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The electron configuration (1s) (2s) (2p) has been treated as a two-electron problem with

the outer two electrons moving in the central field produced by the spherically symmetric
(1s) (2s) charge clouds. The zeroth-order wave function is taken to be a Clebsch-Gordan
combination of products of one-electron Hartree-Fock orbitals. This wave function is then

multiplied by a variational function of the form 1+cr» and 1+cr»+c'(r~-r~) where c and
c' are determined by the variational principle for each of the three multiplet levels. The
amount by which the energy is lowered is added to the Hartree-Fock energies to obtain total
energies, but it is the ratio of the multiplet spacings which is the main concern. The exper-
imental value for this ratio is about constant and equal to approximately 1.13 for the sequence
C through Ar. The Hartree-Fock ratio ranges from 1.43 for C to 1.49 for Ar. The technique
used here gives a ratio which ranges from 1.10 for C to 1.37 for Ar which is in good agree-
ment with experiment even though 2s-2p correlations have been neglected.

I. INTRODUCTION

It is well known that the Hartree-Fock theory
gives good average energies and ionization ener-
gies for many-electron atoms but gives poor re-
sults for the multiplet spacings for open-shell
atoms. This is because the multiplet spacings
depend on the Slater-Condon parameters which
are overestimated by about 20%%up when Hartree-
Fock functions are used to calculate them. This
is apparently due to the failure of the Hartree-
Fock theory to adequately account for the electron
correlations. In two previous papers, '~' we have
applied an old technique due to Hylleraas' to the
separate multiplet levels of the (3d)' and (2p)'
electron configurations in an effort to correct the
multiplet spacings. In each case, the zeroth-
order wave functions were Clebsch-Gordan com-
binations of Hartree- Fock orbitals. In both con-
figurations, a simple one-parameter correlation
function was used and it was found that the multi-
plet spacings were overcorrected if average-of-
configuration Hartree-Fock (HF) functions were
used. However, in the case of (2p)', the ratio of
the multiplet spacings for C, N+, O++ was in good
agreement with experimental values if unrestricted
HF functions were used for each level. It is the

purpose of this paper to extend the latter calcula-
tion to all carbonlike ions through Ar and to in-
clude an additional parameter in the correlation
function. The results will be found to be in excel-
lent agreement with experiment.

Sinanoglu4 has developed a many-electron theory
that includes electron correlations in a nonempir-
ical way and in which the Hartree-Fock one-elec-
tron orbitals can be used as a starting point. In
the application of this theory, variational correc-
tions to the HF orbitals are additive functions
while in our work they are multiplicative. More
recently Oksuz and Sinanoglu have studied various
types of correlation effects in nonclosed shell
atoms and have found that certain types of correla-
tions are transferable from one atom to another
for Z between 5 and 11. The Sinanoglu papers
demonstrate the dominance of pair correlations
and provide a physical basis for correlation effects
in atoms. A short review paper by Condon' com-
pares several approaches to correlation effects
along with pertinent references.

In Sec. II, an outline of the semiempirical tech-
nique developed in our two previous papers'~' is
given, followed by results for the carbonlike ions
through Ar(Z =18). Section IV contains some con-
cluding remarks.

II. FORMULATION

An outline of the semiempirical method is given here, but more details are contained in Ref. 1. The
approximation is introduced at the outset whereby the atom is replaced by a two-electron system with each
electron moving in an effective potential V(r) which includes the effect of the (1s)2 (2s)' core electrons.
If the unrestricted HF functions are used as the zeroth-order functions, then V(r) also includes some
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screening of one of the outer 2p electrons on the other. In spite of the expected large 2s-2p correlations'
resulting form the interpenetration of these orbitals, this "core" model seems justified if one is interested
only in the multiplet spacings or in the ratio of these spacings. Indeed, the results seem to bear this out,

especially for the lighter atoms.
The Hamiltonian can be written, in hartree a. u. ,

H= z V, + V(r) —2 V2 + V(r)+1/r»

where the contribution from the core has been dropped since it will not enter the variational calculation.
The zeroth-order approximation consists of taking the wave function as a combination of products of one-
electron functions Q; which are eigenfunctions of the operators K, and H„ i. e. ,nlm

H. p (r.)= [- zV.'+U(r. )] @ (r. )=E p (r. ), p (r. )=R (r )Y . (8.$. ) . (2)

Here U(rf ) differs from V(rf ) in that the former includes the screening effect of one electron on the other,
1 e. y

V(r. )= U(r. ) —Y(r.), (3)

where Y(r;) is the screening function of one of the electrons on the other. Using Eqs. (2) and (3), the
Hamiltonian can be written

H=H, +H, + 1/r» —2Y(r, ) (4)

for equivalent electrons. In what follows, K, and H, will be taken as the unrestricted HF Hamiltonian thus
making denim(rf ) unrestricted HF (UHF) orbitals.

The two-electron wave functions which diagonalize H are obtained by forming linear combinations of pro-
ducts of the UHF functions according to the Clebsch-Gordan coefficients,

0 IIL (1) (2)
LM m, m, , M-m„nlm, nlM-m, (5)

The electron correlation is now included in a semiempirical manner by inserting the correlation factor in
Eq. (5) to obtain

=N '~'4 ' [1+cr12+ c'( rl —r2) '],
LM (6)

where N is the normalization constant given by

&=(O'LM'[I+crl +c'(rl —r )'][4 '[1+cr +c'(r —r )'] )

= I +2c(r»)+c'(r» ) + 2c'((r, —r, )') +c"((r,—r, )') + 2cc'(r„(r, —r,)') (7)

In Eq. (7), the angular brackets represent matrix elements of the indicated operator calculated using the
uncorrelated functions of Eq. (5) as a basis. In Eqs. (6) and (7), the values of c and c' are to be determined
by the variation method and are, of course, dependent on I..

It is easy to show, especially by matrix methods, that the modified wave functions of Eq. (6) are still
eigenfunctions of I.', Lz, 8', and Sz . It is obviously an eigenfunction of $' and Sz since no spin-inter-
action terms were included in the Hamiltonian and since the correlation factor does not alter the spin part
of the wave function. Thus, the spin part will be omitted in the calculation. Although the proof by matrix
methods that the functions of Eq. (6) are still eigenfunctions of L and Lz is simple, it is only necessary
to observe that the correlation factor contains only relative electron coordinates, and therefore, cannot
change the total orbital angular momentum or its z component. It is also worth noting that the correlated
wave functions retain the symmetry properties of the uncorrelated functions since the correlation factor
is symmetric in the exchange of the electron coordinates. This allows for the separate minimization of
each multiplet energy.
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The energy is

W = (4 '[I+cr +c'(r —r )'] )HI + '[I+crl +c'(rl —r2)'] )/N
LM 12

= (4' ')[I+cy +c'(r —r }']H[I+crl +c'(rl —r2)']14 0)/N.
LM

The numerator can be considered as the diagonal element of the operator

H=H+c(r»H+Hr»)+c'r»Hr»+c'[(r, —r, )2H+H(r, —r', )']

+ c''(r, —r, )'H(r, —r, )'+cc'[w»H(r, —v2)'+(r, —r, )'Hr»] (8)

with the original uncorrelated wave functions of Eq. (5}as the basis. Details for evaluating these matrix
elements can be found elsewhere'y' and will not be discussed here.

In Eq. (8), H is the Hamiltonian given by Eq. (4) with the screening function Y(r, ) given by

Y(r )I= (I/rl)Q a I' (2p, 2p;rl),(k)

where Y (2p, 2p;rl) =
k f IR (r2)l r2 dr2+rl f IR (r )l r2 dr,1 2 k+2 k+1 2 -k+1

k ' ' 1 k 0 2p 2 2 1
V 1

aL = Q C C» c (Im, fm')c (IM-m', IM-m ) .(k) IIL IIL k, k

mml 1 1 1m M- m m'M-m',
j. 1

(10)

In Eq. (11), ck(fm, Im') are the results of integrating over the products of three spherical harmonics
and for (2p), k = 0, 2. Thus, the screening function will be slightly different for each multiplet level. An
additional difference occurs through the use of UHF radial functions since the radial integrals will be
slightly different for each multiplet level. This, alone, accounts for some of the electron correlations.
This is referred to by Sinanoglu as "orbital polarization". ' Normally, the orbital energies arising from
H, and H2 in Eq. (8) could be dropped since they would not enter the variation calculation nor the multiplet
spacings. However, the use of UHF functions requires that these energies be retained in the multiplet
spacings.

The radial functions used here were the short analytical expressions derived by Clementi. ' They are
linear combinations of Slater-type orbitals having the form, for the 2p orbital,

R2 (r) = a R I(r)+a2R (r) a2+R (r)+a4R 4(r),

with {(2o )
lk+'

/[(2n ) t] u2]. l, lk e Ik
lk lk lk

'

The energy of each multiplet term associated with the (n, n —1) ground electronic configuration is now
obtained by minimizing

W= (H)/N

with respect to c and c', using the proper uncorrelated wave functions for a given L as a basis.

(14)

III. RESULTS

The above calculation has been performed, as
mentioned earlier, for the (1s)' (2s)' (2p)' isoelec-
tronic sequence from C to Ar for the two cases
(i) c' zero and (ii) c' not zero. The results are
presented in Tables I-IV. The calculations were
made on an IBM 360/50 computer and we expect
the last two significant digits in the total energy
to be uncertain due to roundoff error. These dig-
its have been retained, however in Tables I and

III for the total energies but they have been dropped
in the other entries in these tables as well as in
Tables II and IV. Because of this uncertainty, it
was not practical to correct the total energies for
the small changes in the Rydberg constant as one
progresses to higher Z values. The ratio of the
multiplet spacings, given by

Ratio = [R('S }—Z('D)] / [Z('D) —Z('P) ], (15)

and which is the primary concern of this paper, is
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TABLE II. Variational parameter c for c' zero.
N ~ t aO K C N

CD ~ CD aO O N ~ LC CD t t
N Atom c('S) c('D) c('P)

Q

~~

0
~+
Cd

R
Cd

'a

V
Q)

0
O
K
R
Cd

E

0

Cd

Cl)

4

Q

N
Q
hc

Cl)

Q

0
Cl)

N

O

Cd

V'

0
N

CQ

0
Cd

bG

0

0
~W

Q)

0
V

4
Q

Cl)

Cd

b

d)

Q

Cd

0
I

d)

cd

N 0 QO M 0 O
~ ~ ~
~ ~ ~
~ ~ ~

QO W cD W oO M W W L QO
CD L t oo oo aO oo ao QO

0 0 0 0 Q 0 0 0 0 0 00 0 0 C 0 0 Q 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

I I I I I I I I I I I

0 0
O C
O C

I I

cD
N0 0 Q 0

0 0 0
I I I I

QO QO Cb Cb
N

O C O O
0 0

I I I I

CD 0 O 0 O
O 0 O Q Q
O 0 O 0 O

I I I I I

QO n cD O

CD QO

Cg ~ t- Cb

I I I I

cD QO t 0
O Q N O
QO

O aO O
QO

cD
QO

cD Cb
cD

cD Cb

EQ

cD

cD O

O
QO

I I I I I I I I I

0 n QO

CD QO 0 N

Cb

I I I I

CD g0 QO QO

CD QO 0
N

I I I I

QO
CD
cD O
QO

Q O
QO

I I I I I

LQ 0
CD CD QO Cb
OO N CD0 cD N Cb
CD t Cb 0
C-

L Cb

I I I I

cD & 0 cD
O t- CD

Cb
cD

cD

ao Cb

I I I I

L W cD
CD ~ QO
H N
Qo cD

On
I I I

O Cb

I

t cD

L
QO 0
QO

LA 0
N

I I I

QO
lA cD0 Cb Qt Cb

Cb

QO Cb
t

CD

CD Cb
CD

I I I I

L
L Cb
QO

Cb

0
QO

I I

0

CD

I

0
g cD

QO Cb

N lQ
LQ W Cb

I I I
I

O t
Cb

O
cD QO O
QO Cb

t
0

Cb

ao
O Q

QO
cD QO 0

C O
QO

I I I

Cb 0 N
Cb O cD O

QO
cD QO 0

n 0n t Cb

I I I I
I

N cg
cD

cD n
cQ A t QO 0
QO n Cb

N N N
I I I I I

CD N O
cD t
N O

cD

O Cb
QO

cd
O R Q

O n Cb ~ & n t- QO Cb C 0n L OO OO OO Cb Cb Cb Cb Cb Cb O C
O O 0 0 0 0 0 0 0 0 0
0 O Q 0 O 0 0 O 0 Q O 0 0

I I I I I I I I I I I I I

C

N

0
F
Ne

Na

Mg
Al

Si
P
s
Cl
Ar

0.398
0.400
0.392
0.385
0.379
0.374
0.370
0.366
0.364
0.361
0.359
0.358
0.356

0.196
0.195
0,193
0.191
0.190
0.188
0.187
0.187
0.186
0 ~ 186
0.185
0.185
0.184

0.073
0.072
0.072
0.071
0.071
0.071
0.071
0.070
0.070
0.070
0.070
0.070
0.070

plotted in Fig. 1.
Several interesting observations can be made

from the results. First, the ratio of the multiplet
spacings is in good agreement with the experi-
mental ratio, especially for the lighter atoms.
Even though the agreement becomes worse with
increasing Z, it is still better than the HF ratio,
and to our knowledge, it is the best value that has
appeared in the literature. This divergence in the
agreement with the experimental values is easily
explained. The value of c from either Table II or
Table IV is very nearly constant for all three
levels in going from C to Ar, but a plot of the
average value of r» shows that it decreases
roughly as 1/Z as one would expect. Therefore,
the product cr» represents a decreasing correc-
tion to the HF wave function. In fact, the ratio is
expected to approach the HF ratio for large Z, and
Fig. 1 shows such a tendency. In Table IV, Ic' I

increases almost linearly with Z for 'S and 'D,
but ((r, —r, ) ') decreases roughly as 1/Z ' so this
correction also decreases about like 1/Z.

The second feature of the results has to do with
the effect of spatial correlation on the HF energy.
This effect is very nearly constant for 'P and in-
creases in the order 'P, 'D, 'S. This is pre-
cisely what is necessary to correct the ratio.
Furthermore, the effect on the 'D and 'S energies
increases with increasing Z which is also in the
right direction since the HF ratio begins to deviate
more from the experimental value. Third, the
effect on the HF energy represents the amount of
the actual correlation energy which has been ac-
counted for by this technique. Clementi" has
estimated this correlation energy and comparison
of our results with his shows that for the 'P level
only a very small fraction of this energy has been
accounted for here. However, for 'D the fraction
is greater and for 'S it is approximately 307&.
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TABLE IG. Results for c' not zero. All energies are in uncorrected hartree a.u.

Atom

Total energy with correlation
S ia P

Effect on HF energy
's iD P

Ratio
This work

C

N

0
F
Ne

Na

Mg
Al

Si
P
S
Cl
Ar

—37.60912
—53.76365
—72.92808
—95.09814

—120.27178
—148.44796
—179.62586
—213.80501
—250.98519
—291.16609
-334.34762
—380.52966
—429.71203

—37.65340
—53.83203
—73.02342
—95.22200

—120.42501
—148.63105
—179.83923
—214.048 97
—251 ~ 25994
—291.47170
—334.68423
-380.89734
—43 0.11092

—37.69351
—53.89274
—73.10489
—95.32430

—120.54825
—148.77525
—180.00442
—214.23513
—251.46708
—291.69993
—334.93352
—381.16767
—430.40231
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—0.097
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—0.102
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—0.104

—0.022
—0.025
—0.026
—0.027
—0.028
—0.028
-0.029
—0.029
—0.030
—0.030
—0.030
—0.030
—0.030

—0.005
—0.005
—0.005
—0.005
—0.005
—0.005
—0.005
—0.005
—0.005
—0.005
—0.005
—0 ~ 005
—0.005

1.104
1.126
1.170
1.211
1.243
1.270
1.292
1.310
1.326
1.339
1.350
1.360
1.369

TABLE IV. Variational parameters c and c'.

Atom

C

N

0
F
Ne

Na

Mg
Al
Si
P
S

Cl
Ar

0.411
0.426
0.422
0.416
0.411
0.406
0.402
0.399
0.396
0.394
0.392
0.390
0.388

C

-0.012
—0.034
—0.052
—0.067
—0.081
—0.095
—0.108
—0.122
—0.135
—0.148
—0.160
—0.173
-0.186

0.191
0.197
0.198
0.197
0.197
0.196
0.196
0.196
0.196
0.195
0.195
0.194
0.194

c

0.005
—0.003
—0.009
—0.015
—0.020
—0.025
—0.030
—0.035
—0.040
—0.044
—0.049
—0.054
—0.058

0.061
0.063
0.064
0.065
0.065
0.065
0.065
0.065
0.065
0.065
0.066
0.066
0.066

P
c
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0.025
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FIG. 1. Ratio of multiplet spacings versus atomic
number for the (1s) (2s) (2p) electron configuration.
open circle, HF ratio; open triangle, this work; closed
circle experimental ratio.

This apparently reflects the significance of the
2s-2p correlations which have been neglected here.
If this is so, then these correlations must become
less significant for the higher-lying singlet levels
since we are able to account for more of the total
correlation energy by a technique which neglects
them. This suggests a more physical argument
for the Z dependence of the ratio in Fig. 1. More
of the 2s-2p correlations would cancel out in the
numerator of Eq. (15) than in the denominator,
thus as the central field becomes stronger the
parallel-spin p electrons penetrate the 2s orbitals
more than the antiparallel-spin electrons causing
larger 2s-2p interaction for the triplet level. If
this were included, it is possible that the ratio
could be made less Z-dependent.
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IV. CONCLUSION

The ratio of the multiplet spacings can be im-
proved over the HF values by a rather simple
semiempirical technique. The angular correla-
tions dominate the pure radial correlations for all
atoms, although the relative significance of these
two effects is changed as Z increases. A more
judicious choice of variational function could im-
prove the ratio even more. In fact, it has been
suggested" that a simultaneous variation of the

HF orbital parameters and the correlation param-
eters should make further improvement. Indeed,
this proved to be the case in the He sequence. "

About 30/~ of the total correlation energy can be
accounted for by spatial correlation for the '$
level and a lesser fraction for 'D and 'P. The
2s-2p correlations are more important for pa, ral-
lel-spin electrons than for antiparallel-spin elec-
trons when the central field becomes strong
enough to cause an abnormally large amount of
interpenetration of the s and p orbitals.
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The nonrelativistic eigenvalues of the (1s 3l L) states of the lithium sequence are calculated
correct to second order in inverse powers of the nuclear charge. For large nuclear charges
the addition of a 3l electron to the 1s S core increases the magnitude of the correlation en-2 f

ergy by, respectively, 0.056, 0.092, and 0.034 eV for l = 0, 1, and 2. Most of the correlation
arises from the pair energies.

1. INTRODUCTION

If the eigenvalue E of a many-electron atomic
state is expressed as a series expansion in in-
verse powers of the ~clear charge Z according
to

E Z Eo + ZEI + E2 + Z E +

the evaluation of E, and E, is trivial and the co-
efficients E, and E, can be derived from electron-
pair eigenfunctions. ' ' Seung and Wilson' have so

calculated E, and E, for the Is'2s'S states of the
lithium isoelectronic sequence.

The coefficients E, and E, can also be expressed
as summations of one- and two-particle matrix
elements' ' and extensive calculations of E, have
been carried out for the configurations Is'2s~ 2P .'
The second-order energy E, can be written as a
weighted sum of electron-pair energies and cer-
tain single-electron energies. ' ' ' The appro-
priate expressions have been developed for the
Is'2s 'S and Is'2P'P' states of the lithium se-
quence and accurate values of E, have been cal-


