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A theoretical treatment of spectral line broadening in plasmas is developed using classical-
path methods. This treatment unifies certain aspects of the familiar impact, one-electron,
and relaxation theories to produce results which are valid from the line center to the far line

wings where the electrons may behave quasistatically. Calculations of the Lyman-e line of

hydrogen are used to illustrate the theory.

1. INTRODUCTION

A theoretical treatment of spectral line broad-
ening in plasmas will be deve)oped using classi-
cal-path methods'~ ' (Refs. I and 2 will hence-
forth be referred to as I and II). This treatment
unifies certain aspects of the familiar impact, ' 4

one-electron, '& ' and relaxation'& ' theories to
produce a more general theory which is correct
from the line center to the far line wings.

In describing the center region of a line profile,
most theories expand the time-development op-
erator for the perturbed radiator to second order
in the perturbation potential. The so-called
"strong collisions, "for which such a perturba-
tion treatment breaks down, are usually treated
by some type of strong collision cutoffs. This
procedure works quite well, for example, in hy-
drogen where most of the broadening is done by
the weaker interactions. For some isolated
lines, however, the strong collisions may produce
a large percentage of the broadening and it would
be desirable to treat such interactions more ac-
curately. This situation is also common in neu-

tral gases (i.e. , not plasmas) where essentially
alI. of the broadening is due to strong collisions.
In such cases one generally uses the impact the-
ory which describes the collisions in terms of
S matrices,

The unified classical-path approach developed
in this paper is formal)y the same as the quantum-
mechanical relaxation theory. '~ ' Since the latter
is known to be valid in the line center when strong
collisions are not too important (e. g. , hydrogen
lines), it is obvious that the unified approach will
be similarly valid. For cases where strong col-
lisions produce an appreciable percentage of the
broadening, the collisions are treated by a time-
development operator which is similar to the S-
matrix treatment in the impact theory. In fact,
the only essential difference between the impact
theory and the unified theory is due to the fact
that the unified theory does not make the "com-
pleted collision assumption. "

The completed collision assumption assumes
that any collision which occurs during the time of
interest can be completed during that time. "' It
is this assumption which replaces the time-devel-
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I IG. 1. Comparison of theoretical and experimental
profiles relative to the asymptotic Holtsmark profile
for n = 3.3 & 10'7 cm and T = 20 400'K. The para-
meters Xp and X~ denote wavelengths (In 4) which

correspond to the plasma frequency and the Weisskopf

frequency, respectively.

opment operator for a given collision by the 8 ma-
trix for that collision. In the impact theory, this
assumption is corrected by means of a frequency-
dependent impact para. meter cutoff (the Lewis
cutoff') which is used when calculating frequency
separations n~ (measured from the center of the
natural line) greater than the plasma frequency
~p for electrons. Since the derivation of the
Lewis cutoff is based on an expansion which is
valid only in the line wings, the application of this
cutoff in the impact theory raised some doubts
as to the validity of such a "modified" impact
theory in the line center. These doubts were
dispelled to some extent by the results of the re-
laxation theory which does not make a completed
collision assumption; in Figs. 1 and 2 of Ref. 6
it is shown that the results of the relaxation the-
ory essentially reproduce the behavior of a Lewis
cutoff, and these results are not restricted to the
line wings. Since the unified classical-path the-
ory presented in this paper does not make a com-
pleted collision assumption, and since the results
of this theory are identical with the results of the
relaxation theory in the line center, we may re-
gard these results as an additional verification of
the Lewis cutoff procedure. In Sec. IV B, it will
be shown that the difference between the present
theory and the impact theory, with regard to the
Lewis cutoff, lies in the treatment of the non-
Markovian nature of the electron perturbation.

In the line wings, the present theory reproduces
the results of the one-electron theory (as it was
developed in II). Since the latter is known to be
valid in the line wings, even if the electrons take
on a quasistatic behavior, this indicates that the
ur ified theory is correct both in the line center
as well as the far line wings. The unified theory
also has the advantage that the total line profile
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FIG. 2. Comparison of theoretical and experimental
profiles relative to the asymptotic Holtsmark profile
for n = S4 & 10 cm and T = 12 200 K. The para-16

meters Ap and X denote wavelengths (in A) which
correspond to the plasma frequency and the Weisskopf
frequency, respectively.

2. GENERAL THEORY

A. Basic Definitions

VVe will use the familiar quasistatic description
of the ions in the plasma'& 4 and the Hamiltonian
for an atom in a static ion field will be denoted by
0,. The plasma will contain N-electron perturb-

is normalized; this cannot be done for the one-
electron theory since it diverges in the line center.

The most restrictive approximation made in
the derivation of the unified theory is the impact
approximation (which we distinguish from the
impact theory as discussed in Sec. VII B of If).
The impact approximation assumes that two strong
collisions never occur simultaneously and a weak
collision occurring simultaneously with a strong
one is negligible in comparison. This approxi-
mation should be valid when the duration time
for strong collisions &z, is much less than the
time between such collisions, I/vs, where vs is
the strong collision frequency. In Sec. VII B of
II it was shown that rs = I/h&uc, where h&uc is the
Neisskopf frequency for electrons. Therefore, we
expect the unified theory to be valid over an en-
tire line profile 0 ~ hh~ & kT (the thermal energy
kT provides an upper bound on classical-path
methods) whenever vs «as&c. Since vs ~ a~„„
where b,&„,is the half-width of the observed
line, this criterion is well satisfied for virtually
all cases of interest.

To clearly illustrate the development of the
unified theory and to avoid unnecessary mathe-
matical complications, we will consider the case
of the Lyman lines emitted by hydrogen atoms in
a plasma. Calculations of the Lyman-e line are
given to illustrate the results obtained by this
method.
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ers and the position and velocity of the jth per-
turber are denoted by xj and vj, respectively.
To simplify the mathematics, we will make use
of the 6N vector

r=(x, v, x, v, . .. , x, v ),
1 1 2

which denotes the positions and velocities of all
electrons in the system. The Hamiltonian for the
system is given by

H =H, + V(r, t),
where V(r, t ) denotes the electron-atom interac-
tion which is produced when the electrons move
past the atom on their classical trajectories (see
Secs. VIII C and VIII D in I). This interaction
potential can be expressed as a sum of terms
containing an atomic operator multiplied by a
function of electron variables. For example, the
lowest-order approximation to the electron-ion
interaction is the dipole term

V( rt) = eR 8 (F, t),

where (- eR) is the atomic dipole operator and
&P (r, t) denotes the electric field generated by the
electrons. This dipole expression is the most
frequently used approximation to V(r, t) although
for some problems one sometimes includes a
quadrupole interaction. If the radiator should be
an ion, the monopole term in the electron-ion
interaction is included in the electron Hamiltonian
when calculating the classical trajectory hence
this term does not appear in V(r, t). To preserve
generality, we will use the complete V(r, t) (with-
out a monopole term) in the following derivation.

The time-development operator for the system
may be written in an interaction representation
defined by

T(r, t) = exp(- itH, )U(r, t),

where U is the solution of the differential equa, -
tion (using h'= 1)

f(~)= (I/v)Re p (d, ~ d )(al C(A~ )~g'}pa'b ba ab a'
aa '5

(7)

C(&~ „)= f exp(its~ ) F(t)dt,ab ab (s)

where p is the atomic density matrix and F(t) de-
notes the average of U(r, t) over perturber vari-
ables [except for the no-quenching approximation
this function F(t) is the same as the function F(t)
discussed in II]. Since Ho is the Hamiltonian for
an atom subjected to a static ion field, its eigen-
values Ea and Ey will depend on the ion field
strength; the complete line profile is obtained by
averaging f(&u) over ion fields in the usual man-
ner. '

To make the function F(t) more explicit, we de-
fine a normalized probability function Q(r) for the
electron perturbers and F(t) is given by

F(t)= f q(r)U(r, t)dr.

This average over r denotes the average over
electron positions and velocities; that is, Q(r)
may be given by

Q(r)=P(x, . . . , x )W(v, . . . , v ), (10)

where P(x) and W(v) denote position and velocity
distribution functions [compare Eq. (40) in II].

We next define a function F(r, t) by

states I b) where la) and I b) are H, eigenstates.
For the Lyman lines of hydrogen (and for many
other cases) the perturbation of the final state is
negligible; that is, (bl V!b') =0 or

(b I
U I b ') = exp(- itE ) (b I b') .

b
(6)

For cases where lower-state perturbation is
not negligible this perturbation may be treated
by means of the "doubled-atom" representation'~4
or by tetradic notation. '& ' Defining a frequency
variable A~eb= [~ —(Ee —Eb)], the line shape is
given by

i —, U(r, t) = V(r, t)U(r, t),

with the boundary condition U(r, 0) = 1 and

V(r, t) = exp(itH, ) V(r, t) exp(- itH, ) .

(4)

so that

F(r, t)= q(r)U(r, t)

F(t) = fF(r, t)dr .

From Eq. (4) we obtain a dynamical equation for
F(r, t)

The only difference between the operator U de-
fined above and the operator Ua defined by Eqs.
(13) and (14) in II is in the no-quenching approxi-
mation which was used in conjunction with the
latter; if this no-quenching approximation were
applied to U, it would be identical to Ua.

%e will consider radiative transitions from a
group of initial states ja) to a group of final

i—F(r, t)= V(r, t)F(r, t).

In Sec. 2B we will show how this differential equa-
tion may be transformed into a dynamical equa-
tion for F(t).
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B. Zwanzig Projection Operator Technique

In this section the projection-operator technique developed by Zwanzig will be used to derive a dynam-
ical equation for F(t). To make use of this method, we define a projection operator 6' in terms of its op-
eration on an arbitrary function, f (r), of electron variables

(15)

tPf(F) = Q(r) ff(r')dr'. (14)

From this definition we see that any operator which does not depend on electron variables (e. g. , 00, R,
etc. ) will commute with 6 . This projection operator is essentially the same as the projection operator
used in the relaxation theory (see Sec. II C in Ref. 5) although it should not be confused with the projec-
tion operator P used in II.

We next define functions F,(r, t) and E,(r, t) by

E,(r, t) = PF(F, t), E,(F, t) = (1 —p)E(F, t),

and F(r, t) = F,(r, t)+E,(r, t) .
Operating on Eq. (13) with (P and (1 —&P ) we obtain the differential equations

(18)

i F,(r—, t) = (PV(F, t) [F,(r, t)+F, (r, t)],

„F,(r, t)—= (1 —tP)V(r, t)[F,(F, t)+F,(F, t)].

Equation (18) is easily solved to yield

E,(r, t) = G(r;t, 0)F,(r, 0) —i f G(r;t, t')( I(9)V(r, t')E, (r, t')dt',

(18)

(19)

where G(r;t, t') =8 exp[-i f, (1-(P)v(F, s)ds], (20)

and 6is a time-ordering operator. 'o From Eq. (11) we see that E(r, 0)= Q(r) hence F,(r, 0)=0 and Eq.
(19) becomes

F,(r, t) = —i f G(r; t, t')(I —6')V(r, t')E, (r, t')dt'.

Substituting this result into Eq. (17) we obtain an integrodifferential equation for E,(r, t):

(21)

i —F,(r, t) =tP V(r, t)E,(r, t) —i f (Pv(F, t)G(r;t, t')(1 —(P)v(F, t')E, (r, t')dt'.
0

Integrating this equation over r, and noting from Eqs. (12), (14), and (15) that F,(r, t)= Q(r)F(t), we ob-
tain an equation for E(t),

i —E(t) = (V(t))F(t) —i f (V(t)G(t, t')(1 —6')V(t'))F(t')dt',
0

(23)

where the bracket ( ) denotes the weighted average over r; for example, for some arbitrary operator
A(r, t) we have

(A(t)) = fA(r, t)Q(r.)dr. (24)

Note that Q(r) must be written to the right of A(r, t) in ease A(r, t) contains some S operators.
If the distribution of electrons described by Q(r) is assumed to be spherically symmetric about the

atom, then (V(t) ) =0 (recall that for radiating ions, the monopole term, which does not have this property,
is not included in V) and Eq. (23) becomes

F(t) = —1 (V(t)G(t, t'—)V(t'))F(t')dt'.
0

This equation can be further simplified by means of the identity

(V(t)G(t, t ')V(t ')) = exp(it 'H, ) (V(t —t ' )G(t —t ', 0)V(0)) exp(- it 'Ho)

(25)

(28)
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derived in Appendix A [see Eq. (A12)]. Using this identity and the notation G(t —t', 0)= G(t —t') we have

(27)F—(t) = —f exp(it'Ho)(V(t —t')G(t —t')V(0)) exp(-it'H, )F(t')dt'.
at

This is a general equation for F(t) which will be solved by Fourier transforms, in Sec. 2C to provide

a general expression for the line shape. In later sections we will discuss some more useful approximate
results.

C. General Expression for the Line Shape

To obtain a general expression for the line shape, it is convenient to consider an interaction represen-
tation defined by

F(t) = exp(-itH )F(t).
Using this definition, Eq. (27) provides

(28)

I—„F(t)= H F(t) t j exp—[- i(t —t')H, ](V(t t')G(t-- t')V(O)& F(t') dt'.
0

To calculate the function C(h&uah) defined in Eq. (8), we note that

(29)

&a~c(a~ )~a'& = &a~ f exp{it(~+E )}F(t)dt~a') = &a~ r(w+E ) a'), (30)

where the transform 8:(&u+Eb) is thus defined. Multiplying Eq. (29) by exp/it(~+Eb) j and integrating over
t we obtain

—iF(0)+(&u+E )F(~+E ) = H F(~+E„)+Z(~+E —H )F(~+E ).
b

where

where K(&u) is a resolvent operator defined by

K((u) = [(&u+E —H )- Z(~+E -H )] '.
b 0 b 0

Z(~+E —H ) = —i J exp[it(~+E —H )]&V(t)G(t)V(0))dt.
b 0 b 0

Solving Eq. (31) for S(a+Eh) and substituting this result, via Eq. (30), into Eq. (7) we obtain

f(u) = —(I/v)lm Q (d, d )&alK(~)la')pa'b ba a' '
aa 'b

(32)

(33)

To calculate a line profile using Eq. (33), it is first necessary to invert the matrix [(~+Et,—H0)
—Z(++Eh —Hp)]. In most cases it is sufficient to consider only initial states wher. performing this ma-
trix inversion; that is, we need only invert a matrix whose matrix elements are given by

(al[(~+E —H ) —Z(&u+E&-H0)]la') = A~ 5,—(ale(S~ )la')
ab a, a' ab

for all initial states la) and la'). Since we are ignoring ground-state interaction this result is obtained by
making the no-quenching approximation discussed in Secs. I B and VII B in II. The inverse of Eq. (35)
will give the resolvent matrix K(~) whose matrix elements are required by Eq. (33).

Equations (33) and (34) provide a very general expression for a line profile (to the extent that final-state
perturbations are negligible) which would correctly describe the line profile from the line center to the
quasistatic wings if we could evaluate the operator

S(a&u ) = —i f exp(its. ~ )(V(t)G(t)V(0))dt
ab ab

in all generality. It has not been possible to do this as yet and this is the purpose of the approximate
treatment which follows.

(38)

3. UNIFIED LINE-SHAPE APPROXIMATION

The fundamental approximation which we shall use in deriving the unified line-shape expression is the
impact approximation. This approximation was discussed in detail in Secs. III B and VII B of II and we
will simply outline its properties as they pertain to the present problem.

The impact approximation as we use it simply states that (1) strong collisions do not overlap in time,
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(2) a weak collision o~ erlapping a strong one may be neglected in comparison, and (3) weak collisions
may be treated by second-order perturbation theory. It should be noted that we make a distinction be-
tween the impact approximation and the impact theory; the impact theory contains the impact approxima-
tion as well as other approximations (e. g. , the completed collision assumption).

The interaction potential V(r, t}will in general be given by a sum of interactions V(rj, t) where r& refers
to the position and velocity of the jth electron [compare Eq, (22) of II]

v(r, t) = P. v(r. , t). (O'I )

Using the impact approximation, the propagators G(r;t, «') and U(r; t, t') take a product form

G(r; t, t') = 6 II,G(r. ; t, t'), (38)

U(r; t, «') =8 II.U(r, ;t, t'),
0

where G(r.;t, t') = 8 exp[-i j, (1 —6)V(r. , s)ds],t' (40)

U(r;t, t') = 6 exp[-i f, V(r. , s)ds],j' ' t' (41)

(42)

(43)

where N denotes the total number of interactions. Substituting this result into Eq. (36) we obtain

and &0 is a time-ordering operator which keeps the interactions in chronological order; the proof of Eq.
(39) is given in Sec. III B of II and the proof of Eq. (38) is an obvious extension.

We next assume that each interaction V(r&, t}is statistically independent of the others. That is, the
electrons will be replaced by shielded quasiparticles. " For most problems it is sufficient to use Debye
shielded electrons although, if plasma oscillations have an influence on the broadening, one may have to
use a dynamic shielding. "~"

In Appendix B it is shown that when these approximations are applied to the factor (V(t)G(t, «') V(t ')) all
of the projection operators vanish and this factor reduces to

(v(t)G(t, t')v(t')& = Z. &v. (t)U. (t, «')v. (t')),

where V&(t) and Uj(«. , t') refer to V(rj, t) and (Urj,'t, t') under the average. Since each of these terms is
the same under the average (i. e. , r& is just a dummy variable) we may write

(V(t)G(t, t ')V(t')) = N(V, (t)U, (t, «')V, («')),

Z(n~ ) =- —iN j exp(itn&d )(V (t)U («, 0)V (0))dt
ab o

exp(itn~ )—„(U (t, 0)V (0))dt
0 ab dt

= —i&~ hNf exp(it~~ )(U (t, 0)V (0})d«.
ab (44)

Using the results discussed in Appendix A, the matrix elements (a ) Z(n, u& f, ) (a ), as required by Eq. (36),
are obtained from

Z(n~ ) = —in~ Nf exp(its~, )(U (0, —t)V (-t))dt
ab ab o

a'b 1 ' 1

Nj exp(i«n. ~, }—„(U (0, —t)}dt
ab a'b dt

N —in, ~ a~, N j exp(it« ~, )(U (0, —t))dt
ab ab a'b a'b (46)

=- —tn~ „n~, Nj exp(itn. ~,„)(Ul(0, —«) —1)dt
ab a'b a'b

= —inur n,m, Nj exp(«tarn )(U (t, 0)- 1)dt.
ab a'b ab



146 SMITH, COOPE R, AND VIDAL 185

Since the one-body spatial distribution function is given by P, (x, ) =n/H where n is the electron density, "
Z, (a&a) may now be given by

(a I Z(c & ) i a
') = —is~ h~, f exp(ita~ ) (a IF "'(i) la '),

ab ab a'b ab
(46}

(47}where F ' "(f) = n fd x, fd v, W(v, )[U( x„v„'t, 0) —1],
and W(v, ) denotes a velocity distribution function [compare Eq. (10)].

If the influence of the ion field in V(i) is treated in the approximate manner discussed in II, then the op-
erator F'"(t) is the same as the operator F,(t) discussed in II. This operator has been evaluated by nu-
merical methods" (neglecting the time ordering in U, ) hence this operator may be regarded as known and
the line shape may be obtained from Eqs. (33) and (34) by familiar matrix methods. The results of such
a calculation will be discussed in Sec. V.

4. COMPARISON WITH OTHER THEORIES

A. Second&rder Results

Most line broadening theories provide expressions for the line shape which are formally the same as
Eqs. (33) and (34). From the results of such work it is well established that a second-order (in V) ap-
proximation to Z(avab) will generally be valid in the line center if strong collisions a.re properly treated
by impact parameter cutoffs. Cases for which the second-order approximation is not sufficient will be
discussed further in Sec. 4 B. For the present, we will consider a second-order approximation to
Z(a.~ab) which may then be compared with the second-order results of the impact and relaxation
theories. To obtain this exPression we exPand U, (t) in Powers of V, [see Eq. (44)] and, since Z(htuab) is
already second order in V„we retain only the zeroth-order term in the U, expansion; that is, U, is sim-
ply replaced by unity. It may be argued that strong collisions, for which U, may not be replaced by 1,
cause U, to oscillate rapidly and Z(a&cab) is effectively reduced to zero; this is the usual justification for
strong collision cutoffs (compare Sec. VII C in I). When U, is replaced by 1, we obtain the second-order
result

z(s~ ) =x(n~ ),ab ab ' (46)

where 3C(h~ ) = —i f exp(ital ) (V(t)V(0))dt .ab ab (49)

Comparing with Eqs. (5), (6), and (23) of Ref. 6, we see that the above results are identical with the
second-order results of the relaxation theory. However, note that in Eq. (23}of Ref. 6, V(f) is replaced
by V(f); for the I y-a line of hydrogen which was calculated in Ref. 6, the difference between V(f) and V(t)
is unimportant. While this difference may be unimportant for some hydrogen lines, in general it is neces-
sary to retain the exponentials in V(t) as has been done in the present derivation. Since the relaxation
theory is known to be valid in the line center when strong collisions are relatively unimportant this com-
parison indicates that the second-order results stated in Eqs. (48) and (49) are also valid for such cases.
That is, when second-order calculations are appropriate, U, is simply replaced by unity.

B. Comparison with Impact Theory

Since the impact theory is the classical-path theory most frequently used in describing the line center,
and since the second-order results derived in Sec. 4A did not formally reproduce the results of the impact
theory, we will next discuss a comparison with this theory.

If we substitute Eq. (43) into Eq. (25) or Eq. (27) we obtain an integrodifferential equation for F(i) which
will produce the results of the unified theory

= —Hf {V,(t)U, (l, t ')V, (l ')) F(i')dt '
0

= —IV f exp(it'H, )&V, (t. —i')U, (t -I', 0)V, (0})exp(—it'Ho)F(t')dt'.

(5o)

If this equation were solved by Fourier transforms we would obtain the results discussed in Sec. 3.
Changing variables from f' to s = (l —i' } in Eq. (50) we obtain
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(51)

(52)where

i - = exp(itH, )f h(s) exp(- itH, )F(t —s)ds,aF(t)
0

h(s) = —iNexp(- isH, )(V, (s)U, (s, 0) V, (0)) exp(isH, ) .
To obtain the results of the impact theory we first assume that there is some correlation time vp such

that (V, (s)U, (s, 0)V, (0)) vanishes when s & rp, for electron perturbers rp= I/~p (the average duration of a
collision). We next assume that we need only consider times much longer than rp when calculating F(t);
that is, t» rp. In this case h(s} goes to zero long before s is on the order of t, hence we may replace
F(t —s) by F (t) and the upper limit on the s integral may be extended to infinity. In this manner Eq. (51)

—= [exp(itH, )X exp( itH-, )]F(t),sF'(t). (53)

where 3C = —i N f exp(- isH, ) &V, (s)U, (s, 0)V, (0)) exp(isH, )ds . (54)

Using the results discussed in Appendix A, we have

3t = —iNf ™(V,(0)U, (0, —s)V(- s))ds = N j —(V, (0)U, (0, —s))ds
0 o dS

= N(V, (0)U, (D, —~)) = n J J dx, dv, W(s, )V(x„v„0)U(x,v»0, —~),
where the one-body average is written explicitly in Eq. (47). We must now transform from x, and

v, to the collision variables discussed in the Appendix to II. As in Sec. VI of II, we will denote the aver-
age over impact parameters, velocities, and angles by a subscript av, and Eq. (55) is written

X = n f dt, [V, (t, )@exp(- z J V, (s+ t, )ds] ]

= n j dt, [V, (t,)6 exp(-t j ' V, (t)dt)]

= in f dt, (d/dt, )[e exp(- i j ' V, (t)dt t]

= in[& exp(- i f V, (t)dt} —1]

= in[S, —I]
av (56)

where 8, denotes the S matrix for a binary collision.
Comparing Eqs. (53) and (56} with Eqs. (38), (42}, and (43) of Ref. 3 we see that these results are ex-

actly the results of the impact theory.
The relaxation equation for F(t) in the unified theory, Eq. (50), is non-Markovian because the kernel

(V, (t)U, (t, t')V, (t')) exhibits a memory effect for (t —t ') & rp. That is, the state of the system at the time
t depends on its state at some earlier times t'. Since the system has a relaxation time on the order of
vp, this memory is lost after a time Tp and the equation becomes Markovian. In deriving the results of
the impact theory, the essential step was the "Markovianization" of Eq. (51), namely, the assumption that
t would always be much larger than w~. This indicates that the impact and the unified theories will be
identical for long times of interest t & ~p.

Since the Markov approximation breaks down when t & i p we may expect the impact theory to break down
in the same region. This does in fact occur unless one modifies the impact theory with a Lewis cutoff
(see Sec. VII C in II). The purpose of the Lewis cutoff is to put the non-Markovian behavior back into F(t)
in an approximate manner, thereby extending the region of validity of the impact theory.

The results of the impact theory could also have been obtained directly from 2(A~ah) by setting a, ~ah
to zero in Eq. (44). This would be justified if spa. ~ah& 1 since the factor (V, (t)U, (t, 0)V, (0)) vanishes for
t rp. If we take the "time of interest" as being I/a~ h (or I/A~ ~h), then this procedure is valid for
times of interest longer than rp and it breaks down for shorter times of interest. Comparing Eqs. (44)
and (54) we see that the matrix elements (a I

i'(0} i
a') are the same as (a13C i a ') [the exponentials in Eq.

(54) are unimportant when ta~ah«1 and tata'h«1]. We thus obtain Z(0) =in[S, —1]av which is again
the result of the impact theory.

From the above discussion we may conclude that the only essential difference between the impact theory
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and the unified theory lies in the treatment of non-Markovian effects. The unified theory, and the quan-
tum-mechanical relaxation theory, treat these effects without approximation by using a non-Markovian
equation for F(t); in the impact theory these effects are treated approximately by means of the Lewis cut-
off. The close agreement between these two methods for hydrogen' indicates that the Lewis cutoff pro-
cedure provides a good approximation to these non-Markovian effects for cases where strong collisions
are not too important.

If strong collisions dominate the broadening, and if the duration of the collisions is short compared to
the time between collisions (validity criterion for the impact approximation), the S-matrix treatment
should be quite good. The impact and the unified theories will be essentially identical for such cases.

The unified theory should also be useful for cases where both strong and weak collisions are equally
important because the strong collisions are treated by a full exponential (essentially an S matrix) and, at
the same time, the non-Markovian aspects of the weaker interactions are retained. The utility of the uni-
fied theory in such cases has yet to be demonstrated by practical calculations.

C. Line Wings

In this section we will consider F(t) in the line wings where t is very small. For this purpose it is con-
venient to obtain a general expression for F(t) which is then investigated in the t-0 limit. The general
expression for F(t) is obtained by first integrating Eq. (50) over t and using the Dirichlet integral formula
(see p. 147 of Ref. 14),

J J f(x, y)dxdy = f J f(x, y)dydx, (57)

to obtain F(t) = F(0) —J r(t, t')F(t')dt', (58)

where r(t, t') = N f, (v, (t")U, (t", t')v, (t')&dt". (58)

Equation (58) is a Volterra integral equation of the second kind which has the unique solution'4

F(t) =F(O)[1 —J r(t, t')dt+. . . + (-1) f f f r(t, t )r(t, t ) . I(t, t )dt dt + ].n t t1 tn1
0 0 0 0 1 1' 2 n-1' n n 1

(60)
Since we are interested in F(t) in the limit of small t, we will consider the lowest-order approximation to
this general solution. Using F(0)= 1 we have, for small t,

t'
F(t) = 1 —Nf f &V, (t')U, (t', I")V,(t"))dt"«'

0 0

I
= 1+iNf f „(V,(t')U, (t', t")&«"«'

0 0

= 1 —iN f (V, (t ')U, (t ', 0))dt
0

= 1+Nf —,(U, (t', 0)&dt
't d

0

= 1+N(U, (t, 0) —1& . (61)

This is exactly the result obtained by the one-electron theory [see Eqs. (42) and (51) of II]. Since the
one-electron theory is known to be valid in the wings, it is obvious that the unified theory is similarly
valid.

S. CALCULATIONS

The Ly-o.' line of hydrogen was calculated for
two temperature-density cases which correspond

to experiments performed by Elton and Griem"
and by Boldt and Cooper '6 The op.erator Z(h(un5)
was calculated from Eq. (61) using the F "'(t)
functions discussed in Ref. 8 and the ion micro-
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field average was performed using the distribu-
tion functions given by Hooper. " The results of
th~-~e calculations are shown in Figs. 1 and 2
v;.here we have plotted the ratio R(to) between the
Stark profile I((u) and the asymptotic Holtsmark
profile IH(~),

R (~) = &(~)/& (~)
H

(&2)

IR((u) = v& m(a/m)'"(I/a~) "'-, (&&)

against the wavelength separation 4X measured
from the center of the natural line. In these fig-
ures we have also plotted calculations obtained

by the relaxation theory, 'P'~" impact theory, and

line wing results obtained by Griem, "and the

relevant experimental results.
Since the older impact-theory results which we

have plotted do not agree with the unified theory in
0

the vicinity of 1A, we have also made impact-
theory calculations using the most recent work of

Kepple and Griem"; these calculations have not
been plotted because they lie precisely on top of
the unified theory for AX & 2' (where &p is the

wavelength which corresponds to the plasma fre-
quency). The relaxation-theory profiles do not

agree with the unified theory for b, X& 1A because
strong collisions were not treated properly in the
relaxation theory. If a strong collision cutoff is
made in the relaxation theory, ' the resulting pro-
file lies exactly on the unified theories results for
AX & 2'. This excellent agreement indicates that
the unified theory is indeed correct in the line

center, at least to the extent that the strong col-
lision cutoff procedure is valid (in these calcula-
tions we have cut off at X = h/m. t, the electron de-
Broglie wavelength).

The results of the one-electron theory were
included to show that the unified theory approaches
the one-electron theory asymptotically in the line
wings. We note in passing that both theories
approach the asymptote R=2 for AA zX [X is
the wavelength which corresponds to the Weis-
skopf frequency defined in Eq. (&5) of II].

There is some asymmetry between the red and

blue wings of the line profile hence we have
plotted an average of these wings in Figs. 1 and
2. We have not made any asymmetry studies
because quadrupole interactions and quadratic ion
Stark effect, which may influence asymmetries, "
were not included in the calculations.

The agreement between theory and experiment
is fair in Fig. 1 and rather poor in Fig 2. The
agreement in Fig. 2 would be considerably im-
proved if the experimental data were raised
slightly as Griem has suggested. "

It should be noted that the unified theory calcu-
lations shown in Figs. 1 and 2 do not account for
time ordering in U, (t, 0). This is due to the fact
that we used F&'&(t) functions which were originally
derived for use in the line wings where this order-
ing is negligible (see Sec. III C of II). This
should not make any difference for hydrogen be-
cause it is known that a second-order theory is
adequate in the line center and, as was shown in
Sec. IV A, the second-order theory is obtained
by setting U, to unity.

APPENDIX A

Since the perturbation described by V(t) is a stationary process, '~' we have the familiar identitv

(v(t)v(t +t) " v(t +t)) = (v(o)v(t ) v(t )).
1 n 1 n

(Al)

That is, the average is invariant under time translation. If the above identity is applied to each member

of a product of averages we obtain relations like

(v(t)v(t, +t))(v(t +t)" v(t +t)) =(v(o)v(t, ))(v(t ) v(t )).

Using the projection operator 6' the above equation may be written

&v(t)v(t +t) s'v(t +t) v(t +t)) = (v(o)v(t )6v(t ) v(t )).
1 2 n '1 2 n

(A&)

After a moments reflection it is also obvious that we may insert any function (or functions) of 6' among the

V operators without altering this time translation invariance; for example,

(v(t)f(s')v(ti+t)g(s')v(t2+ )" v(t +t)) = (v(0)f(6')v(ti)g(s )v(t, ) "v(t )), (A4)

where f and g are arbitrary functions of 6 . In particular, we are interested in relations of the form

(V(t)(1 —(P)v(t +t) (1 —5')V(t + t) ~ ~ ~ (1 —(P)v(t + t)) = (V(0)(1 —(P)v(t )(1 —6')V(t ) . ~ (I -(P )V(t )). (A5)
1 2 n 1 2 n

If we consider the interaction representation in which we have

V(t) =exp(ttH, )V(t)e~(- ttH, ), (A&)
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the above identities are slightly altered. Since H, does not depend on electron variables, the exponentials
exp(itH, ) are not influenced by the average and Eq. (Al) may easily be extended to

(V(t)V(t +t) ~ V(t +t)) = exp(itH0)(V(0)V(t ) V(t )) exp(- itH0).
1 n 0 1 n

Since 0, commutes with 6' we also have

(V(t)f(d')V(t +t)g(tP)V(t +t) ~ ~ ~ V(t +t))=exP(itH )(V(0)f(tP)V(t )g(P)V(t )
'' V(t ))exp(-itH ),

where f and g are arbitrary functions of O'. The equation analogous to Eq. (AS) is

(V(t)(1 —(P )V(t + t )(1 —5') V(t + t) ~ ~ ~ (1 —(P )V(t + t))
1 2 n

= exp(it H )(V(0) (1 -(P )V(t ) (1 —tP ) V(t ) ' ' ' (1- tP )V(t )) exp (- i tH ).
0 1 2 n 0'

(A7 j

(A8)

(A9)

The propagator G(r;t, t') defined in Eq. (20) may, with a change of variables s=s'+t', be written in

the form

I

G ( r; t, t ') = 6 exp r- if (1 —(P )V(s '+ t ' )ds '
]

0

(
.)n (t t' ) s 1 -s„ 1

= 1+ ~ ~ ~ (1-6')V(s +t') (1 —d')V(s +t')ds ds . (A10)
n' 1 n n 1'

n=1 0 0 0

lf we consider the quantity (V(t)G(t, t')V(t ')), we note that this quantity will be given by a sum of integrals
over

( V(t) (1 -(P )V(s + t ' )(1 —6' )V(s + t ') (1 —(P ) V(s + t ') V(t '
))2 n

= exp(it'H )(V(t —t')(1 —(P)V(s )(1 —(P)V(s ) (1 —(P)V(s )V(0)) exp(- it H )0 1 2 n 0 ' (Al 1 )

where we have used Eq. (A9). From this property of the terms in (V(t)G(t, t')V(t')) it is obvious that

(V(t)G(t, t') V(t ')) = exp(it'H, )(U(t —t ')G(t —t', 0)V(0)) exp(- it'H, ) . (A12)

APPENDIX B

Since the average interaction (V(t)) is assumed
to vanish we have the identity

(v(t)G(t, t') v(t ')) = «(t)G(t, t')(1 —s')U(t')}

= —t, , (v(t)G(t, t')).

where we have temporarily suppressed the time
dependence for convenience of notation. In the
series expansion of G~ we have 1 plus a series of
terms each of which ha. s a. (1 —6') factor on the
left. From the definition of 6' given in Eq. (13)
it is obvious that

((1 —(P ) factor }= (factor }—(factor)
We will henceforth concentrate on (V(t)G(t, t '))
noting that (V(t)G(t, l ')V(t ')} is obtained from it
by differentiation. Using Eqs. (37) and (38) we
have

hence

=0

(G„)=1
{B4)

(Bs)

& v(t)G(t, t ')}= Q. (U. 00II G (t, t ')),q0 kk' {B2)
and Eq. (B3) becomes

(UG}=Z.(v G }
where V&(l) and Gt, (t, t') denote V(rj, t) and G(rp,
t, t') under the average. Since each interaction
is statistically independent of the others they may
be averaged separately and we have

(UG)=r. (v. II (Gy}G. II (Gt}), (B3)
0&j l&j

= tv(U, G, }, {B6)

where N denotes the total number of interactions
(the average of V, G, is the same as the average of
any other V& G&).

The factor G, still contains some projection op-
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erators; to eliminate these we consider the sec-
ond term in a series expansion of N(V, G, ). This
term has the form

N(V, (1 —6')V, ) =N(V, V, ) —N(V, )(V, ) . (B7)

The one-body spatial distribution function is
given by P, (x, )= n/N where n is the electron den-
sity. " Using this function we have, for example,

is thus apparant that N(V, V„) cc n whereas N( V, &(V,&
~n'/N, and in the limit N- ~ the second term
is negligible By an obvious extension of this
argument one can show that the projection oper-
ators in G, produce terms which vanish in the
limit N-~ and, in this limit, we may replace
(1 —(P)V, by V, in G, . When this replacement is
made we have

(V, (t)V, (t')&= (n/N) ff dx, dv, W(v, )

x V(x„v„t)V(x„v„t'), (B8)

(V, (t)G, (t, t')& = {V,(t)U, (t, t')&

and, using Eq. (Bl),

(B9)

where IV(v, ) is a velocity distribution function. It (V, (t)G, (t, t ') V, (t ')) = (V, (t)U, (t, t ') V, (t')). (B10)
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