over all electron states in a gas. This means
that"

Using polar coordinates for the photon vector k with the
polar axis aligned with the held, we obtain, after inte-
grating over the azimuthal angle,

2' Xc + ~ —oo

f(x)dx, (40)

where

2' Iduhio;(")ri;i
2=—iaii'+ —i11'2(' (47)

2' 2~

dx'0~02/8(2~42) 'P(e)9
f 2ZAc

where f(x)= {I+expL(o—/&)/kT)} ' is the Fermi dis-

tribution function. Here p is the chemical potential plus
the rest mass of the electron in units of nsc2 and T is the
temperature. Finally, iHgi'= I'1(1+cos'8)+I' &02 sin'8+2I' (0 sin'8 cos8, (49)

i Hi
i

'= (0'(A 1'+Ag')+ (0"—a))/') (A i+A )'
X p (I—f(x')7, (41) + 2(A A )gy2

X(A1+A2)(A9 All)+(A12 A10)

+20'(0"—a8/. ') '/'(A, +A,) (A g
—A „)

X (A 12—A io) —2A )A2&o' sin'8 cos'8, (48)

I.D
(2~) 'ZZ dx f(x)

i f X N'

+OQ

0" lt
4x2

dx'L l —f(x')7. (42)

8 O.'Z'AC2A. 'E. +00

dI =—0~

2(/9+//')/2(N &N'&)'/2 x /9'
dx f(x)

+00

OX,—'
4x2

dx' Ll —f(x'))8(o—0' —&0)

We are interested in the spectrum of the radiation. The
spectrum is obtained by differentiating I with respect
to (0 and 0, and therefore we have (N;=Kq/0 is the
density of the nuclei Z)

I'1= 2(1v+N') {L&o cos8+ Qg)A1+ (0)+0')Ag)'

+Aio +2(&0+9')Di+2((0 cos8+Q,)D2}, (50)
I' = 2(N+N')A, ' ', (NN')—'/',
I" = 2(1V+N') P( cos8+ Q,)'A, '

+ ((0+0')A1Ag+D2).

Both iHii' and iHgjg have to be averaged over the
initial spin and sunned over the anal spin. The average
and sum of the spin states is extended to all combina-
tions of A' s. The results for the averages are

Q A )2 =ngn'2+P2P" +2nPn'P'xx'

X(x'+2NQ)-'"(x" +21V'0)-' '

QA2 4NN QA1 e Z A1A11 Q A2A9

(ogdkodQ, +), i
0;(")F;i'

X
(8+k ')'(C+kg')'

(43) g A 1A 2 4(1VN——') '"( n+npp') 1—
8 x'+2N0)

We will now reduce Eq. (43) into a usable form. From
Fqs. (36) and (40), we find

g'2 1/2

Xi1-
x"+2N'0 j

where
(13+k 2)—2(Q+k 2)—2 g 8f(o oe 0+)—(44)

Q A g' =n'P" +P'n" +2nn'PP'xx'

f 1/2 —
L(o 0 )2+0—2 02+ 1—aN, 2

+2(o cos8 (0"—a8/ ')'")
X{(0 oe) 2+ L(02 a~g) 1/2 (0 2 a8/p2) 1/272

+20) cos8 I (0' —a8/') —(0"—a/9') '")'}
=(29 2 —29$ —N Q~){L(0 0 )+(x—x')7'

—2(0—9') (x—x') (1—cos8)}, (45)
a~2= 1+2NQ~.

X(x'+2NO) '"(x"+21V'0) ' '

Q Ail 4NN 2 A9 e Q A10A12 Q AgAlie (51)

Q A 1A g
——npx(xg+2NO)-"2

+ 'n'Px( x+2 NO) '/',

g2 I/2

We now sum over the polarization vector 0, (") in the P AgA11=4(1V1V')'/'nn'PP' 1, —
quantity io, (")F;i' in Eq. (33): ' ' x'+21VH~

k;k;
Q 0.(1)o.(1)—8. , (46)

X'2

X 1——
x"+2N'0 j

1/2
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Q AgAii ———4A-V' Q &i~g, =4' Q gg Q D ~12P2 ~2P12

P g igg =~gP'g+Pgn'g —2''PP'xx

X (xg/2$VQ~) —i&g(x'g+2~'Q~)

P D, = —x(x"+2.Y'()) '"QPg' '

x—'(x'+2A 0) '"Q.'P'g '

7. NONRELATIVISTIC LIMIT

In the nonrelativistic and weak-field limit, where w= gx'+SO((1, we then find (w=—e —g')

j—'i'(c, e', 0)= (2(u+.'i 'O~)L(cv+x —x')' —2&v(s —x')(1—cos0)j,
g~1+w w= —x+IVH n~1 P~ —w

P A, '~4.V;V', Q AiAii ——Q Agog ——0,

(52)

(53)

P AiAg~4(ww') 'tgcVE', Q AgAii —+ 2cV1V'0,

Q Ag' ~ —,'(w+w'+xx'), Q A gA ii —+ —2XiY'(x+x'),

Q A ii' ~ 2cV1V'(w+w'+xx'), Q 2 igA ig —+ —2,VzV'O~, (54)

Q AiAg~-,'(x+x'), Q Agdii~2N1PO,

P 3 ig'~ -'(w+w' —xx') Q Aipdig ~ —2cVA'O~,

P 3 igg —+ 2.V&V'(w+w'+xx'), Q Dg —g —-', (x+x'),

P Di —&-', (w —w').

Therefore, we have

j Hi (
'= {$(u'+2x"P$+4EÃ'(ww') —'"g+P(w+ w') }

&&sin'0 —SXE'(ww') '~'~' sin'0 cos'0, (55)

where $= 1+4iVcV' and

We finally have

t &g
~

'= 2(N+cV') {(aP cos'0+ w+w'+x") (1+cos'0)
+L1—5ÃiV'O~ (SE'ww') —' "]uP sin40

+2(aP cos'0+x")ar sin'0 cos0}. (59)

8. POLARIZATION
I'i ——2(X+X)(&og cos 0+w+w+x ) ~

I'g= 2(N+A ) 5%X Q(ww )—
I'g= 2(&++')(&u' cos'0+x").

Equation (43) has been obtained after summing over
56

(57)
all polarization states of the emitted radiation. In order
to study the polarization effects, we will go back to Eq.
(28). In general, the quantity e;F; can be written in the
following form:

3

e;F,=Q g;F;==e F, (60)

I

t

I

I

I

gl

FIG. 2. Polarization vectors a2 and a3 and their
relation to the wave vector k.

e= eg+eg= ggqg+pggg, (61)
"A. A. Sokolov, U. S. Atomic Energy Commission Translation

Series No. AEC-tr-4322, 1960. (Available from: Ofhce of Techni-
cal Services, Dept. of Commerce, Washington 25, D. C.).

with the obvious definitions of the Ii s. In order to
study /incor polarization we can decompose a into two
mutually perpendicular components (which are per-
pendicular to the direction of propa, gation as required
by the transversality of the photon). Let these two corn-
ponents be e2 and e3 as shown in Fig. 2. Then we have"
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with
1&&z/fl

f

LI —(k z) '/
f
k

f

'7'i'

I=+1 (—1) corresponds to right-hand (left-hand) cir-
cular polarization. Substituting the I=+1 component
into Eq. (43), we obtain

k(k z)/fkf' —z

LI —(k z) '/
f
k

f
'7'i'

g,g, =8„(S,S'=2, 3),

(63)

(64)
(CI/d~d8), .~
(dI/d(od8) i Y

1

F'+1 (70)

where 9 is a unit vector in the direction of the magnetic
field. e2 is in the plane perpendicular to k and z, and ea

is in the plane defined by k and z, as shown in Fig. 2.
For classical synchrotron radiation the polarization may
be similarly analyzed into components s2 and c3, the
polarization of the a2 component is 8 and that of the
83 component is 8."As we shall see, in the nonrelativistic
case the bremsstrahlung radiation will be almost 100%
linearly polarized in the e3 component, that is, it will be
almost 100% polarized in the plane defined by k and z.

Upon setting e= e2, we obtain the polarization in the
2-direction from Eq. (43):

(dI/do)d8) 2 1

(dI/d~d8) ... 1+I" (65)

and, analogously, we have the polarization in the
3-direction:

(dI/chad 8)g
I"

(dI/ckod8) i.t, 1+I"'
(66)

e= P gigi,
l=+1

gigv =~]) ~

(67)

(68)

(69)

where V is a complicated function of e and e'. In the
nonrelativistic limit, F—& ~, and the radiation is almost
100% linearly polarized in the plane defined by k and z.

In order to study the circular polarization, the vector
e may be decomposed in the following way:

In the nonrelativistic limit there is thus no circular
polarization.

9. DISCUSSION

As discussed before, the use of the free-particle Green's

function makes the computation valid only for large
quantum numbers, i.e., small magnetic fields. There
are, however, cases in which the main contribution is
given by the low-quantum-number region. As an ex-

ample we quote the thin plasma layer at the surface
of a neutron star, in which a low-density (nonrela-
tivistic) electron gas is imbedded in the strong
neutron star magnetic field. The plasma effect ignored
in the present paper should also be included. This
full problem is now being investigated by one of the
authors and the results will shortly be submitted for
publication.
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