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The results of the analysis are shown in Table I. It can
be seen that 0„' and S differ by about a factor of 10' for
/=1, but agree to within a factor of 2 for l,= 2.

Adding a dsts neutron to the ground state of "B(J =
-', ) yields possible spins 1, 2, 3, and 4 and negative
parity. (A dsts transfer would have allowed J=O, but
the d3f2 strength is expected to lie several MeV above the
d:~2 strength. J=O is also independently ruled out by
the results of Mooring et al )If .the final spin were J= 1

or 2, the state could be reached via 1=0 as well as I= 2.
There is no indication of any /=0 strength in either the
"B(d, p) or the "B+tt work. Therefore, the final
spin should be either 3 or 4—.The p-decay branching
ratio of this state' seems to rule out J=4, leaving

J =3 as the most likely assignment consistent with
all the data.

In summary, the comparison of reaction and elastic
scattering data has yielded an unambiguous assignment
of negative parity for the 3.39-MeV state of "B, in
contradiction to the results of earlier analyses. "The
spin assignment is not unique, but combining all the
available data for this state leads to J =3 as the most
likely assignment.

We wish to thank Dr. F. P. Mooring, Dr. J. E.
Monahan, and Dr. R. E. Segel for many helpful dis-
cussions; and Dr. J. P. Schiffer, Dr. G. C. Morrison,
Dr. R. H. Siemssen, and Dr. B.Zeidman for allowing us
to use their unpublished data.
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The comprehensive formalism of earlier papers is specialized in the direction of calculable theories of nu-
clear reactions especially those based on the shell model such as that of Bloch and Fano. Unlike the basis
states used in previous specialization, the shell-model states do not, in general, have the property that
(EX+2) is Hermitian. We show that this complication is no real obstacle, and that only a weaker Hermiticity
condition is needed. The final result is a number of forms of calculable theories of the R-matrix kind. No
continuum-continuum interaction problems exist, since continua do not occur. This and other merits of the
results are discussed from the viewpoint of practical calculations.

I. INTRODUCTION

N the two earlier papers'0 (I and II), we have set up. . a comprehensive theory of reactions based on
Bloch's 2 operator, ' and have specialized this to yield
six existing theories (I), and also a theory of line
broadening with fine structure (II). Each of the seven
theories is characterized by the basis which is used to de-
velop the Green's-function operator, g—= (H+2 E)—
The merit of the combination H+2 is that it facilitates
the derivation of results for the scattering matrix, etc.
If the set

I p) are eigenstates of a Hamiltonian H0 and

*Research supported in part by the National Science Founda-
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f. Alfred P. Sloan Research Fellow.' A. M. Lane and D. Robson, Phys. Rev. 151, 774 (1966).' D. Robson and A. M. Lane, Phys. Rev. 161, 982 (1967).' C. Bloch, Nucl. Phys. 4, 503 (1957).

satisfy 20
I p)=0, and if (H+2) is Hermitian in the

states
I p),

8= 2 I p) &p I 8 I v) &v I.

then

g0 —(H0+ g0 g) -1

h= (H—H0)+ (g—g0),

8= (&+8'&) '8'

(2)

(3)

and the matrix elements (t0 I g I q) that give the
scattering matrix are obtained from the matrix version
of Eq. (4), with operators b, gs, h replaced by their

The term Hermitian for operators like (H+2) will be
used even though (H+Z) is "trivially" non-Hermitian,
because of the use of complex boundary conditions, so
that (H+2) t=H+2*. The term non-Hermitian will
be used whenever (H+2) t AH+2*. On defining
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matrices. For a particular theory, h has particular
properties, which enable the equation to be developed
further, and the particular scattering matrix form to be
deduced. The main property is whether JI—II' or
Z —2' vanishes. In Table I, this property is listed for the
seven previous theories.

The object of the present paper is to use the com-
prehensive formalism to yield so-called "calculable"
theories of reactions based on the shell model. In
particular, we have in mind the work of Bloch and Fano.
Bloch4 has adapted to nuclear physics a theory set up by
Fano' for the calculation of atomic resonance cross
sections. This is based on the shell model, i.e., the total
wave function is expanded in shell-model states. The
theory does not single out an "interaction region" in the
configuration space of the particles, but treats all the
space without any distinctions. It follows that the
single-particle states include continua. This gives rise to
problems. First, if the theory is to be antisymmetric, the
expansion must be restricted to states with, at most, one

continuum particle. This is necessary to avoid ambigu-

ities, and makes the theory approximate. Second, while

causing no formal problem, the interaction between
those states involving a continuum particle does give
rise to a calculational one. In fact, the theory has not
been put in an explicit calculable form when this inter-

action is included. Some useful devices' which are

numerically accurate have been set up. One of these is

the "discretization" procedure used by Bloch and

Gillet, in which the continua are broken into a finite

number of intervals, thereby making them like discrete
states. The usual methods of finite matrix inversion and

diagonalization then apply. The snag is that certain

energy regions (those near single-particle resonances)

need to be treated with a much finer mesh than others.
The "calculable" theories of the present paper like

those of Tobocman and collaborators~" and the earlier

work of Danos and Greiner" attempt to avoid these two

problems by using the philosophy of Kapur-Peierls"
and g-matrix" theory in which the finite interaction

region is treated specially. In fact, the basis states are

used only in this region, so that they do not have to
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involve continua, because a complete set can be made
from discrete states alone.

In using the comprehensive formalism to this end, we
encounter the problem that the shell-model basis does
not, in general, have the property that (H+2) is
Hermitian in it. However, it turns out that this property
is unnecessary.

In Sec. II, this matter of non-Hermiticity is demon-
strated, and it is shown that this does not impede the
expansion of the exact wave function, which is sufFicient
for development of the scattering matrix. Section III
presents various forms of "calculable" theories, while
Sec. IV discusses their use in practice, and Sec. V covers
a number of issues met when the theories are applied to
shell-model states.

IL NON-HERMITICITY OF H+~ IN STATES
I P)

AND EXPANSION OF THE WAVE FUNCTION

In the present paper, we are concerned with adding
an eighth item to the list of Table I, viz. , the class of
"calculable" theories based on shell-model states for the
set

I p). Bloch4 and Fano'ss theory comes under this
heading, with the special feature that no "interaction"
or "interior" region is used. In the 2-operator formalism,
this means that the channel radii are taken to infinity.
It is straightforward to derive the results of Bloch and
Fano in this situation (Appendix A), very much as the
results of the MacDonald' and Feshbach" theories
were derived in I. In the limit of large radii, the 2
operator in the combination (H+2 E) ' may b—e
replaced' by ie, giv—ing the familiar form (H—se —E)

In the general case, when the interaction radii are
finite, we cannot derive reaction theories in terms of
shell-model states with the method used in I and II,
because (H+2, ) is not Hermitian in these states. It is
easy to see this. First, let us be more precise about the
"shell-model states. " These are products of single-
particle states, which are defined by a boundary condi-
tion on a certain radius. (In order that the states be
complete in the interior region, this radius must be
larger than all the channel radii. The absence of a fixed
centroid in the shell model is also involved in this
condition —see further comments in Sec. V.)

Next, let us recall the structure of the 2 operator:

I c) is the channel wave function (including
relative angular motion) for the two-body channel &,

r, is the separation of the two fragments of channel c,
and u, is the channel radius. m, is the channel mass, and
b, is the set of boundary condition constants; b is short-

I4 gl. M. MacDonald, Nucl. Phys. 54, 393 (1964); 56, 636
(1964);56, 647 (1964)."H. I"eshbach, Ann. Phys. (N.Y.) 5, 357 (1958}."B.A. Robson and D. Robson, Phys. Letters 25B, 504 (1967).
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hand for the set 6,. The operator Z without argument
correspond to outgoing wave conditions

b,= [r,O, '(d—O,/dr, )]„ (6)

where O, (r,) is the outgoing wave solution which
approaches exp(ik, r,) as r;+~. Ignoring centroid
motion, the shell-model states may be chosen to satisfy
2'

l
p)=0, where 2'=Z(b), the boundary condition

operator with radii a„and boundary conditions b, are
equal to the shell-model values.

Despite the fact that the states
l p) are eigenstates

of a Hamiltonian H' (the shell-model one) and of 2'
the combination (H+2) is not Hermitian in the shell-
model basis. The reason is that the surface term arising
when Green's theorem is applied to the volume integral

&p l
H

l q) —&q l
H

l p) is not exactly cancelled by the
terms &7i l

2
l q) —&q l

2
l P). The diA'erence comes from

the presence of unbound channel states c in the shell-

model states; these three- (or more-) body states are
not included in the sum on c in Z. It is worthwhile at
this stage to distinguish between the finite potential and
infinite potential shell-model bases. The complete set for
the former will always involve configurations with
three or more particles in positive energy orbitals which
have wave functions that oscillate to infinity. The
latter, however, has wave functions which all go to zero
at infinity. Consequently, for infinite potentials (e.g. ,
harmonic oscillators), the Hermicity of (H+2) can be
maintained, provided the internal region is chosen to be
that bounded by finite-range surfaces for two-body
open channels and infinite-range surfaces for three-
(or more-) body channels. Such an internal region is

physical, provided one is below the thresholds for all

three- (or more-) body channels.
Because of the possibility of non-nermiticity, it is

rot usually justified to write

8= 2 I p&&7 l 8 I q&&q I'

This equation was presupposed in the derivations of I
and II, so we must investigate whether this relation can
be dispensed with. Before doing this, we note that
(H+2) is not even Hermitian for some of the basis
states used in the earlier derivations. The relation
(H+2) t =H+2* in matrix form

d L~*(H+~)0 u*(H-+~)~3=0, (g)

where the integral is over the internal region I, and g is
the complex conjugate of time-reversed p, as described
in I. For certain kinds of P, Q, one may choose I such
that the integral on terms in II can be transformed into
a sum on two-body channel surfaces only. These terms
are then cancelled off by the 2 terms, so (H+Z) is
Hermitian. For other kinds, no choice of I will permit
this, so that (H+2) is not Hermitian. The distinction
between the two cases is according to whether at least
one of P, P has only two-body channel components or
not. (When referring to channels, we always mean
"actual" channels, i.e., those for the physical, not a
model, system. ) In Appendix II, we illustrate this
condition by reference to the simple case of two particles
in one dimension.

Thus, if iP is the exact solution of H at an energy E,
which is below the threshold fort hree-body break up
(as is assumed in almost all resonance reaction theories),
then (H+2) is Hermitian between P and model states
l p), even when it is not Hermitian amongst the l p)
themselves,

(7 I
H+~

I ~&= &~ I
H+~

I p&,

&p l
H+z, l q) w (q l H+z l p).

Consider now the expansion in I:
14&= 2 ~. I q),

(9)

(10)

where the
l q) need not be orthogonal in I. On inserting

this in the left-hand side of the Hermiticity property
Eq. (9),

Z (P I H+~ &
I q&;=(7 I

~—
I ~& (11)

with the solution

and (7) is unnecessary, and that a weaker Hermitian
condition is sufhcient to derive the reaction theories,
including the "calculable" one.

The operator (H+2) is Hermitian with respect to
two states P and P, if and only if

&~ I
H+~

I
~&- Q I

H+~
I ~&

&P I
H+&

I q&= &q I
H+&

I p& I &&= Z I q&(A ')-(7 I
& l 4» (12)

fails, in general, when
l p) and (q l

contain unbound
channel states, so Eq. (1) fails, since it involves all
states

l p) and (q l. The difference between the present
(shell-model) basis and the others is that now Eq. (7)
may fail even when

l p) and
l q) contain only bound

shell-model channel states. In any case, Eq. (7)»ways
fails for certain types of states p, q, so that, Eq. (1) is
incorrect. Thus, there is a Raw in I and II arising from
the use of Eq. (1).We now show that the use of Eqs. (1)

where we have defined A= H+2, E.This resul—t is now-
in a form which may be compared to the less general
result

I&&= Zlq&&qIA 'l p&&PI&IN»

which is valid when
l p) is an orthogonal complete set

with the property that (H+2) is Hermitian in the set.
From matrix algebra, if H. is split into a zeroth-order
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Theory H —H0 2,—20

Kapur-Peierls

R-matrix (Wigner-Eioenbndl " +0

TABLE I. Classilcation of seven published theories of
resonance reactions by H —H and 8—8'. pansion is needed. This depends on the use of an

auxiliary function p, which has the property that on the
surface of I, it contains only those states of the residual
nucleus which occur in the sum on c in Z. Then, using
the same method as for Eq. (12),

Brown-deDominicis'

Mandl, Kwok, and Herzenberg~

Feshbach'

MacDonaldg

Analogue theory of II"

Qp

+0
+p
+0

0'

0'

&0

If )Pt' is the solution with incident flux only in channel c,
and pt') has the same property (with the same amplitude
of incident flux), then

g
I

)p(~) y(~))—0
~ Reference 12.
b Reference 13,
~ Reference 18.

Reference 25.
e Reference 15.

Sgric&]y, 2 -Co=0 for closed channels. The choice for open channels
is left open.

I Reference 14."Reference 2.

part H and a residual interaction H'

then
H=H'+H',

H=H'+H'

A-i= (Ho —E)-i-A-ih(H' —E)-'

(Ho E) i—(Ho —E) ih (Ho —E)

+ (Ho —E) 'hA —'h(H' —E) ' (15)

—2 I v)(A ')-(P'IH'+~
I
r)I:(H' —E) ')-

g, g,&,8

X (s I
~

I P). (16)

Special cases of Eqs. (15) and (16) for orthogonal states
have recently been derived by Tobocman and Garside. '

In applications of Eqs. (15) and (16), the states
I p)

are eigenstates of H'. Note that the set
I p) may also be

taken as eigenstates of 2; 2
I
p)=0. This does not mean

that the states
I p) contain only channel components

c) on the surface of the interior region. For example, if

p) are shell-model states, then (if centroid motion is
ignored) the relation 2

I p)=0 is satisfied by choosing
the single-particle wave functions to satisfy the outgoing
wave condition.

Equations (12)—(16) are valid if 2 is replaced by the
more general 2 (6) .The expansions

I Eqs. (12) and (13)g
are the ones appropriate to the 6rst two theories in
Table I. For the other theories, a different set of ex-

where h is the matrix of H'+Z. The wave function in

Eq. (12) becomes

I
&&= Z I v&I:(H' —E) '3-(P I

&
I 0 &

and

This equation leads to the other theories of Table I.
It is important to realize that Eq. (16) and Eq. (18)

are not equivalent, even when P in Eq. (16)is specialized
to Pt'. They would clearly be the same if P" of Eq. (18)
could be equated to

Z I c)I:(H'—E) 'j.n&P I
&

I
0"

& (19)

«Eq. (16).However this is not true, in general. The
states

I q) form a complete set, but the expansion of
@' has this form only if Qt') is both an eigenstate of H',
and if on the surface of I it contains only those residual
states in the set

I
c) occurring in 2. This can happen in

certain model situations such as when the total system
is a particle and a residual nucleus, which is simply a
vibrator or a rotator, i.e., it has a limited number of
excited collective (vibrational or rotational) states, all
of them bound, and H=H(collective)+H(particle)+
H(coupling) . For actual nuclei, however, there is a real
distinction between Eqs. (16) and (18). The fact that
pt') of Eq. (18) is restricted on the surface of I to con-
tain only the states

I c) occurring in 2 means that it
cannot be an eigenstate of an arbitrary II . Further, it is
not an eigenstate of any Ho, except H itself. (It is not
necessary to make @t') antisymmetric, just because pt')
is, but it is usually very convenient to do so.)

In a related investigation, '~ it was found that A '
could be ambiguous when taken in an over-complete
infinite set of states

I p), i.e., a set for which the unit
operator 1=+~,, I p)U„, & q I

is nonunique in I. Thus,
the above expansion of

I P) may be unique only when
the states

I p) are orthogonal in I
I this property is

independent of the Hermiticity of (H+ 2) $. For
practical calculations, this is immaterial, since A ' is
taken in a truncated set and is then unique. Further,
the possible nonuniqueness for an infinite set does not
prejudice the use of the above formulas for

I p) for

' A. M. Lane and D. Robson, Phys. Rev. 178, 1715 (1969).
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obtaining a reliable scattering matrix for a truncated
set. We have already shown from other viewpoints'~
that the best form of the scattering matrix in terms of a
truncated set corresponds to the expansion Eq. (12) .

III.VARIOUS FORMS OF CALCULABLE THEORIES
WITHOUT CONTINUUM STATES

Having derived the forms Eqs. (12), (16), and (18)
for the wave function, it is straightforward to insert
these in various expressions for the scattering or reac-
tance matrices to get a variety of "calculable" theories.

If Pi") further has the property that on the surface of I
it contains only those states c occurring in 2, then, using
(H —E)ii "=0, we obtain

ia(r&, r&, )'"(S, ,—S,.,s) = —yt~")
I
H E—

I
y&'))

Finally, insertion of solution Eq. (18) gives the Brown-
denominicis'8 calculable formula

ia(...,.) &'(S. .—S, ,o) = —
&j "&

I
H ~

I
y")

+ 2 ((H &)i—'"
I p&(A ')-&0 I(H—&) I

&")

A. Forms of the Scattering Matrix

1. ENpslr I'eierls T-heory

As shown in I, the Kapur-Peierls form" of the 5
matrix follows from inserting Eq. (13) in the expression:

S.,= i5 '(, , ) '&s&8,
I
2*

I it '~')
&

This may be compared with the formula obtained by
inserting Eqs. (12) and (15) into Eq. (20):

ia(s.s )"'(S ~ —S ') = —&x" I
H'+&

I
x"&

+ 2 &x'"
I
H'+&

I p)(A ')na(rII H'+~
I
X"& (31)

I
&

I
& &+(& I

&s &
I

~&,)&)
where the functions x'& are defined as

(20)

where v, is relative channel velocity, O„ci, are the total
wave functions for outgoing, ingoing waves:

8,=ro, (r,) I c&,
—

@.—=r. 'I.(r.) I e&, (21)

On inserting Eq. (12) in Eq. (20), we get the Kapur-
Peierls calculable formula

I,(a,) . (2k,a,)'ls (2h, .a,.)'I'

where h,=—r)4e,/5 and

~".= Z V" (& ')usmc. (24)

and itic) is the exact solution with an ingoing wave in
channel c only and so, in the external region,

0"=~.—Z S- (~./~")"'f&. (22)

I
x"&—=—(h') "'I:(».a.) "'/o. (a.) j

&& Z I p&I:(H' —E) '3-v" (32)

ia(. ~ ) '&'h . '—= —&e. I

z*
I x ). (33)

As remarked in the last section, the two results (30)
and (31) are not the same when applied to actual
nuclei, although they may be equivalent for certain
simple models in which the target is represented as a
vibrator or rotator, ignoring the fact that it is composed
of particles like the incident one. Equation (30)
expresses S,'„. in terms of the auxiliary functions pi'), in
addition to the set p, while Eq. (31) expresses S, ,
entirely in terms of the set p I because of Eq. (32)j.

Neither S, , nor S, ,' is a true scattering matrix in
general. S, ,' will only be so if P&'& is the solution of a
Hamiltonian. 8, ,' is not the scattering matrix of II',
because it involves actual channel states c, rather than
the model channel states of H'.

y„—= (5'ac/2rlc) 'I'(r, 'b(r, —a,)c
I q&. (25) B.Forms for Reactance (R) Matrix

1. lVigeer-Eisenbld Theory
Z. Brome and deaomieicis's Theory

If pic) are any set of functions with the property

gy gc) = g&p(c) =gci (26)

then it can be shown directly that the scattering matrix
Eq. (20) may be rewritten as

The evaluation of the scattering matrix may be split
into two stages, the"first being the"extraction of Wigner
and Eisenbud's" R matrix. If,R(b) is the R matrix for
the real boundary conditions b= (b,), —

(34)

ih(itch&c )' (Sc c
—Sc c ) = (&*4 "

I
ii' ' 0 ' ) (27) where H

I
)&,)=E&, I )&, ), g(b) I

)&,&=0, then S follows from

where S, , is defj.ned as

i5(r&,i&;)"'S:'—=—&0,. I
z*

I
pic) &.

"G.E. Brown and C. T. deDorninicis, Proc. Phys. Soc. (Lon-
(28) don) A72, 70 (1958).
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Eq. (23) and

R= (1—R(b)L) 'R(b),

where L is the diagonal matrix

! with Z(b) instead. of Zj

(35) &. ,(b) —f»"(b) = —(x'"(b)
I
&'+&(b)

I
x"(b) &

+ 2 (x"(b)! &'+~(b)! p)(A(b) ')ne

L;,=8, ,{a,LO, '(a, )/O, (a,)j—b, f. (36)
&& C I

If'+~(b)
I
x"(b) & (43)

To develoP calculable forms for R(b), we may start ~here g, o(b) is defined as
fr on1

~."(b)= 8'"(b)
I &(b) I

0"(b) & (44)

= «(b) &""(b)
I
&"(b) &. (37) and the functions x"&(b) are defined as

This expresses R(b) in terms of exact solutions of
(H—E)P&'&(b) =0, where P&'&(b) satisfies the boundary
conditions b,. in all channels c' except c'= c, where it is
normalized by

z(b) I lt "&= (5'a/2ril )'"r. '5(rg —a.)!c). (38)

On using Eq. (12) applied to the case where 8 is
replaced by 2 (b), the Wigner-Eisenbud calculable
theory follows:

I
~"(b) )= 2 I p&I:(H' —E) 'j-v". (43)

The comments made below Eq. (33) apply here.
Equations (42) and (43) are not the same expressions,
in general. They are the same when applied to certain
model systems, but not when applied to actual nuclei.

Equation (43) has been derived by Tobocman and
Garside' in the special case when the states

I p) are
orthogonal states satisfying Z(b) I p) =0.

&."(b) = 2 vn" (A '(b))ueVs" (39) IV. COMPARISON OF NUMERICAL ACCURACY
AND CALCULATIONAL PROPERTIES OF

VARIOUS FORMS

where E, ,e(b) is defined as

~":(b)=«(b)~'"'(b)I ~ (b) & (41)

and the 4''& (b) are any set of functions which contain
only states c on the surface of I and satisfy the same
boundary condition Eq. (38) as lt&'&(b). Insertion of
Eq. (18) gives the required result:

&".(b) —~"'(b) = —(0 '" (b) I
&—&14"(b) &

+Z((&—&)@'"(b)
I p&(A '(b))-(~ I

& &
I
&"(b) &.

—

(42)

These results apply when P&'& (b) is intrinsically complex
(as when it is the solution of a complex potential)
provided that (P"&(b) I

is replaced everywhere by

The result
I Eq. (42)] may be compared to that

obtained by the insertion of Eq. (15) in Eq. (39)

Z. R Aviatrix Uer-sioris of Bravos deDor&simci-s Theory

The essential feature of Brown-deDominicis theory is
that matrix elements (g I

H E
I

P~'& )occu—r in the theory
rather than surface amplitudes y„. To obtain the E.
matrix of such a theory, we may start from Eq. (37)
and develop it into

a.(b) —a.'(b) = (~(b)4'"(b)
I
0"(b) —@"(b) )

= —8'"(b) I
(If—~)

I
&"(b) )

—((II—&)0'"(b)
I
0"(b) —4"(b) &, (4o)

Buttle" has made a study of two of the calculable
forms of Sec. III in the special circumstances of a
particle-plus-rotator system, where the latter has just
two states. This system can be solved exactly, and the
accuracy of the various forms can be compared. The
following is a sumn1ary of the properties of the various
forms.

A. Wigner-Eisenbud Theory Eq. (39)

As Buttle" pointed out, one cannot expect to get
accurate results by simply truncating the orthogonal set
of states p, q in Eq. (39), and retaining only those
states occurring near the energy region of interest. The
reason is that when orthogonal states are used, distant
terms have values of p„, as large as nearby ones, and
also their relative importance declines only as the first
inverse power of energy. Thus, distant terms n1ust be
retained, even though it is not practical to include them
in the actual inversion of A. In the special case when the
states p are orthogonal states of a model Hamiltonian
Bo, which has the same channel states as H, the ap-
propriate approximate form of R is"

~..(b) =K.(b, If') —Z' Lv" v"/(&. &)j—
+Z ~..(A(b)-)...,., (46)

where the prime denotes that all states p, q are restricted

» P. J. A, Hurtle, Phys. Rev. 160, 719 (1967).
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to the truncated set, and. R, , (b, EP) is the R matrix of
H'

R. .(b, ~)-=Z &~,".,i(E;E)i
A rationale for Eq. (46) may be obtained from giant-
resonance theory 2' viz. , any given state p is coupled
strongly only to states q within a certain energy range
(provided IP is chosen to best advantage) .Thus, while
we must treat the mixing within nearby levels properly,
that between "nearby" and "distant" and between
"distant" and "distant" levels may be ignored.

When. the states p are not orthogonal, the appropriate
procedure is less evident, because states may no longer
be termed "nearby" or "distant" in unambiguous
fashion. Some formal developments of Eq. (39) for
nonorthogonal states are made in Appendix C. Recently
calculations have been carried out by Adams" and
PurcelP using nonorthogonal states according to the
methods discussed in Ref. 1. In contrast to the more
conventional orthogonal state calculations, the non-
orthogonal calculations do not require the inclusion of
any contributions from distant states. It was found that
the use of nonorthogonal states leads to a very rapid
convergence rate as the number of states included is
increased. This is an important simplification, since it
means that only the last term in Eq. (46) needs to be
calculated when

~ p), ~ g) are the appropriate non-
orthogonal states.

The essential calculational needs of the Wigner-
Kisenbud method are

(1) a single diagonalization of the real level matrix
of (H+2 E), or the inve—rsion for a series of energies
of the real matrix of (H+2 E), —

(2) an inversion of the complex channel matrix
1—R(b) L in Eq. (35), in order to obtain S from Eqs.
(23) and (35) . This inversion must be done at each of a
sequence of energies through the energy range of
interest.

B.Kapur-Peierls Theory Eq. (24)

This was not used by Buttle. The above comments
preceding Eqs. (46) and (47), and the equations them-
selves apply here. However, the calculational needs are
diferent, since the present theory contains the operator
2, which is complex and energy-dependent )unlike
2 (b) which is real and energy-independent if the b, are).
The needs are the inversion of the complex level matrix
of (H+2 E) at each of a seq—uence of energies through
the region of interest.

C. Brown-deDominicis Theory Eq. (30)
This form has the merit over the conventional

Wigner-Kisenbud method in that distant levels are"A. M. Lane, R. G. Thomas, and E.P. Wigner, Phys. Rev. 98,
693 (1955)."J.L. Adams, Ph.D. thesis, Florida State University, 1967
(unpublished) .

~ J. K. Purcell, Phys. Rev. 185, 1278 (1969).

included systematically by the presence of 5, , The set
used in the last term of Eq. (30) may be truncated
without introducing any new term to account for
distant levels, provided that the auxiliary functions
P" (which defj.ne S, o) are chosen properly.

The calculational need of this method is the inversion
of a series of energies of the complex level matrix of
(H+z z).—

The disadvantages of this method relative to the
signer-Kisenbud one are

(1) it cannot be treated as a single diagonalization
of a level matrix. (This is significant only if the number
of channels is smaller than the number of levels, since
the signer-Eisenbud theory involves the inversion of a
channel matrix. )

(2) The approximation caused by the truncation
means that the theory is nonunitary (whereas the
Wigner-Eisenbud theory is always unitary).

(3) In the computational area, Buttle" found that
small spurious peaks can arise from Eq. (24). In
principle, the terms on the right generate the observed
resonances and replace the original auxiliary resonances
from S, .' by these. In practice, the resonances of 5, .'
are not fully cancelled out, so that spurious resonances
remain.

In the model used by Buttle, Eqs. (30) and (31) are
the same, so there is no evidence on the relative merits
of the two forms.

D. R-Matrix Version of Brown and deDominicis Theory
LEq. (42) J

This again has the merit over the conventional
Wigner-Eisenbud method Eq. (39) that distant level
effects are built into the method. For p&' real, this
method involves only real quantities, and is thus
always unitary. For complex P~', complex quantities
occur and, after truncation unitarity is not ensured. Its
computational needs are the same as those of the
Wigner-Eisenbud method cited above.

This form was not examined by Buttle, and there
remains an important question over the practical merit
of this hybrid method: Will it suGer the snag of the
Brown-denominicis method that the original resonances
in E... are not fully cancelled out, so that spurious
resonance eGects occurs

V. PRACTICAL USE OF CALCULABLE THEORIES
WITH SHELL-MODEL WAVE FUNCTIONS

When shell-model states are used for the truncated
set

~ P) in the calculable forms of Sec. III, we obtain
theories which may be described as the counterparts of
the Bloch-Fano theory corresponding to a 6nite interior
region. Here we will comment on a number of points,
both formal and practical, that are met in using shell-
model states.
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A. Comyleteness

ignoring such complications as centroid niotion and
composite particles (see below), we may assert that, if
the shell-model radius R. is large enough, then the
channel surfaces of the interior region I may be said
to lie on (or inside) the shell-inodel surfaces 5; defined

by l r;
l
=E; r, l

(R. It then follows that the shell-
model states p) constitute a complete set in I. An
apparent difficulty arises from the fact that the surface
integrations occurring in the theories of Sec. III are over
all values of the internal coordinates from zero to
infinity, while the shell-model surface S, allows integra-
tion up to E only. This will not be important however,
since the integrand always contains the internal wave
functions of the target states and I is defined such that
these must be very small at distances &R (otherwise,
three-body channel surfaces would be necessary).

B. Sources of Error

The formulas of Sec. III are exact provided that:
(a) The set of states

l p) is complete.
(b) (II+2,) is Hermitian between f and p, which will

be so if

(1) The wave functions of the residual nuclei
(essentially l c)) should be consistent with the Hamil-
tonian H, i.e., they should be the correct channel
solutions of H. Further 2 must include all open channels

(2) The radius a is large enough to make all
l c)

negligibly small when one of the constituent particles in
the residual nucleus is at or outside this radius.

l
Of

course, this condition could not be satisfied if any un-
bound residual nuclei occurred in the channel states
l
c). This is why it is always assumed that the energy is

below the three-body break-up threshold (see Appendix
3).) This condition means that it is immaterial whether
the internal coordinate integrations occurring in the
evaluation of p„, are taken over all space or only inside
radius a.

In practical calculations, all three conditions (a),
(1), and (2) are violated to some extent. One must be
careful that the corresponding errors in the scattering
matrix are not amplified. For example, because of
violation of (a), uncritical use of the Wigner-Eisenbud
or Kapur-Peierls methods, Eq. (24) or Eq. (39), can
lead to large error, even when many states are included.
As we have seen in Sec. IV in the case of orthogonal
representations, this error arises from distant states, and
can be eliminated by including them in their zeroth-
order form, i.e., without any diagonalization of (II+2) .
The final error should be no larger than the minimal
error due to truncation, i.e., of relative order

l (f l P)
Z~Q' I P) jl(4'

l
0'). Of course this will not be true

if the choice of
l p) is perverse, e.g., if y~, 0 for all p.

Then the scattering matrix element S., will have large
error.

For actual nuclei, with t.wo-body forces in H, condi-
tion (1) implies that states of residual nuclei in

l c) should
have two-particle correlations in them. Thus, the corn-
mon approximation of using pure configuration states
for these nuclei not only introduces error per se, but also
because it is inconsistent with the form of H used in the
evaluation of A '. However, there is no reason to suspect
that this latter error is larger than the former. Another
aspect of condition (1) is that all open channels should
be included. In the commonly used example of N"+p,
for energies up to 10 MeV, this means that all excited
states of N" below 10 MeV, not just the 1pg2 ' state,
should be included.

Condition (2) can be satisfied, once the states of the
residual nuclei are specified, by choosing the channel
radii to be large enough. A consequence of (2) is that
the exact solution P has a unique expansion on the
surface of I in terms of states lc). The condition has
been discussed in this form of a "channel orthogonality
condition" by Danos and Greiner, " and recently by
Mahaux and tA'eidenmuller. "

C. Character of States P

Sound-state shell-model calculations normally use
either a finite well (like the Saxon-Woods one) or an
infinite well (like the oscillator). Given the choice, the
latter is usually used because of the simple analytical
nature of the solutions. However, it cannot be used in
reaction theories with no internal region, since its wave
functions all vanish at infinity, i.e., there is no con-
tinuum. When an internal region is distinguished, as in
the theories of Sec. III, there is no problem with infinite
wells. They provide discrete sets of states p which are
complete in the internal region, just as finite wells do.
In fact, the formal distinction between the two kinds of
well is of little relevance for the theories of Sec. III.
Both can provide a set of discrete particle states from
which the shell-model wave functions are constructed.
The usual oscillator functions which vanish at infinity
can be used. The fact that the higher orbitals are not
orthogonal to each other inside the radius a of I does
not matter, since the orthogonality of states

l p) is not
assumed in Sec. III. If a finite well is used, then a
discrete complete set of states can be set up by a
boundary condition at the radius a or outside it.

D. Character of Channel States c

If the residual states c are approximated by pure con-
figurations, then the channel orthogonality condition
(2) is satisfied if the radius r= a of I is taken outside
the range of orbits that are occupied in the states c.
However, a certain conQict is met in calculations which

"C. Mahaux and H. A. Weidenmiiller, Phys. Rev. 170, 847
(1968'.
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go beyond the use of pure configurations, and include
correlations by allowing admixtures from a restricted
number of unoccupied states. Such admixtures may
represent correlations rather well in the body of the
nucleus, but will not do so at the surface. In fact, since
the unoccupied orbitals can be large at r=a, they can
lead to a nonhero value of the residual state at r= a, and
to a violation of (2). If all con6guration mixing were
included, in such a way that the correct binding energy
was maintained, then this would be cancelled oG by the
higher states. Thus, if one seeks to go beyond the use of
pure configurations for residual states, one must be
careful that any spurious surface eGects arising from
violation of (2) do not offset the improvement one could
normally expect. This problem of spurious effects can-
not be solved simply by choosing the radius u to be
larger. For finite wells, this will not reduce the size of
positive energy orbitals at r=a. For in6nite wells, all
orbitals in c will be reduced, but so will the orbitals of
the residual nucleon in many of the states p, so that the
p„, become very small, and far more higher states p
must be included to get sensible results.

The problem with residual states c of including con-
figuration mixing from higher orbitals may be regarded
as the counterpart in the present approach of the
problem encountered by Bloch and Fano, viz. , that they
could not formulate a theory when the residual states
included any continuum components. In the latter
theory, the problem is one of principle, while in the
present approach it is confined to the calculational area.
Since the actual states c satisfy the condition (2) for a
suitably chosen radius, one can assert that the approxi-
mate forms will also satisfy (2) if sufficient configura-
tion Inixing is properly included. There is a problem
only when the mixing is restricted so that spurious
surface effects in states c are not cancelled out.

Finally, it may be noted that the problem of spurious
surface eGects is probably more serious for the Wigner-
Kisenbud and Kapur-Peierls theories, where the surface
amplitudes p„, are directly affected by spurious effects.
Thus one may expect that the effects will be reduced by
using the Brown-deDominicis forms involving matrix
elements (P ~

H—E
~

Q&'). However, as remarked in
Sec. IV, these forms have the disadvantage that spurious
resonances may be generated when the set p is truncated
severely, so that one cannot say at this stage if there is
any net advantage. This is an important question,
requiring further study.

E. Centroid Motion

The fact that shell-model wave functions do not have
a fixed centroid causes no difhculty as far as complete-
ness goes. I may still be said to be contained in the
shell-model internal region,

~
r;

~

&R for all i. The latter
region has three more coordinates than I, which is
defined in the space of relative coordinates only. Thus,

if R is chosen large enough, the latter region contains I,
and the states

~ p) form a complete set for the expansion
of the exact wave function P with fixed centroid

where y is the centroid coordinates and P are internal co-
ordinates. When the sum in truncated, the resulting

approximate P depends on p to some extent. Genera, lly,
one may expect the best expansion with p=0, since this
is the mean value of the centroid position in f~, although

the rms value /0. As the mass A of the system in-

creases, the rms values of
~ g ~

decrease as 1/A, at least,
for low excitations. In the limit f~($, p)~x~($)8(y).
Thus, for many particles, one expects the redundancy
of coordinates in the shell-model states to have a small

1/A effect. For small numbers, the effects may be more
serious, since the approximate f will not fall off sharply
with increasing

~ y ~, but remains large and varies
considerably.

F. Comyosite Particle Channels

Nothing has been said so far of the possibility of
two-body channels for composites like deuterons. These
give rise to no formal difficulties since, as with centroid

emotion, we may consistently assume that the shell-

model region contains I, even when the latter has
surfaces for composites. The only difference is that the
surface of I can no longer be said to lie in the shell-

model surface since the surface for a composite cuts
across the shell-model surfaces. (For example, the
deuteron surface for particles i, j is essentially

~

r,+r,
~

= const, and this cuts
~
r; )

= const,
~
r; )

= const. ) This
introduces the complication that states

~ p) are not
orthogonal in I, but this is a calculational, not a formal,
problem.

VI. CONCLUSIONS

The advantages and disadvantages of the present
kind of calculable shell-model theory relative to the
original Fano-Bloch version are evident. On the credit
side, the distinction between bound and continuum
states is eliminated. In the original theory, 4' this
division is very deep. The four parts of the interaction
arising from this division (continuum-continuum,
continuum-bound, etc.) appear in different ways in the
results, despite the fact that they all stem from the same
interactions between the same particles, and these
interactions are exactly the same whether the particles
are bound or free. Further, in practical calculation, the
division is increased since the continuum-continuum
interaction raises problems of its own which require

special developments. Another merit is that no re-

striction is imposed on the structure of target states;
antisymmetrization (which causes a restriction in the
original theory) does not cause any difhculties.
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On the debit side, a division is made between the
interior and exterior regions of space, which does not
occur in the original theory. While possibly not beauti-
ful, it is not clear that this division is any more arti6cial
than the above division between bound and continuum
states. Physically one can 6nd arguments on both sides.
An obvious instance is the presence of a narrow single-
particle resonance. In the original theory, unless special
provision is made, such resonances are part of the
continuum, and are not explicitly introduced with the
consequence that there are sharp energy variations in
the interaction matrix elements. In the new version,
such resonances appear on the same footing as others.
On the other hand, the Fano-Bloch theory handles the
distant, broad, single-particle levels in a more natural
way. They are never separated out, and their eGects
appear in the form of a potential scattering phase shift
and wave function. This is also true of the Brown-
deDominicis formulas of Sec. III, but the conventional
Kapur-Peierls and Wigner-Eisenbud formulas involve
the explicit display of distant levels. However the
appropriate nonorthogonal representation of the latter
theories" ""appears to remove this problem. For the
specific purposes of ease of calculation and achievement
of accuracy, we believe that the present approach has
distinct advantages. It avoids the use of continua, and
the consequent calculational complications; antisym-
metry is no problem; the calculation for an entire energy
range can be reduced to the single diagonalization of an
energy level matrix, plus the inversion of a channel
matrix at a series of energies in the range. The most
serious problem is that discussed under D of Sec. U:
viz. , that of maintaining the channel orthogonality
condition (2) in calculations where configuration mixing
effects are included in the residual states c.

APPENDIX A: DERIVATION OF THE BLOCH-
FANO THEORY IN COMPREHENSIVE

FORMALISM

The Sloch-Fano results may be obtained just like the
Rodberg-MacDonald' " ones of I by exchanging the
roles of the discrete and continuum states. Equations
(86) and (88) of I give

i5((),(),.) ')'ES...—S...(H()) j=—(4(c'&
~
P,SP,

~

p(~) )

(A1)

where S, , (H()) is the scattering matrix for the shell-
model Hamiltonian Hs, @(') is the solution of Hs with
incoming waves in channel c, P, projects on continuum
states, and

AP, [P—,(H+8) P, E7 'h—.

Using the notation of Bloch, e.g.,

6"=P,AP„

(AS)

(A6)

a(,)«= a« a«fP, (—H+a) P, E) 'A"—, (-A7)

then Eq. (A4) lea, ds to

P,SP,=A(.)"—6(,)'"(H+2 E+6(,) "—) '6() ' (A8)

In an exactly similar way, one may derive an alternative
expression in which states d are eliminated instead of
states c

P.SP.=B(s)" D(g)-(H+—2 E+h(g)")—'A(s)". (A9)

Inserting Eq. (A9) into Eq. (A1) gives the Bloch-Fano
theory when the radii in 2 are taken to ~ so that"
Z~—ie.

APPENDIX B: SIMPLE MODEL TO ILLUSTRATE
HERMITICITY CHARACTERISTICS OF

REACTION SITUATIONS

Consider two particles in one dimension with positions
x~, x2. Suppose that each particle feels a fixed potential
centered at the origin in the interval (—n, +cr), and
that this potential has bound states. Suppose that the
interaction between particles has a bound state ("deu-
teron") with smaller binding than the lowest bound
states of the potential.

Green's theorem gives

5' 8$ 8$
dr

(CHAL

PH(t)) = —do f —
Q —,(&—1)

2m s ~n 8

where the left-hand integral is over any area v in the
(xix&) plane, and the right-hand one is over the boundary
S of the area, 8/Bn denotes differentiation normal to S.
P will be taken to be an actual scattering state for energy
E while P is any arbitrary function.

The problem of interest is to see under what con-
ditions the integral on S can be written as a sum over
channels, thereby permitting the introduction of an 2
operator such that (H+2) is Hermitian.

Elastic Scattering

MacDonald and Rodberg develop 5 so as to display
discrete states d as intermediate states. Equation (90)
of I is

S=y jP—„tP„(H+g)Ps E+—P~&7 'Pdj, (A4)

where Pz projects on discrete states, P,+Pz 1, an——d

where
8=x—cga,

5=—II—Ho.

s4 L. Rodberg, Phys. Rev. 124, 210 (1961).

(A2)

(A3)

First, suppose that the energy is below the threshold
for deuteron production, and that there is only one
bound state, viz. , us(x) .This means that for xr large, the
only nonzero part of P in the (xi, ~) plane has the
product form us(xs) u)r(xi), and is a strip along the xi
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axis of constant width 2Ls (say), where this is essenti-

ally the size of the bound state. N&(x) is the scattering
state of the potential. We may set up channel surfaces
at the points where the strip begins to broaden out when

xr is reduced (see Fig. 1).Below these points, f ceases
to have product form because the particles interact. If
the range of interaction is p, the surfaces are x~
= & (Ls+p). Similar surfaces occur at xs——&(Ls+p).
On drawing 5 through these four surfaces, the above
surface term becomes

Xg

—Lp
dxsus(x2) d

lb)

ns (Ls—+IJ,) —Lp
dxsub(xs) —

i (B2)
de j

Fro. 2. In (a) the energy is below the deuteron threshold while
in (b) it is above. In (a), S can be drawn to contain nucleon
surfaces only, but in (b) it must include deuteron surfaces also.

X)

Inelastic Scattering

When there is a second bound state, and the energy
approaches the threshold from below, the region of non-
zero P begins to spread along the axes in a band of width
2Lt rather wider than 2Ls (since an excited state has a
larger spread) . S will continue to have only the original
four surface parts if these surfaces are redrawn beyond
the new nonnull regions )Fig. 3(a)7. This is no longer

FIG. j.. Interior region and channels. The solid lines enclose the
region where P is not negligibly small. The four heavy lines are
the channel surfaces.

plus similar terms with x~+-&x2. The four connecting
pieces of S contribute nothing since P vanishes on them. S(E &&E')

Deuteron Production S (E+E')

As the energy approaches the deuteron threshold
from below, the region of nonzero if begins to extend
along the diagonal x&——xs )Fig. 2(a)7. However, by
drawing around the extensions, the surface integral
still contains only the four channel-surface contribu-
tions. When the threshold is passed, the extension
reaches to in6nity, and it is not possible to connect the
four surfaces without crossing them. Thus two new
channel surfaces for deuterons must be drawn. If these
are such that f has product form, they will be separated
from the previous surfaces by regions of null P /Fig.
2(b) 7. Thus, the surface integral now has the form of a
sum over six channel surfaces.

(b)
L'p —X,
LI

I

s( &E')

FIG. 3. In (a) the energy is below the threshold Z' for inelastic
scattering, while in (b) it is above. In (a) the inner and outer
solid lines enclose the regions of non-negligible P arising from the
ground and excited target states, respectively, when 8 is just
less than E'.
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0 :X)

/ /

2(E&E )

S (E«f3)

surfaces for three-body processes. Thus when the energy
passes the threshold, f is nonzero everywhere, and no
construction of S is possible. It follows that the surface
integral cannot be expressed as a channel sum, and there
exists no channel-sum form of 2 such that (&+2) is
Hermitian.

APPENDIX C: NONORTHOGONAL STATES AND
SEPARATION OF "NEARBY" AND

"DISTANT" STATES

FIG. 4. The extension of the region of nonzero P as the energy
E approaches the three-body break-up threshold E3. The inner
region expands into the outer region as E increases, and S must be
correspondingly increased. Deuteron channels are suppressed for
clarity.

possible when the threshold is crossed. In that case, if
the surfaces are drawn at xi——+ (Li+a), x2= ~ (Li+)(()
I Fig. 3(b) j, each of the four surface integrals contains
two terms corresponding to the fact that outside 5 the
function p has the form (e.g. , for

I
xi

I &11+u)

u(bx)2uE&') (xi)+u(„(x2) uE&') (xi) . (83)

In the standard theories' """of resonance phe-
nomena, the states used as a basis for the resonances are
assumed to be orthogonal, either over all space or over a
restricted region. In the situation encountered in the
more general theory, one may have a nonorthogonal
basis. In this event, the separation of the collision matrix
into nearby and "distant" levels becomes a nontrivial
exercise.

The appropriate unit operator takes the form"
(wherein M is the subspace of "nearby" levels p, g, and
r is that of all other levels l, b)

I= 2 I pP.,&pl+

is form is unique, since the m& are orthogonal and the and the most general Green s operator may be written

coeKcients are given by
O(b) —=L&+~(b) -~3-'

+12
uE (x1) 4 (x1 x2) ub (x2) (Ex2

—Ls
(B4) = Z I P&(GMM)-(0 I+ Z I P&(GM )ni(i I

+ Z I &&(G.M)"8 I+ Z I b&(6-).(&l I,

(GM„)„)—= Q A „,(g(b) ),2X21

and three similar equations are involved for G~~,
6„„, and G„M. Defining A=—H+Z(b) Sand using-
g (b) 2 = 1, we obtain the matrix equationsr= Z I ~) ~(r-.+~—~.) ——~.) (~ I (»)

2m

for
I
xi

I
)I.+I2. Thus, each inelastic channel con-

tributes its own channel-surface integral. Channel
surfaces could be taken at different points for diferent wherein
inelastic channels without any contradiction arising.

In summary, we see that, for all open two-body
channels, (H+Z, ) is Hermitian, where

and
I c) are the channel states (i.e., the internal wave

functions) .

Three-Body Channels

(GMM Ml t'"MM "Ml (1 0
(c2)

EG,M 6„) EA,M A„„) E0 X)
which have the solutions

As the energy approaches the threshold for two free
nucleons (corresponding to three-body break up), the
region of nonzero f grows radially outwards, forcing a
larger and larger choice of 5 (Fig. 4). If S is not in-
creased, then at xi——(i.+u), the function p will contain
significant amounts of unbound states p, (x2). Since
these extend over all x2, while the surface integral is
restricted to

I x2
I
(L,, the orthogonality of u2 and u,

does not operate to make the expansion of P unique.
There is no natural definition of Q.nite channel

GMM (AMM AMrArr ArM)—

G~„———G~~A~„A„„-',

G~~— A~~ A~~G ~~~ (C3)

G„„=XA„'+A,. 'ArMGMMAMrAr. ',

"A. Herzenberg, K. I,. Kwok, and F. Mandl, Proc. Phys. Soc.
('Lon. don) 84, 477 (19&)4).



FORMAI, ISM FOR NUCLEAR-REACTION PROBLEMS. III

~. =—(&'a/2~. )'"(r 'b(r —a.)c ILI i&—2 I t&

X (A., 'A, ~) ~')
=Pic P Vlc(Arr ArM) hc

provided A ' exists. Note that' considerable care in which
should be exercised in deriving results of this type
because, in general, X is a projector and does not have
an inverse.

Regrouping the terms above allows (b) to be sepa-
rated as (C7)

b(b) =8 (b)+ Z I I',~&:(A~~—A~.A- 'A. ~) '3n.

wherein

8 (b)=—2 I»&(XA- ')»(& I, R„.(b;) =R„;"(b,)+n;,n;;

XI (E;—E) —(E;—E)'Q (» I k&(A, ')g((l I i)
I g.&—=

I f )—2 I »&(A.. 'A.~) i„

with the y„. being the conventional reduced width
amplitudes. If one chooses the b, to be those of the state

X(g, I, (C4) I i)(=b;, say), then the above results when (H—E;)I1)
=0 diGer from the usual orthogonal theory, i.e., with
(» I

i)=1

4 I

—= (~ I
—Z (A~.A- ') c~(& I

with

'.=&'.—(E'—E) Z v~.(A- )»(» I &&.

so that 8„(b) determines the contribution from distant
levels (which, in principle, is a slow function of energy)
and the remaining term involves the nearby levels
including the eGects of distant levels. %hen the basis
states are orthogonal solutions of a Hamiltonian Ho
with homogeneous boundary conditions speci6ed by 2',
the above formulas easily reduce to those of Refs. 1 and
2. The R matrix is obtained by inserting Eq. (C4) in

R„.(b) = (5'ac/2mc) "(PPa;/2' )"'

This reduces to the usual R matrix only when (» I
k) =0,

although

R.;(b;) -+ as +g~+.

Consequently, both approaches (nonorthogonal and
orthogonal) yield the same R-matrix behavior very
near to the eigenenergy E;. However, at large values of
E;—E, the nonorthogonal "resonance term" approaches
a finite value

X(r, '8(r,—a,)c I g(b) I
c'8(r; a;)r; '). (C6)— Rcc (bc) Rcc "(bc—)~P;cP;c &; '

where
Of particular interest is the "single-level" formula,
i.e., M=i = j, where

as
I
E E

I

—+~—

R„.(b) =R„"(b)+~„~;,L(» I
A

I
i)

—g (» I
A

I
l)(A„')»(k I

A
I i)) ' rather than zero as is the case for the orthogonal R

k, l matrix.


