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We And, for a rather broad set of two-, three-, and four-parameter charge-density functions, that a
particular muonic-atom transition energy determines a particular moment of the nuclear charge density,
(re). The exponent b depends on the atomic number Z and on the quantum numbers of the pair of states
in question, but it depends only very weakly on the mathematical form of the charge-density function.
Consequently, an almost model-independent analysis of muonic-atom energies is possible. This analysis
is facilitated by introduction of the equivalent radius RA, defined by R&=Lz(0+3) (re)pi+. For Z=82, a
range of moments from k =0.08 to k =4.80 is provided by available data. The 2p112—+1s1f2 transition in lead,
for example, measures the k=0.80 moment and determines Eo 8=7.013—1.49(E—5.788) F, where E is
the transition energy in MeV. For this transition, as well a for several others, k is approximately a linear
function of Z.

I. INTRODUCTION

t 1HE measurement of the 2pe~&
—"1sI~& energy for a..particular muonic atom determines, of course, only

a single parameter of the nuclear charge distribution.
Since the earliest days of analyzing muonic x-ray ener-
gies, workers have recognized' that different transitions
determine different parameters, so that, in principle,
energy measurements for a number of different transi-
tions in a given atom might provide information about
the radial shape of the nuclear charge density. [By
radial shape, we mean simply the form of the charge-
density function p(r) .] However, it has not been clear
exactly what nuclear parameter is determined by a
particular transition, except in the low-Z limit, where
nonrelativistic perturbation theory shows that level
shifts are proportional to even moments of the charge
density. ' In this limit, for instance, the 2p—+1s transi-
tions measure the mean square radius (r'). One occa-
sionally hears or reads that the same is true for heavy
atoms. This is not the case. Even for Z as low as 6,
the 2p—+1s transitions do not determine exactly the
mean square radius.

In the work described here, we set out to answer the
following question: Exactly what parameter of the
nuclear charge distribution is determined by each tran-
sition energy? We have found that, with a remarkable
degree of model independence, most transitions (or
energy differences, such as 2Ps~&—2PIi&) determine spe-
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David L. Hill and Kenneth W. Ford, Phys. Rev. 94, 1617
(1954).

2 An accurate version of perturbation theory for energy shifts
in heavy muonic atoms has been developed recently by H. A.
Bethe and J. W. Negele, Xucl. Phys. A117, 575 (1968).
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cific moments of the charge density (re). For each
transition, the exponent k is an even integer at Z=o,
and decreases smoothly —in some cases, almost lin-
early —with increasing Z. These results are based mostly
on a trial-and-error procedure using exact numerical
calculation. The general trend of k can be understood
analytically, but the fact that it should vary linearly
with Z and the fact that the moment determination at
large Z should be so nearly model-independent are facts
without a good theoretical foundation at present.

It has become customary to de6ne an equivalent
uniform radius (which we here call Rs) as the radius
of a uniformly charged sphere with the same mean,
square radius as a particular charge distribution of
interest. To discuss the results of our work, it is con-
venient to define an equivalent radius more generally
for all moments (r"). The definition is

R —LI (/+3) (rk)gl/A

Then we can say that a measured energy difference
for a particular muonic atom determines k and EI.„. A
set of different transitions at given Z determine a set
of equivalent radii EI„which then delimit the possible
radial shapes of the charge distribution. As a result of
numerical calculations, a set of approximate formulas
of the following form can be developed:

RA ——Re&el —C(Z—Elo&) .
Here E&" is a standard transition energy, chosen to be
nearly equal to a measured value E. The equivalent
radius EI,( ~ is that determined by E( ~; the equivalent
radius EI, is that determined by E. The energy-depend-
ence coeScient C, like k, RI,(), and E(), depends on Z
and the quantum numbers of the pair of levels in
question. However, the quantities k and C depend only
weakly on the functional form of the charge density
p(r), and they do not vary signilcantly as the energy E
is artificially varied over a range greater than the
actual uncertainty of E.
1429
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Fxo, 1. Equivalent-radius functions for several different
Family-II charge-density functions in calcium, all yielding the
same 2p»2~1s11& transition energy.

II. FAMILIES OF CHARGE-DISTRIBUTION
FUNCTIONS

ITo study the model dependence of our results, we

carried out calculations with all of the following func-
tional forms.

Fami ly II (three parameter)-

p(r) =ps[1+w(r/R)'j/1 ,'e "~"—r—&err], — r(R
—

p (1+w) re rr(r R)/B— —

Fermi (three parameter)-

p(r) = pet 1+w(r/R)')(1+e'" ~") ', r(R

6.90

Fxo. 3. Graphical determination of critical k value and equiva-
lent radius for the 2p»2~1s112 transition in lead. Same as Fig. 2
except for change of functional form of charge-density function.

Bethe' (two paramete-r)

=0

Bethe Flton' (four -parameter)-

p (r) =ps[1+w (r/R) 'j(1 ,'e&" —rr~t—)
' r(R

r&R (6).

Notice that the parabolic wine-bottle term is carried

=pe(1+w) (1+e'"- ") ' r&R. (4)
I I

I
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7.I— Rk(F)

Rg(F) 7.0—

7,0— Fermi function, w= l.2

E(2p&i2 is) 5,97546

family 3K function, w=0

E(2p&i2-1s) = 5.97546
6 9 I t I I I I I I I I I I I I

0 I 2
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Fzc. 2. Graphical determination of critical k value and equiva-
lent radius for the 2p»2—&1sif2 transition in lead. Same as Fig. 1
except for change of atomic number and change of transition
energy. The curves are labeled by a Jt/n=

FxG. 4. Graphical determination of critical k value and equiva-
lent radius for the 2p»2~1s1/2 transition in lead. Same as Figs.
2 and 3 except for change of functional form of charge-density
function.

3 H. A. Bethe and L. R. B. Klton, Phys. Rev. Letters 20, 745
(1968).



MUONIC ATOM S AND NUCLEAR CHARGE D ISTRIB UTION 1431

only to r = R, and replaced by the constant factor 1+w
for r&E.. Except when explicitly stated otherwise, the
parameter m is set equal to zero. The Bethe function
is unrealistic in having p=0 beyond some radius E..
Both the Family-II and Fermi functions, despite their
three parameters, are limited in that the surface thick-
ness (e.g. , the 90-10% distance) is directly propor-
tional to the falloff distance in the tail of the distribu-
tion. With its fourth parameter, the Bethe-Elton
function can provide for independent variation of the
-surface thickness and the falloR distance at large r.
We also made a few calculations with a four-parameter
Fermi function, one in which an exponential tail of
arbitrary half-distance replaced the second line of Eq.
(4) in the region where p&0.1ps. This change of the
function at large r produced no significant effects of
interest.

A given charge density p(r) can be completely char-
acterized by its equivalent radius function R&(k). We
call attention to some features of curves of E~ versus k.
For a uniform charge density, the R& curve is a straight
horizontal line. As the surface thickness grows, the Eq
:curve swings around to greater positive slope (see
Figs. 1—3). For the Fermi function with w=0, the Rs
curve is nearly a straight line over the range 0&k &4
(see Fig. 3). With a central depression in the charge
density (positive w), the Rs curve takes on greater
positive curvature (see Fig. 4) . These qualitative
features are useful in analyzing the equivalent radii
determined by experiment.

The limit of Rj, as k—+0(Rs) is not simply proportional
to the normalization integral (r'). Rather Rs is a
meaningful radial parameter. It may be expressed in
terms of the potential by

Eo——A exp
3

y(r) dr
0

where q (r) is the electrostatic potential for the charge
density in question, normalized so that y(r) =r ' for
r&A. The parameter A must be chosen large enough
so that the charge density p(A) is sensibly zero. Then
Eo is independent of A.

' K. W. Ford and J. G. Wills, Nucl. Phys. 35, 295 (1962) .' K. W. Ford, V. W. Hughes, and J. G. Wills, Phys. Rev. 129,
194 (1963).

A. Numerical Calculation

Using methods similar to those employed in earlier
work, 4' we integrated the radial Dirac equations to
obtain eigenvalues and eigenfunctions of the muon in
the Geld of a static spherically symmetric nucleus.
With these eigenfunctions, we calculated the vacuum-
polarization correction numerically to lowest order in
r/X„4 where X,=5/m, c=386 F. The next term in such
an expansion of the vacuum-polarization potential adds
the same binding energy, Z Ry, to all levels, and has
no effect on energy diGerences. The third term, which

is repulsive, we estimated by hand. It amounts to
about 0.07 keV for f states in lead. McKees has devel-
oped a better method of calculating the vacuum-polar-
ization energy.

In these calculations we chose for the muon mass~

m = 206.767m, = 105.659 MeV,

and we used the nonrelativistic reduced mass of the
system.

IIL ANALYSIS OF 2Ps~,~ls»s TRANSITIONS

Figure 1 illustrates the method of ending k and Ek.
The standard energy for the 2p&i&~is&~s transition in
calcium is chosen to be 0.1'8420 MeV. ' For each of
several surface thickness parameters m of the Family-II
function, the radial parameter E. is adjusted until the
calculated transition energy is exactly the standard
energy. For the different functions p(r), all yielding
the same transition energy, the E& curves are plotted.
In this example, the curves intersect at a point k = 1.70,
R~ ——4.458. This is the common feature of the functions
whose surface thicknesses span a factor of 2. Model
independence is checked by repeating the calculations
for other functional forms of p(r). Results for the
2ps~s —+1s~~s transition in ssCa are given in Table I.
Except for the Bethe function, which lacks an expo-
nential tail, consistency is good. The transition is
measuring approximately the k=1.72 moment instead
of the k=2.00 moment predicted by nonrelativistic
perturbation theory. Vacuum-polarization corrections
are included in these calculations, but other corrections
are not.

Figures 2—4 show the analogous results for the
2ps/s +1s&~s transition in sspb, with the standard energy
chosen to be 5.97546 MeV.~" Comparison of Figs.
1 and 2 shows the eGect of changing Z. For Z=20
the curves intersect at k = 1.70; for Z= 82, they intersect
at k=0.80. For the Fermi function, the intersection

'R. J. McKee, Enrico Fermi Institute for Nuclear Studies
Report No. 68-39, 1968 (unpublished).

7 N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, M. Roos,
A. H. Rosenfeld, P. Soding, and C. G. Wohl, University of
California Lawrence Radiation Laboratory Report No. UCRL-
8030, 1968 (unpublished).

SThis is close to the experimental value reported by H. L.
Acker, G. Backenstoss, C. Daum, J. C. Sens, and S. A. DeWit,
Nucl. Phys. 8'7, 1 (1966).

'Experimental energies for lead are given in Ref. 8, and in
several other recent publications, including H. L. Anderson,
R. J. McKee, C. K. Hargrove, and E. P. Hincks, Phys. Rev.
Letters 16, 434 {1966);and R. J. Powers, Phys. Rev. 169, 1
(1968).

'0The most extensive and most precise data on transition
energies in lead isotopes are given by H. L. Anderson, C. K.
Hargrove, E. P. Hincks, J. D. McAndrew, R. J. McKee, R. D.
Barton, and D. Kessler, Phys. Rev. (to be published) (1969).
Part of this work appeared earlier in H. L.Anderson's contribution
to Proceedings of the International Conference on Electromagnetic
Sizes of Nuclei, Ottawa, Canada, 1967 (unpublished), and in
Ref. 11.

"H. L. Anderson, C. K. Hargrove, E. P. Hincks, J. D.
McAndrew, R. J. McKee, and D. Kessler, Phys. Rev. Letters
22, 221 (1969).
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TABLE I. Values of k and Eq determined for the 2p3/2~1s1/2
transition in 20Ca, using several functional forms of p (r).

Charge-density function

EI, for
X=0.7842

MeV

Family II (x =0)
Fermi (m=0)
Fermi (x =0.6)
Fermi (x =1.2)
Bethe

1.70
1.72
1.72
1.72
1.85

4.458
4.460
4.460
4.462
4.465

point for Pb is at k=0.83 (Fig. 3). In both Figs. 2

and 3, the critical equivalent radius is R/, ——7.012 F.
The effect of a large central depression (m=1.2) is
shown in Fig. 4. There the intersection point is at
k =0.85, E/, ——7.028.

The results of such determinations of moments are
presented as a function of atomic number in Fig. 5.
Remarkably, the critical exponent k diminishes linearly
with increasing Z, with value k=2 at Z=O, and with
dk/dZ= —0.0145. The critical values of k as deter-
mined using the Fermi function are presented in

Table II, together with standard energies and equiva-
lent radii for these energies.

For low Z, the 2p-state energy shift is negligible
compared with the 1s-state energy shift, and the 1s
binding energy measures the same nuclear parameter
as does the 2p—&is energy. For large Z, the 2p-state
energy shift is, relative to the 1s-state energy shift,
small but not negligible. For Z= 82, we find (using the
Fermi function) that the 1s binding energy is sensitive
to the k=1.03 moment of the nuclear charge density.
Although the is binding energy is not directly measur-
able, it plays an independent role in the isomer shift.
For this phenomenon in heavy atoms, the relevant k

value is slightly larger than the value appropriate for
the 2p .1s transitions.

I I I l 1 I I l i I

0 20 40
I I 1 I I i I

60 80
t i

1 00

FIG. 5. Critical values of 0 as a function of atomic number for
the 2p3/2~1s1/2 transition.

A. Model Deyendence

Table I and Fig. 5 provide some evidence on the
model dependence of our results. Further evidence is
provided in Tables III and IV, whose data still apply
only to the single 2pap~1si/& transition. Different models
yield k values consistent within &0.02, with the notable
exception of the Bethe function and the Bethe-Elton

function with fixed y. These two functions yield k values.
larger than the others by as much as 0.2. However,
each of these is unrealistic in an important way. The
Bethe function goes precisely to zero at r=E. The-
Bethe-Elton function has discontinuous slope at r=E
if y is held fixed and only E and a are varied. If we-

impose the requirement of continuous slope on the-

Bethe-Elton function, and vary 8, a, and p to main-
tain this condition (see the last column of Table III),
it yields a k value close to the values found for other
models. We conclude that, for realistic models, includ-
ing a wide range of variation of parameters, k is deter-
mined to within ~0.02.

For the realistic models without a central charge
depression (m=0), the R/, values are determined to
within about %0.002 F. As m grows to 0.6 and then to
1.2, the values of 8/, grow slightly, by as much as
0.016 F for Z= 82 (less for lower Z) . Considering that
re= 1.2 is an unrealistically large value of ~, this
amounts to a very weak model dependence. However,

TABLE II. Values of k and Rk determined for 2p3/2~1sI/2 transi-
tions in various elements, using the Fermi function for analysis.

Atomic
No.
Z

Standard
energy

2p3/2~1s1/2
(MeV) Z, (F)

6
13
20
30
50
82
92

0.0751760
0.346168
0.78421
1.60134
3 ' 45542
5.97546
6.55446

1.90
1.82
1.72
1.57
1.27
0.83
0.67

3.480
4.074
4.460
5 ' 046
5.949
7.012
7.313

it is enough to require consideration if precision fitting
of data is the goal.

IV. ANALYSIS OF OTHER ENERGY DIFFERENCES

We find specific moments of the charge density to
be determined by the circular-orbit transitions, 4f 3d, .
3d .2p, and 2p—&1s; by the doublet p and doublet d
splittings; and by the 3p3/&~2si/2 transition. Among
all the energy differences examined, only the 2si/2~2pi/,
transition in Pb failed to show sensitivity to a single
moment. A moment determination for the doublet p
splitting in Pb is shown, for example, in Fig. 6. Here
k = 1.22, E/-„= 7.040 F. According to relativistic pertur-
bation theory, k should be equal to 2, since the small
component of the pi/~ wave function behaves like an
s-state wave function. Another example is shown in
Fig. 7. The 3d3/2 +2p3/2 transition, which measures the
k =4.0 moment at low Z, measures the k = 2.76 moment
at Z=82. In Fig. 7, the intersection points occur at
k=2.76, E/, =7.152 for +=0, and k=2.77, EI,——7.161
fol 3)= 1.2.

A summary of critical k-values determined using the
Fermi function (m=0) is tabulated in Table V and
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TABLE III. Evidence of model dependence. Values of k determined for the 2p3/2~1si/2 transitions in
various atoms, using a variety of nuclear charge density models.

Fermi
Family II mr =0

Values of k
Fermi Fermi
m=0. 6 m =1.2 Bethe

Bethe'- Betheb-
Elton Elton

fixed y variable p

6
13
20
30
50
82
92

1.84
1.70
1.57
1.25
0.80
0.63

1.90
1.82
1.72
1.57
1.27
0.83
0.67

1.72

1.30
0.84

1.72

1.28
0.85

1.86
1.85

1.43
1.00
0.87

1.85

1.45
1.00 0.85

~ u =0, y = 1.8 fixed; c and R variable. m =0 fixed; a, R, and y varied to maintain continuous slope at r =R.

TABLE IV. Evidence of model dependence. Values of Rz corresponding to the k values of Table III.

Values of R/, in fermis

Family II
Fermi
x=O

Fermi
z =0.6

Fermi
'N= 1.2 Bethe

Bethe-
Elton

fixed y

Bethe-
Elton

variable y

6
13
20
30
50
82
92

4.079
4.458
5.049
5.951
7.012
7.313

3.480
4.074
4.460
5.046
5.949
7.012
7.313

4.460

5.955
7.022

4.462

5.959
7.028

4.077
4.465

5.953
7.014
7.317

4.472

5.962
7.020 7.010

TABLE V. Critical values of /&'. determined for various transitions and various atomic
numbers using the Fermi function for analysis.

Energy difference 20
Atomic No. , Z

30 50 92

2pl/2~ 1~1/2

2p3/2~ 1S1/2

2p3/2 2p]/2
3d3/2~2 pi/2
3d5/2~2 p»2
3d3/2~2 p3/2
3d5/2-3d3/2

4f5/2~3d3/2
4fv/2~3d5/2
3p3/2~2~1/2
2'/2~2 pi/2
isi/2 binding

1.90 1.82 1.72
1.95

1.57
1.87

3.62

1.27
1.71

3.25

0.80
0.83
1.22
2. 29
2.76
2. 76
3.25
4.06
4.80
0.08
none
1.03

0.67
1.06

2.61

4.65

~ This value is uncertain by about &0.05 because of inaccuracy in numerical computation.

TABLE VI. Standard energies and corresponding equivalent radii for selected elements, using the Fermi
function for analysis, with k values shown in Table V.

Quantum
Nos.

Standard energies E&'& (keV} and equivalent radii R&,&0& (F)
Z=6 Z=13 Z=20 Z=30 Z=50 Z=92

2p3/2~1-~1/2

2p3/2-2p1/2

3d5/2~2 p3/2

4f&&s~3d5&s

gi(0)

R/")

jV(0)

Rd')

g(o)
R/(0)

75. 176
3.480

346. 17
4.074

784. 21
4.460

1.4814
4.48

1601.34
5.046

7.1889
5.076

354. 13
5.260

3455.42
5.949

45.594
5.987

982.06
6.120

6554.30
7.313

235.03
7.339

3039.15
7.447

1184.07
7.592



F ORD A~0 KyLI S

7.2 I I
I

I
~I

5
A

' I

7/p 3d5

7.I—

R„(F)

hp ~d
3/2 P3/~

o

Q/p 2pj/

7.0—

0 I I, I

2p

0

I/p
I

60
I )

80

I

I

Fj-G. ~ GraPhical det
ra

ermination
"us for th

n «critical p
e doublet s

. value an
plitting in lead

quivalent

~ar

functyo

no«h „
cients C

etermine the
'Eq (2).

' 'n"gr deI, e„de@endence coe

ETAQED AmAL~»S

~ E

R LEA

illustrated in Fin . . otice that the o
e g 2~2P3p, and

e

I

se of lack f
not e studied at l

os in Fi.
As indi

ow'

icated by th

Z—

e
i erences w

v~le~t r
marized in T

w d ot

r elements oth er

th e numerical c le nu
'

ca culations

A n erg DA y ependence of E ' a ii

For Z=82, we ha

e o Effective Radii

, we have selected, we a e standard ene

7.I 2

ence cients C of Eq. (2).

I I

Pb
I I I i

7.IO—

I
I

I I

Pb

0 0

0.70

7.08
0.55

7,2

55

0

0.40

R„(F)
7. l

7,06

7.0

7.Q4—

Rk(F
0.70

7.'02
0.55
0.40

E(3d -2
3/p p3/2) =2.45700

7.3

7.00

a=0.75

7.2

Rk(F)

60—
45—

6.98—

7.I

0.70

7.0

6.96

0.55
0.40

6 o
~ M0

I I

I

I

2
I

4

6.94

Fx . . raphical determ' '
o

dlus for the

lar

343 2~2P s eae simon in lead
c ions wi

t--.
al depression an with a

ion, w=o

0.6 0.8 I.O

Fxa. 9.
k

raphical
cie t C for th nsition in lead ui

I
' q

ion s own.
vanes negligibly

Crjtica

Z
IOO

us tra
. . v~l~es o

wa
ransitions a

as a fun

s used for th
and ener

. Ct&on of atom'

e analysis.
y &erences; th

1C number for
s, te perm; n



185 M UONIC ATOM S AND NUCLEAR CHARGE DISTRIB UTION

TABLE VII. Coefficients needed to relate equivalent radii to measured energy diGerence in Pb"'.

Quantum
Nos.

Standard
energy

E(0) (MeV)
Fermi model, m =0

R&,&'& (F) C (I'/Mev)
Fermi model, m =1.2

Ri&'& (F) C (I'/MeV)

2p1/2~1s1/2
2p3/2~1'/2
2p3/2-2 p1/2
3d3/3&~2 pl/2
3d5/2~2 p3/2
3d3/2~2 p3/2
3d5/2-3d3/2

~fs/2~3 A/2
4fv/2~34/2
3p3/2 +2s]./2
n= ~~is1/2

5.78787
5.97529
0.18514
2.64299
2.49986
2.45702
0.04338
0, 97153
0.93768
1.50793

10.59339

0.80 7.013
0.83 7.012
1.22 7.040
2.29 7.109
2.75 7.150
2.76 7.152
3.25 6.505
4.06 7, 351
4.80 7.739
0.08 6.983
1.03 7.041

1.49
1.41

29.4
9.10

13.2
13.3

1145
460
770

8.07
1.28

0.81
0.85
1.23
2.29
2.78
2.77
3.27
4. 10
4.82
0.11
1.03

7.030
7.028
7.051
7.114
7.160
7.161
6.512
7.354
7.746
7.021
7.053

1.49
1.41

29.4
9.10

13.2
13.3

1145
460
725

8.03
1.28

We did this for both the Fermi function with +=0
and the Fermi function with m=1.2, as a check on
model dependence. Results are given in Table VII.

A typical set of results leading to an energy depend-
ence coeKcient is shown in Fig. 9. As the assumed
2P&p~1si»2 energy is increased in steps of 0.040 MeV
from 5.748 to 5.828 MeV, the equivalent radius R/,

decreases by approximately equal steps of 0.060 F
from 7.073 F to 6.954 F. At the same time, k changes
by about 0.01, which is a negligible change. Note that
the horizontal scale of Fig. 9 is expanded relative to
the scales of earlier 6gures.

With the results given in Table VII, any measured
energy difference may be converted to an equivalent
radius at a particular k value for either of the two
models, with the help of Eq. (2) . Since the calculations
underlying the numbers in Table VII included only the
effects of the static nuclear charge distribution and the
vacuum-polarization correction, the energy E to be
substituted into Eq. (2) is not directly the experimental
energy. Rather it is the experimental energy corrected
for other estimated effects, such as radiative corrections
and nuclear polarization. For the same reason, the
uncertainty to be assigned to E must include theoretical
uncertainties in these other effects as well as experi-
mental uncertainty. Since the coefficients C in Table

TABLE VIII. Estimated corrections to muonic
energy levels in lead. ~

State

Energies in keVb
Radiative Nuclear
corrections polarization Total

1$1/2

2p1/2
2p3/2
3d3/2
3d5/2

4fs/2
4f&&~

2'/2
3p3/2

+2.75 (75)
+0.35 (20)
+0.65 (20)—0.04(2)
+0.05(2)—0.01
+0.01
+0.70(20)
+0.25(7)

—6.00 (100)—2. 10(30)—1.90(30)—0.08(4)—0.08(4)
~p
~p
—p. 70(35)—0.10(5)

—3.25 (150)—1.75(35)—1.25 (35)—0.12 (5)—0.03 (5)—0.01
+0.01

0.00(40)
+0.15(10)

~ Based primarily on the work of Refs. 10 and 15.
b Here a positive sign indicates a repulsive e6ect, a negative sign an

attractive effect.

VII vary over nearly three orders of magnitude, the
uncertainties of equivalent radii deduced from experi-
ment will show a correspondingly great range of varia-
tlon.

B.Analysis of Data

If our results were precisely model-independent, the
analysis of data would proceed along the following path.
(a) To the experimental energies one would apply
theoretical corrections to obtain the best estimates of
the energy differences E attributable to the static
nuclear charge and vacuum polarization. (b) From
these energies E one would obtain a set of equivalent
radii Ri. (c) One would find out what nuclear charge
distributions are compatible with this set of Ek va, lues.
All such charge distributions would adequately fit the
experimental data. Because of the a,ctual slight model
dependence of the results, the procedure cannot be so
straightforward. The E/, values deduced from experi-
ment can be strongly suggestive about the form of the
charge distribution, and they can indicate what type
of variation is possible which does not stray outside
the limits of uncertainty. By their smoothness or lack
of smoothness, they can also reveal whether any spher-
ically symmetric charge distribution is capable of fitting
the data. But finally to pin down the pa, rameters of a
charge-density function, one must calculate energies
and compare them directly with the da, ta, . The equiva-
lent radii provide very useful insight a,nd a, va, luable
intermediary between calculations and data, but they
are not the last word, at least not when the data are of
high accuracy.

We have made no effort to improve on existing
estimates of radiative corrections'' " " a,nd nuclear
polarization corrections. ' "The values we ha,ve used,

~'R. C. Barrett, S. J. Brodsky, G. W. Erickson, and M. H.
Goldhaber, Phys. Rev. 166, 1589 (1968).

"R.C. Barrett, Phys. Letters 28B, 93 (1968). This reference
came to our attention after our calculations were completed.
However, the differences between Barrett's estimates of radiative
corrections and those we adopted (Table VIII) are too small to
have any effect on our analysis.' R. K. Cole, Jr., Phys. Rev. 177, 164 (1969).

~5Min-Yi Chen, Princeton University Technical Report No.
PUC-937-291, 1968 (unpublished) .
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TABLE IX. Energy differences in muonic Pb"'.

Quantum
Nos.

Experimental
energies"

Energies in keV
Energies E

attributable to
static charge
plus vacuum
polarization

Energies
calculated

with a
Fermi

functionb

Energies
calculated

with a
Bethe-Elton

function'

2pI/9~1$1/2
2'/2~1$I/2
2p3/2-2 p1 /2

3d3/2~2 pI/2
3A/2~2 p3/2

3d3/2~2pa/2
364/2 388!2
4'/2~3 A/2
4'/2~3A/2
2$1/'~~2 pI/2
3p3/2~2$I/2

5788.33(48}
5973.88(44)

185.65(12)
2643. 75(40)
2501.26(36)
2457. 79(57)

43. 15(10)
971.74(20)
937.72 (20)

1217.81(80)
1507.93(80)

5786.83(160)
5971.88{160)

185.15(50)
2642. 12(55)
2500.04(50)
2456. 66(65)

43.06(12)
971.63 (21)
937.68 (21}

1216.06(100)
1507.78(90)

5776.89
5961.51

184.61
2641.78
2499.90
2457. 16

42. 73
971.78
938.22

1215.16
1507.66

5785.80
5970.72

184 ' 93
2641.38
2499. 16
2456.45

42, 71
971.69
938.16

1212.40
1510.07

a References 10 and 11.
Parameters; R/A«3 =1.1290, a =0.51, and w =0 (Rg/AI/~ =1.203).

Parameters: R/A'/3=1. 1219, a =1.4, y =1.4, and m =1.2 (R2/A»3=
1.203) .

together with our estimated uncertainties, are shown
in Table VIII. We have regarded the work in Refs.
10 and 15 as most reliable. "In Table IX are given the
experimental energies of Anderson et al. ' "and, derived
from these, the energy differences 8 attributable to the
static nuclear charge distribution plus vacuum-polar-
ization corrections. Finally, from the data of Tables VII
and IX, the equivalent radii are calculated for each of
the two models studied in detail. Results are given in
Table X and in Figs. 10 and 11. The uncertainties
assigned to E/, values in Table X are those based on
the energy uncertainties in Table IX, and do not in-
clude the further uncertainty associated with model
dependence. This is true also of the error bars in Figs.
10 and 11.The numbers in parenthesis in these figures
give the energy uncertainties in keV.

Inspection of the seven points with relatively small
error bars in Figs. 10 and 11 at once reveals several
facts. (1) A single charge distribution can in principle
fit all the data, since a simple smooth curve can be
drawn through the points. (2) The points define an
upward sloping curve, as expected for finite surface
thickness. The slope of the curve should provide infor-
rnation on surface thickness. (3) The points suggest a
curve of positive curvature, the kind of curve associated
with a central depression in the charge-density func-
tion. For self-consistency, e8orts to fit the data with
a function having little or no central depression should
make use of Fig. 10. Efforts to fit the data with a
function having a large central depression should make
use of Fig. 11.Calculations of equivalent radii for inter-
mediate models could be compared with points inter-
polated between Figs. 10 and 11.

As expected from other considerations, the 4f~3d
transitions and the doublet d splitting do not provide
much information, although they do determine mo-
ments of relatively large k. From Figs. 10 and 11, it
appears that the reported doublet d splitting" of 43.15

TABLE X. Equivalent radii of nuclear charge distribution in
Pb"' as determined from experiment.

Energy difference
used to determine

moment

Analysis with
Fermi model,

m=0
k R/r,

Analysis with
Fermi model,

w= 1.2
k R/,

2pi/2~1$I/2
2p3/2~1$1/2
2p3/2-2 pI/2
3d3/2~2 pI/2
3d5/2~2 p3/2
3d3/2~2 p3/2
3d5/2 —3'/2
4fs/2~34/2
4'/2 —+3A/2
3p3/2~2$1/2

0.80 7.015(2)
0.83 7.017(2)
1.22 7.040(15)
2.29 7.117(5)
2. 75 7.148(7)
2. 76 7.157(9)
3.25 6.871(137)
4.06 7.305(97)
4.80 7.739(162)
0.08 6.984(7)

0.81 7.032 (2)
0.85 7.033 (2)
1.23 7.051(15)
2.29 7.122(5)
2.78 7.158{7)
2.77 7. 166(9)
3.27 6.878(137)
4. 10 7.308(97)
4.82 7.746(152)
0.11 7.022(7)

"This value is determined from the experimental Ad —Af
value, assuming the theoretically calculated hf splitting to be
correct.

keV" must be too large by about 0.3 keV. A value of
about 42.85 keV is required to be consistent with the
other data. If the reported value of 43.15%0.10 keV is
confirmed by further measurement, this will be a small
but important anomaly. A similar consistency argu-
ment suggests that the reported 4f&/2 +3dr/2 energy of
937.72&0.20 keV is too small by about 0.5 keV. Some
unknown repulsive eGect shifting the 3d5/~ level up-
ward by 0.3 to 0.5 keV would, of course, explain both
of these points at once. Experimental error seems a
more likely explanation at present.

As shown in Fig. 10, a precision fit to the data with
a Fermi function (w=o) is impossible. Since the E/,
curve for the Fermi function is nearly a straight line
over this range of k, this conclusion could be reached
without further calculation. Xo straight line passes
through the points in Fig. 10. The E/, curve for a Fermi
function which does a good job of fitting all but the
2p—+Is transitions is shown by the solid line in Fig. 10.
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FIG. 10. The points are equivalent radii deduced from experi-
ment (Refs. 10 and 11), using the Fermi function (m=0) for
analysis. Error bars include theoretical uncertainty in energy
corrections. The total energy uncertainties adopted are shown in
keV in parentheses. The solid curve is a theoretical curve for the
Fermi function whose parameters are given in Table IX. It
adequately fits all but the 2p~1s energies. The dashed curve
is the equivalent-radius curve for a Fermi function which its
electron-scattering data in Pb"s (Ref. 17), with radial parameter
scaled downward by the factor (206/208) 'I'.
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FIG. 12. Charge-distribution functions for Pb"', corresponding
to the solid curves in Figs. 10 and 11 and to the calculated energies
in Table IX.The labels indicate Fermi and Bethe-Elton functions.

Energies calculated using this function are listed in
Table IX. (This is not a least-squares fit.) Also noting
that a Fermi function could not accurately 6t all the
Pb data, Anderson et al." concluded that probably
the nuclear polarization effect lowers the 1s state by
more than the calculated 6 keV. (These authors esti-
mated the extra shift of the 1s state mills the extra
shift of the 2pr~s state to be about 7 keV, to be com-
pared with the 4 keV difference shown in Table VIII.
Our Fermi fit, Table IX, shows a greater discrepancy,
about 10 keV. ) Based on our moment analysis, we
believed at 6rst that reaching any conclusion about the
magnitude of the nuclear polarization e6ect from an
analysis using the Fermi function was quite unjustified,
since, with a differently chosen charge-density func-
tion, it should be possible to introduce an appropriate
curvature into the E~ curve and wipe out the apparent
discrepancy. One such e8ort, unsuccessful, is shown in
Fig. 11, with calculated energies listed in Table IX.
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FIG. 11. The points are equivalent radii deduced from experi-
ment (Refs. 10 and 11},using the Fermi function with m=1.2
for analysis. The error bars and the numbers in parentheses have
the same meaning as in Fig. 10. The curve is a theoretical curve
for the Bethe-Elton function whose parameters are given in
Table IX. It adequately fits all but the 3p3I2~2s1~2 and 2s1~~~2p1~2
transitions.
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FIG. 13. The points are equivalent radii for Pb"' deduced from
experiment (Ref. 10), using the Fermi function for analysis. The
curve is a theoretical curve using a Fermi function that provides a
fit to electron-scattering data for the same isotope (Ref. 17).
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TABLE XI. Energy differences in muonic Pb'0'.

Quantum
Nos.

Experimental
energies'

Energies in keV

Energies E
attributable to
static charge
plus vacuum
polarization

Energies
calculated

with Fermi
function which

fits electron
scattering data"

2pl /2~ 1$1/2

2p3/2~ 1$1/2

2p3/2-2 pI/2
3d3/2~2 p1/2
3dfi/2~2 p3/g
3d3/2~2 p3/2
3A/2-3d8/2
4f5/2~3d8/2
4f7/2~3d5/2

5778.93 (50)
5963, 67(45)

184.84(22)
2641.48(46)
2499.88{39)
2456. 41 (59)

43. 15(10)
971.74{20)
937.72(20)

5777.43(160)
5961 ' 67(160)

184.34(55)
2639.85(58)
2498. 66(52)
2455. 28(69)

43.06(12)
971.63 (21)
937.68 (21)

5778.83
5963.45

184.62
2641. 10'
2499.20
2456. 48

42. 72
971.75
938.20

~ Reference 10. R/A»' =1.1186, a =0.5348 (R2/Ai/3 =1,196); from Ref. 17.

In fact, even with the four-parameter Bethe-Elton
function, we have not succeeded in getting a precision
fit to all the data. However, the Bethe-Elton function
is unwieldy, and perhaps we have not tried hard enough.

We find, in agreement with Anderson et al. ,
' " that

it is easy to fit all but the 3p3/t —+2st/e and 2st/$~2pt/e
energies or all but the 2p~1s energies. The data sug-
gest that the actual binding of the 1s sta, te is greater
than calculated or the actual binding of the 2s state is
less than calculated. The magnitudes of these possible
discrepancies can only be stated roughly as several
keV, or, for the 1s state, possibly as large as 10 keV.
In terms of Fig. 10, this conclusion is that the plotted
point at k—0.10 is slightly too high, or the plotted
points at k—0.80 are slightly too low. Changing either
would produce a smoother equivalent-radius curve of
less curvature. Shown in Fig. 12 are the charge-density
functions corresponding to the equivalent radius curves
of Figs. 10 and 11 and the calculated energies in
Table IX.

The parameters of our Fermi function for Pb"'
(Table IX) differ somewhat from those in Ref. 11.
Our mean-square-radius parameter is R2/A'/'=1. 203
F; theirs (called t'e) is 1.199 F. Our surface-thickness
parameter is a=0.51 (t=2.24); theirs is a=0.47 (i=
2.05) . The differences are greater than their estimated
uncertainties. We attribute these differences not to
numerical error in either calculation, but to a different
approach in analyzing the data. We pay no heed to the
doublet d splitting, since it is inconsistent with the
other data, and we include all three 3d—+2p points in
our analysis, whereas they include the doublet d split-
ting and consider only one of the 3d "2p energies. In
this way, they are led to a charge-density function
whose equivalent-radius curve has lesser slope (smaller
a or i) and smaller value of Ee than the solid curve in
Fig. 10.

An important question in such analysis is the con-
sistency of muonic-atom data and electron-scattering
data. Figure 13 and Table XI provide some evidence

on this point. Ravenhall' finds a satisfactory fit&to
electron-scattering data for Pb'", using a Fermi func-
tion with parameters E/A'/'= 1.119 and a=0.535 (t=
2.35).His parameters, without alteration, provide good
agreement'8 with the muonic atom data for Pb' 8.

However, transitions including the 2s state in Pb20~

have not yet been observed. Such transitions will be-

quite important in testing the consistency of muonic-
atom data and electron-scattering data. For the present,
the consistency is satisfactory.

As a, ma, tter of interest, we also show by a dashed line
in Fig. 10 the equivalent-radius curve for Ravenhall's.
parameters t with I/ scaled downward by (206/208) t/'$.

Comparison of the dashed line in Fig. 10 and the solid
line in Fig. 13 shows that a simple 2"' law for radius
with no change in surface thickness is not adequate to
account for the isotopic difference of Pb"' and Pb"'.

Finally, we remark that the conclusion of Barrett
et al." that muonic x-ray energies in lead provide
evidence for a proton halo is not valid. Even with the
data of Ref. 10, which are more accurate than were the
data available to Barrett et al. , no definite conclusion
about a long nebulous tail of the charge distribution
can be reached. In order to see the higher moments
(4=4 to 5) with sufficient accuracy to reach a con-
clusion, measurements of the 4f~3d transition energies
to an absolute accuracy of about 0.1 keU or better
would be required.
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