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The Brueckner reaction matrix for the 4 =18 nuclei is obtained in an accurate fashion from a nonlocal
separable potential of the Tabakin type, but possessing a much stronger repulsive core. This potential, as
well as those of Tabakin and Yamaguchi, is used in comparative studies of the reaction matrix. Both har-
monic-oscillator and plane-wave intermediate states are employed. The results are compared extensively
to the work by other authors on the local Hamada-Johnston potential. In the plane-wave treatment, the
effect of replacing the kinetic-energy operator by a form (suggested by Baranger) more compatible with the

exclusion principle is estimated.

I. INTRODUCTION

ANY authors! have in recent years attempted to
deduce from the free-space nucleon-nucleon
potential the residual interaction to be used in shell-
model calculations. Inevitably, the initial approach is
to take the effective interaction between valence
nucleons to be the Brueckner reaction matrix defined
in a strict ladder approximation.? Of couse, one tacitly
assumes the existence of a self-consistent average field
in which the core and valence particles move. Other
workers? are attempting to justify this basic tenet of the
shell model by performing a Hatree-Fock-like calcula-
tion embodying the Brueckner reaction-matrix theory.
Brown? suggested at the outset that an appreciable
component of the residual interaction would obtain
from a polarization of the supposedly inert closed shells.
Kuo and Brown! and Kuo® have demonstrated this point
for a variety of nuclei. Despite the non-negligibility of
core polarization, it is evidently important to examine
in detail the structure of the ladder approximation. It
is the purpose of the present work to do just this with
the aid of a separable potential which permits an
essentially exact solution for the nuclear reaction matrix.
It will be possible in the course of our studies to use a
broad range of separable potentials and thus to check
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easily the effect on the residual interaction of varying
prominent features of these potentials. In addition, we
may readily alter the average field. It is of particular
importance to be able to treat the occupied or hole
states in a different fashion than the unoccupied or
particle states. In what follows we employ harmonic-
oscillator functions for the holes, but either oscillator
functions or plane waves for the particles.

In an earlier work,® the present authors expanded the
nuclear reaction matrix in terms of a phenomenologi-
cally-determined free reaction matrix. With the tech-
niques presented here we are able to follow this expan-
sion in detail, and to comment on two other approximate
approaches to the nuclear reaction matrix: the reference-
spectrum procedure of Bethe et al.” and the so-called
phase-shift method.®

We must point out that our efforts parallel in many
ways those of Wong.® Also, McCarthy has recently
performed similar computations. The work of these
authors is distinguished from ours principally by their
use of a local potential such as that of Hamada and
Johnston (H]J).! The combined McCarthy-Wong
results provide us with a complete analysis of the H]
potential, since Wong employed a plane-wave descrip-
tion of unoccupied nucleon states, whereas McCarthy
used oscillator functions for all nucleon states. Setting
their results against those we obtain permits us to make
a thorough comparison of the residual interaction
derived from local and nonlocal separable potentials.

II. TWO-PARTICLE POTENTIAL

Separable nucleon-nucleon potentials were first used
by Yamaguchi’? to obtain low-energy fits to the
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scattering and bound-state data. Later Tabakin®
introduced more complex and more complete potentials
of this nature to fit both the low- and high-energy data.
We will employ a potential only slightly altered from
the Tabakin form, but of a somewhat different charac-
ter.* One of the primary concerns of Tabakin was to
deduce a potential which could be used perturbatively
in many nucleon investigations. Our potential will
possess a stronger repulsive core than that used by
Tabakin. It is our intention to use the Tabakin and
Yamaguchi potentials, as well as our own, in compara-
tive studies of nuclear matrix elements.

A general form for the potential we use may be given
in terms of its momentum-space matrix elements

(k| VIK)= D gwiivi(k)or(E)

2Ll jsmr

XY (ka) LYvsim (k') IPr. (1)

In Eq. (1), the potential is expanded in terms of angular
functions

Y (ko) = [V (k) x* (@) T, (2)

in which the relative orbital angular momentum ! and
the two-particle spin s have been coupled to total
angular momentum j. We have also explicitly indicated
a sum over the isobaric spin projection operators P;.
Summations include only those states permitted by the
exclusion principle. As a particular example we may
isolate the potential form factor in the 1S state

G| VES) E)= 2 goo ()Y (K).  (3)

The summation in (3) may extend over as many terms ¢
as one desires. In practice, we (like Tabakin) will limit
ourselves to two terms: one attractive, one repulsive.
The potential in the triplet spin states permits coupling
between s and d waves via the coefficients ge= gs, and,
hence, implicitly includes a tensor force.

The specific choice of the analytic form for the
potential form factors in (2) and (3) distinguishes our
potential from that of Tabakin. For the attractive parts
of the potential =1, we both employ

' (k) = (B~+a®) 7, 4)

as did Yamaguchi. Tabakin introduced a peak into the
repulsive term with the choice

w (k) =R (k—c)*+a]'[(k+c)*+a’ T, (5)
whereas we simply have

v’ (k) =[k*+ (a2)*1. (6)

The form factors (4) and (6) are used for both the

13 F. Tabakin, Ann. Phys. (N.Y.) 30, 51 (1964).

14 A similar potential fit has been obtained by T. R. Mongan
[University of California Report, 1968 (unpublished) ]. Mongan,
however, uses the Arndt-McGregor (Livermore) data and, conse-
quently, his potential differs slightly from ours.
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uncoupled 1Sy and the coupled %S; states. For the D;-
wave form factor we have

whe(k) = BE+ (0T ()

However, in other nonzero orbital angular momentum
states, we take

v (k) = KR (@) 7040, 8)
vIZ(k) = pU+2e0 [k2+ (al) 2]—(2+1/2) (9)

to simplify later integrations over these functions.

As we shall see, the fits to the two-body data obtained
with (6) contain, in the s waves, a strong repulsive core.
The latter rules out the later use of perturbation theory
in the many-body problem.

A fit to the two-body data can be obtained by
computing the free reaction matrix K(e), which
satisfies the scattering equation

K (&) =v+1[P/(e—1) JK (e), (10)

where ¢ is the relative kinetic-energy operator for a

nucleon pair, P the principal-value operator, and e an

energylike parameter. On-the-energy-shell matrix ele-

ments of the free reaction matrix are directly related to

the scattering phase shifts.

For the 1S, state one has, for example,

3w (k| K(e)| k)= —(#*/m) (1/k) tando(k),

e=hk/m=n2k"/m. (11)

In the coupled 3S; and 3D states, the corresponding
relationship is
13wk (m/12) K (2R /m) = (1—S5) (14+5)7, (12)

where the .S matrix may be described in terms of the
Breit parametrization!®

<(1 —p?) "2 exp(2i07-1)

ip expLi(0s—1+0s41) ])
ip exp[i(071+0s11) ]  (1—p*)"" exp(2i6s41) .
(13)

Higher-orbital-angular-momentum states are treated
in a similar fashion.

It is a straightforward task to insert the separable
potential of Eq. (1) into (10) and obtain for the free
reaction matrix in an uncoupled orbital state, a solution
in the form

* | Ki(e)| B)= ;vzi(k)vzi’(k')Azi"(e)- (14)

The 2X2 matrix A, satisfies the equation
A= (1—gm)7, (15)

15 G, Breit, M. H. Hull, Jr., K. E. Lassila, and K. D. Pyatt,
Jr., Phys. Rev. 120, 2227 (1960).
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TasrE I. Parameters of the separable potential. The values obtained in the s waves for the scattering length g, and effective range
7o are given in the last two columns of this table. We have permitted a tensor coupling only in the 35;-D; waves. The 358D, potential
labelled (a) predicts as a D-state probability for the deuteron Pp=0.329,, whereas the potential labelled (b) results in Pp=2.8%,.
An uncoupled fit to the 3S; wave is also presented with both a finite and an infinite strength g,.

a(F1) a/a (MeV) a(F) g/a: (MeV) a(F) 7o(F)
(a)
351 1.593 —2.894X10? 6.226 6.874X 103 5.44 1.81
381Dy —78.05 1.527x10¢
3Dy 1.500 5.445X102 6.002 4.860x 101
(b)
351 1.4 —1.25X10? 5 0.2X10w 5.42 1.73
381-*Dy —1.78X10? 0.63X10°
3Dy 1.3 2.73X102 5 0.2X10°
1py 1.90 4.401X10? 1.90 4.577X 10
3D, 1.29 —2.052X10%
3D; 2.37 —2.562X10?
1S 1.507 —1.912X10? 7.29 7.775X 103 —16.54 2.52
1.505 —1.957X10? 10.67 ® —16.53 2.52
3Py 1.53 —2.069X10? 1.53 8.856X10?
3Py 1.37 1.136X 102 1.37 3.106X 102
3Py 1.57 —73.82 1.57 —1.727X102
1D, 1.59 —1.214X10?
351 1.774 —4.947X102 8.526 9.491X108 5.39 1.77
(uncoupled) 1.706 —4.091X102 9.544 © 5.39 1.78
where while
gt 0 m 0
g= ; (16) = (20a)
0 g12 0 m
while with
71.lll 7”12 Tl"lu 7”12
= , an = (20b)
77121 7rl22 77'121 7rl22
with
w The explicit forms for the 7,7, resulting from Egs.
7V (¢) =P / ¢?dg vi{(q)vi¥ (¢) [e— (B¥/m) 1.  (18) (4)—(9) and Eq. (18), are listed in the Appendix.

0

We have permitted a tensor coupling in only the
851 and 3D states. For these states, Eq. (1) reduces to a
form identical to (15), but now

8oo
g=
£20
where
gut O
gur=

0 gu?

;0 LU=0,2

8o2
) ( 193.)

8§22

(19b)

Since the solution presented in Egs. (14) and (15)
for K(e) is a prototype of corresponding solutions
obtained later for the Brueckner reaction matrix, we
will present the explicit forms for A (e).

In the simplest case of the LS state,

M= (1—ghr¢2) g'[A(e) T,
A2=)\21= g2 8177'012E Ale) T,
N2= (1—glmo") gL A(e) T,

(21)

where

A9 = (1= ghm®) (1= ghmy®) — g (ms)".
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One point which becomes evident from Eq. (21) is the
finiteness of the free reaction matrix in the limit of an
repulsive core, i.e., g8—. One obtains, for example,

)\11= g1[7r022( 1 __gl,]roll) +gl (7!'()“) 2:]—17['022. (22)
The nuclear reaction matrix deduced in Sec. III is also
finite in this limit.

As one might expect from Eq. (10), the limit e—c
for finite values of g' and g2 leads to N*¥—4*”, and hence
to K(e)—v. If, however, we first set go= o, then
proceed to the limit e—c, one obtains A%~e, and the
potential is not recovered for large e. The behavior of
K (e€) in the limit of large € is of importance in our later
discussion of the reference spectrum.

1.0

0.8

0.6

(rad)
o
H

0.2

0.0

0.2 ! ! ! | | !
0. 50 100 150 200 . 250 300

MeV (lab)

F16. 1. Comparison of the Y-IV (Ref. 14) 1S, phase shift with
the 1S, phase shift obtained from the finite core potential de-
scribed in Table I. The quoted errors for the Y-IV data are too
small to be indicated. The fit is made to proton-proton scattering
data.

350

Our primary purpose in introducing K(e) at this
stage was to determine the potential parameters g and
a®. This can be accomplished by performing a least-
squares fit of Egs. (11) and (12) to the scattering data.
We have chosen to use as a representation of the data,
the phase shifts Y-IV of Breit et al.'¢

Our results are displayed in Table I, where the
potential strength and range parameters are listed, and
in Figs. 1-9, where graphs of the fits obtained with these
parameters are shown. For comparison we have also
presented in Table IT some of the same parameters
obtained by Yamaguchi and Tabakin. The original

16 R. Seamon, K. A. Friedman, G. Breit, R. D. Haracz, J. M.
Holt, and A. Prakash, Phys. Rev. 165, 1579 (1968).
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F16. 2. Comparison of Y-IV (Ref. 14) phase fit %! with that
obtained from our coupled 3S:-D;(a) potential. The two curves
are indistinguishable. The Y-IV statistical errors are indicated
by flags.

250

Tabakin fit® was to the YLAM and YLAN3M phase
shifts.

When judged from the displayed graphs, the quality
of our fit is relatively good. A possible exception is the
fit to the 3S51-2D; coupling parameter p. What one cannot
judge from the plotted curves is the accuracy of the fit

0.30—
—3— YALE-IX
——FIT
0.20—
P \7<
0.15 /
) /
2
0.10f—
0.05,
| | | | | | ]
0 50 100 150 200 250 300 350

MeV (lab)

Fic. 3. Comparison of the Y-IV (Ref. 14) coupling parameter
p(3S1-3D1) with that obtained from our coupled 3S;-*D; (a) po-
tential. The Y-IV (Ref. 14) errors are again indicated by flags.
We have difficulties in fitting this parameter similar to those
experienced by Tabakin.
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-0.05-

Fic. 4. Comparison of the Y-IV (Ref. 14) phase shift %0,! with
that obtained from our coupled 3S51-*D; (a) potential.

at low energies. In all of our fits the scattering lengths
and effective ranges are accurately predicted, but the
deuteron is not considered directly. Indeed we find the
coupled 3S1-*D; potential parameters (a) listed in
Table I, predict a D-state probability for the deuteron

MeV (lab)

4o\, 100 150 200 250 300 350
0.2 T T T T 1 1
—3— YALE-IY
—&—FIT
0.1
(¢}
o
2
0.1
-0.2—
-0.3-

F16. 5. Comparison of the Y-IV (Ref. 14) phase shift 3P with that
obtained from the 3P, potential parametrized in Table I,
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T T T T T T 1
—3— YALE-IZ
—a— AT
-
-0.2f-
o
2
-0.3F
3PI
-0.4F
-0.5

F1c. 6. Comparison of the Y-IV (Ref. 14) phase shift 3P; with that
obtained from the P, potential parametrized in Table I.

of only 0.3%. To increase this parameter Pp to a more
reasonable value, say between 39, and 49, we made
slight modifications in our potential. One minor change
was the use of the repulsive form factor (7) for the
3S wave, as well as for the 3D wave. A more major
alteration was to determine the strength of the 351-°D;
coupling strengths gos 12 from the relations

(g)?=—go'ge!
and (23)
(g0)*=go°gs"
Aside from the negative sign associated with (ge!)?,
these latter relations are those proposed by Yamaguchi

MeV (lab)
O .50 100 150 200 250 300 350
| | T T T 1 1
—3— YALE-IX
—s—FIT
-0.21~ Nz :
N
3 -0.41- 1
-0.61—
-o.8

F16. 7. Comparison of the Y-IV (Ref. 14) phase shift 1P, with that

obtained from the 1P; potential in Table I.
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and Yamaguchi? and used by these authors and by
Tabakin. It is interesting that the potential parameters
351 (a) which yield too small a value of Pp predict a
coupling parameter p which is, if anything, too large
for laboratory scattering energies above 20 MeV. The
strength of the tensorlike constant gg in this latter fit
(a) falls well below the value necessary for satisfying
Eq. (23). When we impose Eq. (23), thus increasing the
relative strength of our tensor force and presumably
also raising the value of Pp, we find it even more
difficult to fit the parameter p at high energies. This
failing, apparently characteristic of the nonlocal
potentials we are employing, could perhaps be eliminated
by adding a third separable term to our coupled
$5-3D; potential.

0.4r
—3§— YALE-IX
—a— FIT
0.3 3Pz
‘E,"“ 0.2
',
O.l — 2
o | | l ]
(6] 50 100 150 200 250 300 350
MeV (lab)

F16. 8. Comparison of the Y-IV (Ref. 14) phase shifts 2P,
and 1b012 with those obtained from the corresponding potentials
in Table I.

The choice of sign made for (ge!)? in Eq. (23) is
motivated by the desire to use two repulsive, separable
terms in the 3D, potential. In fact, the slightly repulsive
phase shifts observed experimentally in this channel
are one possible argument for a strong 351-2D; tensor
force. A purely central force must certainly be strong
and attractive to correctly predict the 35; bound-state
and scattering data. A tensor force which is capable of
overwhelming the central force in the 3D, state, leaving
a residual repulsive force, must also be strong.

The coupled 3S:-*D; potential parameters, labelled
(b) in Table I, predict a D-state probability of 2.8%,
but lead to phase shifts which are not quite as good a fit
to the experimental data as those deduced from poten-
tial (a). It is unlikely, however, that a further refining
of this potential will appreciably alter the nuclear
matrix elements that will eventually be calculated. We
were able by slight variations in the potential strengths
and in the range ay? to reduce Pp to 2.0%, retaining,

A=18 NUCLEAR REACTION MATRIX
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0.5l—-

—3— YALE-IY
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0.4~

0.3

(rad)

0.2~

| 1 1
(o] 50 100 150 200
MeV (lab)

F16. 9. Comparison of the Y-IV (Ref. 14) phase shifts 3D,
and ®D; with those obtained from the corresponding potentials in
Table 1.

{ | |
250 300 350

however, the relations of Eq. (23). In the present
work, we present the results obtained with the potential
(b), since its tensor component probably represents an
extreme upper limit in strength. In any case we found
only minor differences in nuclear calculations between
the potentials with 29, <Pp<39%,. Once the relation
(23) is imposed it would appear one obtains a stronger
tensor component.

It is, of course, difficult to directly compare separable
nonlocal potentials with more conventional local
potentials. We felt the introduction of a strong repulsive
core would render our particular version of the nonlocal
potential closer in nature to the HJ potential than was
the Tabakin version. One distinctive feature of the

TaBLE II. Parameters for the S-wave Yamaguchi and Tabakin
potentials. The notation for the Tabakin potential is that of
Egs. (4) and (5). The strengths g in Table II for the Tabakin
potential are related to those quoted by Tabakin (Ref. 3), gr,
by g=(2/7)gr.

o ga/m as g2/ c
(F1) (MeV) (F1) (MeV) (F)
Yamaguchi
1S, 1.449 —83.92
351 1.274 —80.33
Tabakin

1So 1.207 —73.78 1.104 149.98 1.441
351 1.73 —104.85 1.01 6.56 1.695
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A2
2p-If -—--l———
2s—1Id 2s—Id
P '
—_—ts Is

(a) (b)

F1c. 10. The single-particle oscillator spectrum used in the
ladder approximation (a) without an energy gap (b) with a gap
A/2. The occupied states are 1s and 1p, valence states are 2s—1d
and unoccupied or particle states>2p—1f. The oscillator energy
parameter was fiw=13.4 MeV for the 4 =18 nuclei.

separable potentials does arise in the course of actually
fitting them to the data. Insofar as one can refer to a
range for these potentials, this range seems definitely
shorter than that of the local potentials. The latter are,
in fact, generally matched at large nucleon separations
to the one-pion-exchange potential (OPEP). Most
notably, the HJ potential possesses a strong tensor
force with the OPEP range of 1.4 F, whereas our
coupled 3S;-*D; potentials contain a tensor force with a
range of the order of 0.6 F.

III. NUCLEAR REACTION MATRIX

A. Direct Evaluation

The residual interaction in this paper is simply the
Brueckner reaction matrix obtained from the ladder
approximation. For the case of two valence nucleons
outside closed shells, the equation satisfied by this
reaction matrix is

Ky (E) =v+1[Q/(E—Ho) ]Kx(E),

where Ho=Ho(1)+Hy(2) is the two-particle shell-
model Hamiltonian. We will consider in this work a
diagonalization of the residual interaction within the
2s-1d shell. Hence, the operator Q eliminates not only
the occupied 1s and 1p shell-model states, but also
states in which both valence particles are in the 2s-1d
shell. We are then considering matrix elements of
Kx(E) which are appropriate to the mass-18 nuclei
O® and F®. It is conceivable that for such nuclei one
might desire to enlarge the zero-order space to include
the 1f-2p shell, in which case the operator Q would be
adjusted accordingly.

Perhaps the most crucial issue in solving Eq. (24) is
the selection of the single-particle spectrum. Normally,
one imagines H,, which represents the interaction,
between valence particles and the closed shells, to be
obtained in some self-consistent fashion. In practice,
one assigns a definite parametrized form to H, and
determines these parameters from existing data on the
single-valence-particle nuclei O and F¥. Naively one
might expect the spectrum of Ho(1) to appear as in
Fig. 10(a). This spectrum will result if one takes in
Eq. (24), E=E., the energy of the pair of valence

(24)
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nucleons in the sd shell. If one selects an oscillator form
for Hy, then Eq=2X%fiw, and the more or less constant
spacing between major shells in Fig. 10(a) is 7iw. For
the 15-2d shell we have chosen the value fiw=13.4 MeV.

One must recall that Eq. (24) has arisen from a
many-body calculation and H, is very much a conse-
quence of nature of the approximations made in this
calculation. The energies of unoccupied or particle
states, i.e., the 2p-1f and higher shells, are not neces-
sarily those to be expected if a nucleon occupied these
levels. To enhance the convergence of the Goldstone
series for the total energy in nuclear matter, it has been
suggested that the particle potential energies be
omitted.”” These energies are, in fact, better discussed
in the context of three-body correlations.”® When the
latter are considered in totality, it is felt that the
particle potential energies may be redundant. This is a
controversial point the resolution of which is still,
perhaps, in doubt for the treatment of nuclear matter,
and certainly unresolved for finite nuclear considera-
tions.

In view of the last paragraph, we are led to examine
the single-particle spectrum [Fig. 10(b) ] which result
from the choice E= E,— A, where A is some preassigned
energy gap between hole and particle states. Tofacilitate
a later comparison with a calculation involving plane-
wave particle states, it would be well to set the unper-
turbed position of the degenerate 2s-1d shell at the true
zero of energy for a nucleon in the mass-17 nuclei, i.e.,
where this nucleon becomes unbound. We have, in fact,
made the selection

E=E'+Ea—A, (25)

where E’ is the binding energy of the pair of valence
nucleons in the 4 =18 nucleus relative to the energy of
the O core. The variation of £’ over the configurations
of the s-d shell is reflected in a state dependence of the
residual interaction Ky (E). We have made the state-
independent choice E'= —13 MeV, corresponding more
or less to the ground-state binding energy in O® or F,
The results of varying E’ by =5 MeV led us to conclude
that this particular state dependence is small, at least
for the forces we consider.

As we have indicated, an alternative treatment of the
particle states is to describe them with plane waves
orthogonalized to the localized oscillator functions
retained for occupied states. This point of view, which
is also that of Wong,? will be treated in detail in Sec. V
of this work.

In the first instance, we will discuss Eq. (24) with a
pure oscillator form for H,. The matrix elements of
Kn(E), which are to be used in a residual-interaction
diagonalization in the s-d shell, may then be presented
to exhibit explicitly their dependence on two-body

17 G. E. Brown, G. T. Schappert, and C. W. Wong, Nucl. Phys.
56, 191 (1964) ; P. C. Bhargava and D. W. L. Sprung, Ann. Phys.
(N.Y.) 42, 222 (1967).

18R. Rajaraman, Phys. Rev. 129, 265 (1963); H. A. Bethe,
ibid. 138B, 804 (1965).
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relative and c.m. coordinates. If the single-particle
oscillator states are labelled by the usual quantum
numbers {¢} =47, to calculate spectra would
require a knowledge of the matrix elements,

{(0102)7" | Kx(E)|(01'a2/) 7). (26)
However, we may concentrate on
(C(nis)’ NLT™ | Kn(BE) |[(w'Vs")’N'L'YT), (27)

where 7l are the relative, radial and orbital quantum
numbers for oscillator wave functions, and NL the
corresponding c.m. quantities. In the future, we will
generally suppress the labels of total angular momentum
and isobaric spin JT', and other labels whose presence
can be inferred. In (27) the two-particle spin s has been
coupled to the relative orbital angular momentum 7 in a
fashion obviously convenient for considering matrix
elements of the free two-body potential.
The explicit transformation connecting (26) and
(27) is
((0102) 77 | Kx (E)|(o1'0')’T)
= 2 (1) 2(B3) * | (W) A (3D)*)
XD (WD | (W) Y (33
X (nlllnzlz, A ] WHVL, A) (%1’11’%272’, A, ] %ll,N,L,, AI)
XU(LJs; Aj)U(L'VTs, A'f")
X ([(nds) ' NLYT | Kx(E)|[(w'V's)"N'L"FT)

X2 ( 1+6nv2)—1/2(1+5v1'a2’)_1/27 (28)
where ((I3) (L)% |(Ll)4(33)°) is the standard
Is-77 transformation coefficient,”® (#milins, A | nINL, A)
the Brody-Moshinsky transformation coefficient, and
U(LlJs; Aj) the Racah coefficient.” Antisymmetriza-
tion and normalization of the two-particle states in (28)
requires one to include the last factor in (28).

The major difficulty in solving Eq. (24) is, of course,
the coupling between c.m. and relative coordinates
brought about by the operator Q. One can again apply

the transformation of Eq. (28) to the single-particle
intermediate states | o102) of Eq. (24). The result is

{(nls)’NL | Kn(E)|(#'l's)#N'L")
= {((nls)? | v |(n'U's) )onn-OrL:85
{(nls)?| v |[(n"1"s)7)

nlll/l'nlllllll’NIHLNI‘ANANI
U(Llllll]s; AN]‘) U(Lllllll/]s; A//{illl)
X (nlllllAjL’ AI’ ] Q l nlllllllN/l/Ll/l) A’”)
X[E—E(n"I"NL) T
X <(nllllllls) j/I/NIIILII/ ] KN (E) [(nllls) j/NILI), (29)
19 J. M. Kennedy and M. J. Cliff, AECL Report, Chalk River,
Canada, 1955 (unpublished).
20 J. A. Brody and M. Moshinsky, Tables of Transformation

Brackets (Monogréfias del Instituto de Fisica, Mexico, 1960).
2L G. Racah, Phys. Rev. 62, 438 (1942).
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where
(n"l"NL, A | Q | n”'l"'N"’L"’, Am)
= 27 (mlmalo, A" | W'V'NL, A"

nilinal2

X(ﬂlllnzlz, A 1 n"’l”’N’”L’”, A"'), (30)

and
E(n"l", NL) = E(mhnoly) =hw(2n"'4+1"4+2N+L+3).

The primed summation in Eq. (30) proceeds over those
states permitted by the exclusion principle as discussed
before, but also is limited to those states possessing a
fixed total number of oscillator quanta.

A major simplification in the very general Eq. (29) is
obtained by use of the separable potential (1). One can
employ an ansatz similar to Eq. (14) for the free
reaction matrix, i.e.,

((nls)NL | Kx(E)|(n'Vs)"N'L’)

2
= > v,i(nl) vy (W) (NL; il | \(E)| N'L, '),

ti/=1
(31)

where v;,*(nl) = [R,;(k)v;'(k)kdk and R, (k) is the
normalized Fourier transform of the oscillator relative
wave function. This ansatz reduces Eq. (29) to

A (E) =1+4gmn (E) M\ (E). (32)

In Eq. (32) the matrix indices are collectively labelled
by (a)= (NLil), while g and 7x (E), respectively, have
the matrix elements

Gaar={(NL, il | g| N'L't'V y=8:8nn0L-gur*  (33)

and
(NL,il| =~ (E)| N'L’, il')
= > v, i(nl) U(LlJs; Aj) (INL, A | Q | ”'UN'L’, A')

X[E—E(nl, NL) U (L'UTs; Nf) vy (W'1).

If the inclusion of the relative orbital c.m. in the index &
were only motivated by the tensorlike coupling that
exists in Eq. (29) between ! and " (or I and I'"’) for
triplet spin, then the solution of Eq. (32) would be
relatively straightforward. However, the nondiagonality
of Q in I and """, operative in the general situation for
which forces exist in all partial waves, is a formidable
computational problem to surmount. If, while treating
the relative states 1Sp or (351, ®D;), we discount the
forces in other partial waves, then coupling to other
partial waves through Q is eliminated. Alternatively,
we can simply dismiss the off-diagonality in orbital
angular momentum, thus, essentially, employing the
angle-averaging approach to nuclear matter. We will
use the angle-averaged Q for calculations in the higher-
orbital states.

To illustrate our procedure for the solution of Eq.
(32) we refer to the simplest case of a singlet spin state.

(34)



1386

TasirE ITI. Some representative matrix elements of the Pauli
operator Q for increasing values of the total oscillator quantum
number v=2n-+I+4+2N+L=2n'4V'+2N'+L'. For diagonal ma-
trix elements the c.m. and relative quantum numbers are listed
only once. Quantum numbers which are being repeated are
simply omitted. In column (a) are listed the matrix elements
obtained using Eq. (30) without approximation. Column (b)
contains the same matrix elements angle-averaged according to
Eq. (40). When the (a) and (b) values are clearly identical the
(b) values are omitted. Despite the drastic averaging which
occurs in some cases the diagonal Ky(E) matrix elements are
much the same whether one uses (a) or (b).

Q values
v A nwl NL #U NUL (a) (b)
6 0 3000 0.781
8 4 0.930
10 5 0.978
12 6 0.993
14 7 0.998
16 8 0.999
6 4 100 4 0.531
8 2 0.696
10 3 0.816
12 4 0.897
14 5 0.946
16 6 0.974
18 7 0.988
6 0 2101 0.312  0.625
1 0.875
2 0.538
8 0 3101 0.656  0.838
1 0.968
2 0.797 -
12 0 5101 0.945 0.977
1 0.998
2 0.971
6 0O 3000 2010 —0.248 0
1 2 0.083 0
3 0.156 0
8 0 4000 3010 —0.135 0
2 2 —0.039 0
1 3 +0.081 0
1 4 +0.055 0
10 0O 5000 4010 —0.059 0
3 2 —0.047 0
2 3 0.016 O
1 4 0.041 0
14 0 7000 6 010 —0.008 0
20 —0.014 0
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For this case,
(NLi| m (E)| N'L'i')
= > vi(n0)[E—E(n"ONL) T
nl!

X (n’ONL, L| Q| n"0ON'L, L)v"(#'"'0), (35)

with
J=L=I,

while

20" 42N =2n""42N".

If at this point we were to assume that Q were completely
diagonal in the c.m. quantum numbers, the matrix
index « would collapse to the single label 7. Equation
(32) would then be a 2X2 matrix equation identical in
form to Eq. (15), and its solution would be given by
Egs. (21). It may be noted that our procedures most
closely parallel the so-called “global” approximation of
Wong, and that the completely diagonal assumption
for Q is Wong’s approximation G4 (0).

It is evident that the any nondiagonality in
(nINL, A | Q| #'VN'L, A’) must disappear as one con-
siders increasingly larger values of y=2n+I1+2N+ L=
20'+V+2N'+L'. In this limit the sum in Eq. (30)
becomes unrestricted. In practice, for »>14 one can
effectively take (Q=1. Some representative matrix
elements of Q calculated using (30) are presented in
Table ITT. With Wong, we, in fact, find that GA(0) is
generally an excellent approximation for calculating
matrix elements of Ky, which are themselves diagonal
in the c.m. coordinates.

A second computational point to be considered is the
specific evaluation of the part of the summation in
Eq. (35) arising from large values of #”’. One has
(approximately) for this summation

> vi(w0)[E—E(NL) — (2n"+3)iw] 0" (20).

al>ng
(36)

For short-ranged nuclear forces this contribution to
m~(E) is considerable. Indeed, for a zero-range force
the summation diverges. One may convert this summa-
tion into an easily evaluated integration by employing
the following approximation:

v4(n0) =2 (f/ mew) kn'2v? (k) , (37)

where

T2k /m= (2n+3)fiw.

This result is arrived at by noting that a relative oscil-
lator wave function R,o(7) used in conjunction with a
short-ranged potential function »(r) is well approxi-
mated by?

Ry (r)=[2(2)2T (n+3) /270 V250 (kyr) .
Equation (37) then follows in the limit of large #. We

22 A, Kallio, Phys. Letters 18, 51 (1965).
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F16. 11. (a) The expansion of 1.5, matrix elements of K (E) deduced from a gapless oscillator spectrum and the finite-core potential
in Table I as a series in the free reaction matrix K (e). The »=1, 2 matrix elements are not shown for ¢>0, but behave in a manner
similar to the »=0 matrix element. (b) The expansion of 3.5; matrix elements of Kn(E) deduced from a gapless oscillator spectrum
and the potential 3S5:-3D; (a) in Table I as a series in the free reaction matrix K (e).

then have

> i(n"0) [E~E(NL) — 20"+ 10" (1'0)

7
n/l2n,

~ / “ Wdk v (k)" (B) [E—E(NL) — (B2k/m) T (38)

The accuracy of the foregoing approximation was
demonstrated by varying the choice of the point n=1,
at which one converts the summation to an integration.

Once the matrix elements of #x(E) are computed
they may be inserted into Eq. (32) to yield Ay (E), and
ultimately Kn(E).

B. Expansion of Ky(E) as a Series in K(¢)

Reference Spectrum

Before presenting the nuclear reaction matrix
elements calculated according to the procedures just
described, we wish to consider, in a parallel treatment,
an evaluation of these same matrix elements from an
expansion of Ky (E) in terms of K(e). This procedure
was outlined in previous work by the present authors,
and by Kahana and Tomusiak.® Equations (1) and (24)
may be easily manipulated to yield

Ex(E)=K(e)+K(e) (E_E)E - f—t) Kx(E)
~K(O+K© (55 — L) K@+

(39)

For negative values of the parameter ¢ the above
expansion is equivalent to the reference-spectrum pro-
cedure of Bethe et al.” We have considered the expansion
(39) up to fourth order in K (e) for both positive and
negative e in a broad range, and for a vanishing gap,
A=0. The results are presented in Fig. 11(a) for the
1So matrix elements deduced from a potential, with a
finite core, and in Fig. 11(b) for the coupled 2S; matrix
elements obtained from potential (a) of Table I. The
corresponding curves obtained using infinite cores or an
uncoupled 3S; wave are not sufficiently different to be
plotted separately. The dependence of K(e) on e for
the states 1Py, 8Ds, 3Ds, in which the force is somewhat
weaker, is shown in Fig. (12).

The convergence of the series in the free reaction
matrix, indicated in Fig. 11(b) for the 3S; states, is
much the same whether one employs the potential (a)

ST T T T T T T T T T
40=_____ 'tup)y —
3.0 \/ —
2.0& o
S ——
1.0— —]
3 3(0d)
2 oo 3 —
3,
Lo (1d)y |
3,
-2.0— (0d), .
-S.OW’ —
(14),
-4.0— 2 —
-5.0 | N NN S N (NN U O Y I |
-240 -160 . -80 o 80 160 240
«(MeV)

F1c. 12. Free reaction matrix elements for the states 1Py, 3D;, 3D,
deduced from the potentials in Table I.
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T16. 13. Comparison between the 3S;, #=0 reference-spec-
trum matrix elements deduced from our 3S;-3D; potentials (a)
and (b).

of Table I with Pp=0.3%, or the potential (b) with
Pp=2.8%. In Fig. 13, we have displayed the =0, 35;
lowest-order reference-spectrum matrix elements of
these two potentials. The introduction of a stronger
tensor force at low energies seems to have reduced the
magnitude of this matrix element, but not to have
altered its rate of fall off with increasing (e). The same
may be said of the =1 and #»=2 matrix elements.

To further explore the dependence of the reference
spectrum on the underlying potential we have, in
Table 1V, listed the reference-spectrum matrix elements
extracted from our LS, 35; (a), and 357 (b) potentials as
well as from the local HJ potential.® One observes that
the matrix elements (#0; NL| K(e)| #0, NL) arising
from the HJ potential fall off more quickly for increasing
negative values of e= —v2X (40 MeV) or for increasing
7. An examination of the explicit forms for the functions
7% (e) listed in the Appendix indicates that these
functions depend on the ranges a* through the param-
eters (a%)%m/h2. Thus, the energy scale of the free
reaction matrix is determined by the range of the
potential. As one allows e—>—c, one expects the
repulsive parts of the potential to become increasingly
more important. For a nonsingular potential Eq. (10)
yields K (¢)—v, as e—>— . The longer the range of the
attractive part of the potential, the more quickly will
the dominance of the shorter-range repulsive force be
felt. The HJ s-state forces contain at least the OPEP
long-ranged components. In the 3S; matrix elements,
where the HJ long-ranged tensor force is of crucial
importance, the drop with 42 or # is most evident. Of
course, this argument must be tempered by the restric-
tions placed on the free reaction matrix at positive
energies. Coefficients of the scaling parameters (a?)%m,/
72 are not independent of the ranges @7, if one is to fit the
scattering data. It may also be true that the HJ
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repulsive core is in some senses harder than ours, and
that the local nature of the HJ potential enhances the
above range effect.

One also sees from Table IV, that the insertion of a
stronger tensor force into the separable potential has
produced a reduction in amplitude of the =0 35
reference-spectrum matrix element. The remaining
differences at fixed e between this matrix element and the
corresponding matrix elements obtained from the HJ
potential must be ascribed to some other source.

Finally, it is easy to demonstrate that the dependence
of reference matrix elements on # may be linked to the
range of the attractive part of the potential. Later in
this paper [Table VII, column (e)], we quote matrix
elements of the attractive part of the LS, potential by
itself. These are —9.05, —8.73, —7.64 MeV, respec-
tively, for the #=0, 1, 2 matrix elements, respectively.
This latter potential, 1.So(1) in Table I, possesses a range
of ~0.7 F. If we then employ a potential of range 1.4 F
whose strength is adjusted to achieve equality with the
previous #=0 matrix element, we find =1, 2 matrix
elements of —3.55 MeV and —2.48 MeV, respectively.
This decrease with # does not occur for the shorter-
range force, since at r=0 the relative wave function
R,(7) is an increasing function of #. The longer-range
separable force can sense the decrease in magnitude and
the nodes which occur for > 0. In this latter discussion,
one must recall that for a separable potential radial
integrals of the force appear as

0| v| n0)~ (/ o(7) Rno(f')r?dr)

whereas for a local force one has

2
’

(n0 | v | n0)~ / 9(7) Ry (7) 2dr.

In the limit of very long range for either force, one will
clearly find a different behavior with #. Indeed, many
of the disparities in the reference-spectrum matrix ele-
ments may be tied to the different nature of local and
nonlocal forces.

IV. RESULTS AND DISCUSSION OF
OSCILLATOR CALCULATIONS

It is possible to read the limiting values of Ky (E)
predicted by the reference-spectrum expansion from
Figs. 11(a) and 11(b). A more complete listing of
matrix elements of Kx(E), obtained by direct solution
of Eq. (24) for varying sizes of the gap 4, is given in
Table V. :

In evaluating these matrix elements, an angle-
averaged diagonal approximation for Q was employed,
ie.,

(’ﬂZNL [ Q I n'l’N’L,>=BNNfﬁLthszy[Zl-f-l]_lI:ZL—F 1]_1

| L+1

X ZI (2A+1) WINL, A | Q| nINL, A), (40)

A=|L—1|
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Tasre IV. Comparison of some reference-spectrum matrix elements from the separable potential of Table I with those from the
H]J potentials. The latter are taken from the work of Wong (Ref. 9). The matrix elements obtained from the local potential fall off
somewhat more rapidly with increasing v2 and considerably more rapidly with increasing #.

Separable potential

Hamada-Johnston

Separable potential
(b) '

(a) potential
Yn? (F_2)

n 1 2 3 1 2 3 1 2 3
K3S) 0 —15.40 —12.55 —11.57 —11.28 —7.69 —5.86 —13.9 —11.2 —10.0
(MeV) 1 —13.26 —10.82 —9.96 —7.49 —4.47 —2.72 —12.3 —-9.9 —8.8

2 —10.01 —8.14 —7.47 —-3.01 —0.49 +0.71 -9.9 —-7.9 —7.2
K(1Sp) 0 —7.79 —7.07 —6.77 —7.05 —6.05 —5.43

1 —5.86 —-5.31 —5.08 —4.54 —3.57 —2.87

2 —3.66 —-3.28 —-3.11 —1.51 —0.66 —0.06

which, when combined with the relation

SSUWLVTs; N ULV Ts; A" =850,
A7

greatly simplifies Eq. (29). One notable consequence of
Eq. (40) is the removal from Eq. (29) of any depend-
ence on the total angular momentum J. For matrix
elements of Kx(E) in LS states, or 35 states with L=
L'=0, the angle averaging will not have any effect
aside from eliminating coupling by other than the tensor
force to states of higher relative angular momentum.
As a numerical example of a matrix element which is
affected by angle averaging one might consider the
matrix element labelled by the relative and c.m.
numbers (0012) and listed in the second row of Table
V. This triplet-spin matrix element is associated with
possible total angular momentum J=1, 2, 3. The spread
we find about the average value quoted in Table V is
some +29,. In a few smaller, and therefore less im-
portant, nuclear matrix elements the errors incurred by
using the angle averaging approximation are as large as
+5%.

We have also tried to indicate the consequences of the
diagonal assumption for N included in Eq. (40). In
Table VI, we have listed a few of the LSy matrix elements
calculated with and without the diagonal assumption.
When the diagonal restriction was relaxed, we considered
differences | N—N’| as large as 30. Nevertheless, the
two sets of matrix elements agree remarkably well. Our
conclusions on the accuracy of the above approxima-
tions agree, of course, with similar statements by Wong.

Also included in Table V are the e=—80 MeV
spectrum matrix elements for states other than shown
in Figs. 11(a) and 11(b). It is clear that the expansion
of Kx(E) in terms of K(e) is a very useful one for
€<0. To achieve a good-state-independent approxima-
tion to the nuclear reaction matrix one must match the
choice of € to the size of A. For the gapless single-
particle spectrum the selection e= —80 MeV is reason-

able, while for A=94 MeV ¢ must be decreased to
—200 MeV. Independent of A, the convergence of
K(e) to Kn(E) is particularly good in the region
—60 MeV<e<—200 MeV, where inclusion of the
quadratic term produces sufficient accuracy.

It is interesting to note that the so-called phase-
shift method of Kallio® amounts to a use of the above
expansion at the relative oscillator energy e=e.=
(2n+143)Aw. Some matrix elements obtained in this
fashion are included in Table V. The discrepancies
between our fit and the experimental phase shifts will be
reflected to some extent in these phase-shift matrix
elements. The values obtained for the 1S,, 351 states
show the largest deviations from the exact matrix
elements. The strong interaction in the s states perhaps
negates the use of a phase-shift method in these states.?

It is, of course, of paramount interest to compare the
matrices Ky (E) obtained using different potentials .
First, one may stay within the framework provided by a
separable potential and alter, say, the nature of the
repulsive contribution to the potential or the strength
of the tensor component in the 35y, 3D states. In Table
VII, we have presented the .S and 3S:-*D; nuclear
matrix elements obtained using the Yamaguchi poten-
tial, the Tabakin potential, and our potentials possessing
either finite or infinite hard cores. The Yamaguchi
potential differs most from the other two in its inability
to produce a weakening of the nuclear matrix elements
with increasing number of relative nodes (»). This
decrease in strength of the residual interaction is due
presumably to the increased sensitivity of the states with
larger 7 to high-energy repulsion in the force. As we
have seen, one could also produce a similar drop off
with # by employing a single-term attractive potential
with a longer range. Such a separable force would not
fit either the low- or high-energy data.

Also listed in Table VII are the matrix elements of

% D. Koltun, Phys. Rev. Letters 19, 910 (1967).
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TABLE V. Matrix elements of K¥([) obtained from the separable potential specified in Table I and using a varying gap A in the
oscillator single-particle spectrum. The gap of 94 MeV corresponds roughly to A= E. The 8S; matrix elements are listed for the po-
tentials 35; (a) and 3S; (b) as well as for a completely uncoupled 3S; potential. The purely .S-state matrix elements are calculated with
and without an infinite repulsive core. Also included in this table are the reference-spectrum matrix elements (K (e) ) for the choice
e=—80 MeV (+*=2 F~?) and some phase-shift matrix elements (K (en) ). These appear in columns (d) and (e), respectively. The
reference choice e=—80 MeV is a good starting point for the expansion of the gapless Kn(E). The choice e=—200 MeV would be
reasonable for A=94 MeV.

(a) (b) () (d) (e)
A (MeV) (K(e)) Phase
n I ol N L +0 +47 494 e=—80 shift
381-3Dy 00 20 —13.66 —11.33 —10.56 —12.55 —20.9
1 2 —13.30 —11.22 —10.50
potential (a) 0 4 —13.12 —11.18 —10.53
10 10 —10.26 —9.12 —8.73 —10.82 —8.1
Pp=0.32% 0 2 —10.32 —9.18 —8.78
2 0 00 —7.47 —6.73 —6.47 —-8.14 —4.6
100210 —1.44 —1.33 —1.30 —1.56 —1.08
0 2 —1.43 —1.33 —1.30
201200 —1.52 —1.47 —1.45 —1.74 —1.05
0 2 10 +1.67 1.85 1.95 1.90
0 2 1.67 1.85 1.95
1 2 00 2.61 2.94 3.12 3.06
381-2Dy 00 1 2 —13.00 —10.33 —9.46
potential (b) 10 10 —10.49 —8.70 —8.07
20 00 —7.27 —6.88 —6.40
Pp=2.8%
0 2 1 0 —4.24 —3.91 —3.83
1 2 2 00 —4.24 —3.99 —3.95
0 2 0 1.35 1.68 1.83
1 2 00 1.88 2.32 2.53
1P 01 11 1.53 1.64 1.71 1.67 1.39
0 3 1.53 1.64 1.71
11 01 2.54 2.90 3.17 3.20 2.32
3D, 0 2 10 —2.69 —2.46 —2.36 —2.42
0 2 —2.69 —2.46 —2.36
1 2 00 —3.73 —3.35 —3.20 —3.25
3Dy 0 2 10 —0.12 —0.12 —0.12 —0.12 —0.12
0 2 —0.12 —0.12 —0.12
1 2 00 —0.30 —0.30 —0.29 —0.29 —0.29
1S 00 2 0 —7.17 —6.63 —6.43 —7.07 —8.2
£2< o 1 2 —7.11 —6.60 —6.41

0 4 —7.04 —6.57 —6.34
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TABLE V (Continued)

(a) (b) (©) (d) (e)
A (MeV) (K(e)) Phase
n I ol NL +0 -+47 494 e=—380 shift
10 10 —5.07 —4.83 —4.73 —5.31 —4.1
0 2 —5.05 —4.82 —4.73
20 00 —3.08 —2.96 —2.90 -3.28 —2.3
1So 00 20 —~7.16 —6.61 —6.40
1 2 —7.09 —6.58 —6.38
o= 0 4 —7.02 —6.56 —6.36
10 10 —5.05 —4.81 —4.68
0 2 —5.03 —4.80 —4.67
20 00 —3.06 —2.93 —2.83
3P 01 11 —2.11 —2.05 —2.03 —2.08
0 3 —2.10 —2.05 —2.03
11 01 —1.46 —1.44 —1.44 —1.49
3P, 01 11 1.76 1.88 1.95 1.89
0 3 1.77 1.88 1.75
11 01 2.59 2.81 2.94 2.86
3P, 01 11 —1.07 —1.01 —0.99 —1.00
0 3 —1.07 —1.01 —0.99
11 01 —1.85 —1.73 —1.68 —1.69
1D, 0 2 10 —0.50 —0.49 —0.48 —0.48
0 2 —0.51 —0.49 —0.48
1 2 00 —0.88 —0.85 —0.84 —0.84
uncoupled3S; 0 0 20 —13.92 —11.56 —10.80
12 —13.63 —11.45 —10.83
0 4 —13.34 —11.37 —10.69
< ®
10 10 —10.78 —9.53 —9.07
0 2 —10.60 —9.50 —9.05
20 00 —7.54 —6.82 —6.51
uncoupled3S; 0 0 20 —13.58 —11.34 —10.62
1 2 —13.31 —11.24 —10.56
0 4 —13.05 —11.16 —10.51
£=®
10 10 —10.51 —9.32 —8.89
0 2 —10.40 —-9.29 —8.87

20 00 —7.42 —6.72 —6.44
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TaBLE VI. Comparison of 1S¢ matrix elements obtained (a)
in a diagonal approximation for Q, (b) for nonzero diagonal
and off-diagonal matrix elements of Q. Off-diagonal matrix ele-
ments of Kn(E) can be nonvanishing only if Q is allowed to be
nondiagonal.

KAHANA, LEE, AND SCOTT

n I N L o V N L J ® ®)

0 0O 2 0 0 0 2 0 0 -—7.17 —7.20
1 0o 1 0 1 0 1 0 0 -=5.07 —5.08
2 0o 2 0 2 0 2 0 0 -3.08 —3.00
1 0o 0 2 0 0 1 2 2 0 0.19
1 0 1 0 0 0 2 0 O 0 0.10

the Tabakin potential and of our finite core potential.
The repulsive component of the force clearly plays a
more influential role for our potentials. Among those
states not explicitly shown in Table VII, a notable
difference occurs for the 3D; matrix elements for which
the Tabakin potential gives —0.69 and —1.04 MeV for
the =0, 1 states, respectively. Finally, it is evident
that the use of an infinite, rather than a finite, repulsive
core with the separable potentials produces only minor
changes in nuclear matrix elements relevant to the shell
model.

A second and important feature we have suggested
varying in the separable potential is the strength of the
tensor force. An adequate fit to the 3S:-*D; coupling
parameter p does not guarantee a reasonable depth for

185

the tensor force. A more accurate measure of this
component of the force would appear to be the deuteron
D-state probability. In Table VIII, we have presented
351Dy nuclear reaction matrix elements for separable
forces with varying degree of tensor strength. We have
included in this table matrix elements for the Yama-
guchi-Yamaguchi® coupled 3S:-*D; potential as well as
for the potentials considered in Table VII.

For zero gap in the single-particle oscillator spectrum,
the purely S-wave reaction matrix elements obtained
from the many potentials are nearly equal. The only
exceptions occur for the Tabakin matrix elements, which
are appreciably smaller than those deduced from the
other potentials. This diminished S-wave strength can
probably be attributed to the failure of the Tabakin
potential to fit the 35y scattering length. Experimentally
this parameter is 5.44 F in contrast to the Tabakin
value of 7.1 F. Despite the above-noted similarity
between S-wave gapless matrix elements, the 351-*Dy
coupling matrix elements differ markedly. These matrix
elements, as might be expected, are largest for our
353D, potential (b) and for the coupled Yamaguchi-
Yamaguchi potential. The latter potential yields a D-
state probability of only 49, but contains no repulsion
in any of the states in which it acts. The coupling matrix
elements obtained from our potential (a) are small,
while those from the uncoupled Yamaguchi potential
vanish.

However, when one turns on a finite gap in the single-
particle spectrum, the influence of the tensor force is

TasLe VII. Comparison of nuclear matrix elements for separable potentials containing varying degrees of repulsion. In this calcula-
tion we set A=0 and fiw=13.4 MeV. Matrix elements from the S-state potential obtained using the form factors in Egs. (4) and (6)
are shownin column (a) with g finite and in column (b) with gs= ». Matrix elements from an uncoupled version of the 35; potential
are also shown. The Tabakin and Yamaguchi matrix elements appear in columns (c) and (d), respectively. First-order perturbation
theory values of the attractive and repulsive parts of the 1.5, potential used in (a) are indicated separately in (d) and (f). Corresponding
perturbation values for the Tabakin potential are listed in (g) and (h).

(| Kyl (lol)
(a) (b) (c) (d)

n I wl! NLJ Hn<l® go= Tabakin Yamaguchi (e) (f) (g) (h)
1So 00 2 —7.17 —7.16 —7.20 —7.54 —9.05 4.49 —-5.91 0.58

1 1 —35.07 —35.05 —4.74 —6.05 —8.73 6.63 —4.71 0.44

20 000 —3.08 —3.06 —2.67 —4.83 —7.64  8.09 —3.72 1.16
S1-2D; 00 121 -13.39 —-11.71 —13.30

10 1 0 1 —10.26 -9.23 —11.73

20 0 01 —7.47 —7.30 —10.09

0210101 —1.44 —2.06

1220001 —1.52 —2.25

0 2 1 01 1.67 3.35

1 2 001 2.61 3.15
351 uncoupled 0 0 2 01 -—13.92 —13.58

1 1 1 —10.78 —10.51

20 001 —7.54 —7.42
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Tasre VIII. Comparison of the 35;-8D; matrix elements of potentials possessing varying amounts of tensor force. In this comparison
we employ a vanishing gap in the oscillator spectrum and consider our 35; (a) and (b) potentials as well as the potentials of Yamaguchi

(Y) and Yamaguchi-Yamaguchi (YY).

Kn(E) for A=0 (MeV)

n l n N L 351 (a) 351 (b) Y YY
381 0 0 1 2 —13.30 —13.00 —13.30 —13.31
0 —10.26 —10.49 —11.73 —11.22
2 0 —7.47 —8.27 —10.09 —9.78
3851-*Dy 0 2 1 0 1 0 —1.44 —4.24 0 —4.96
1 2 2 0 —1.52 —4.24 0 —6.19
3D, 0 2 1 1.07 1.35 0 —2.22
1 2 0 2.61 1.88 0 —3.96

felt even in the purely S-wave matrix elements. This
information is contained in Table V, where matrix
elements of our potentials (a) and (b) are given for
A=94 MeV. Clearly, the matrix elements of both
potentials are diminished in magnitude by the introduc-
tion of a gap, but the reduction in size is greatest for the
potential possessing the larger tensor component. This
behavior has been observed previously in nuclear
matter computations by many authors and in finite
nuclear reaction matrix calculations by Wong.! The
classic argument presented to explain this tensor
quenching states that the tensor force which contributes
to the S-wave interaction through a second Born
approximation does so less effectively inside a nucleus
than in free space. The interactions which occur within
the nucleus are off the two-body energy shell and,
evidently, the second-order tensor force decreases
appreciably in such a situation. What we have de-
monstrated is that, at least for separable potentials, the
amount of quenching which is obtained is quite de-
pendent on the gap in the single-particle spectrum. We
will return to this point in Sec. V, where plane-wave
intermediate states will be discussed.

Finally, we would like to comment more generally on
the effect on two-body matrix elements of introducing a
gap into the oscillator spectrum, (indicated in Table V).
Those matrix elements which show a more marked
dependence on e when calculated to lowest order in
K (€) are understandably most influenced by the gap.
When"A”is increased from 0 to 94 MeV the =0 35,
reaction matrix elements arising from potentials (a) and
(b) suffer reductions of 23 to 309, respectively.
Clearly, larger bounds for this reaction matrix element
result from uncertainties in one’s knowledge of the
single-particle spectrum, rather than uncertainties in
the size of the tensor force. Some understanding of the
A dependence of a particular matrix element can be
obtained from perturbation theory. Clearly, any
dependence on A can first enter a reaction matrix ele-
ment in the energy denominator of the second-order
Born term. Thus, matrix elements for states in which the

force is attractive will decrease in magnitude, and those
for states with repulsive forces increase in magnitude,
when A is increased. Also, states in which the force is
especially weak will exhibit little dependence on A.

In concluding this section, it is appropriate to refer to
the work of McCarthy,® who has extracted reaction
matrix elements from Eq. (24) using the HJ potential
and oscillator wave functions for all single-particle
states. In Figs. 14 and 15, we have displayed the
behavior with A of the 3S; (b) and 1S, diagonal matrix
elements taken from Table V and from McCarthy’s

Mc CARTHY ]

———KLS

K, (E) (MeV)

A Y [ T Y A
o 20 40 60 80

A (MeV)

100

Fic. 14. Comparison of the 3S; reaction matrix elements from
our separable potential 3S; (b) with those obtained by McCarthy
(Ref. 10) from the H]J potential. The dependence of these matrix
elements on the gap in the oscillator spectrum A is shown. We
should point out that McCarthy used a slightly larger oscillator
parameter hw=14 MeV. The qualitative conclusions to be drawn
from this diagram are not altered, however.
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McCARTHY —
———KLS

K, (E) (MeV)

(o] 20 40 60 80
A (MeV)
F1c. 15. Comparison of the LS reaction matrix elements from

our separable potential with those obtained by McCarthy (Ref.
10) from the HJ potential.

calculation. The two sets of matrix elements are not
strictly comparable, since McCarthy used an oscillator
parameter fiw=14 MeV, whereas we have fiw=13.4
MeV. The qualitative features of the comparison we are
presenting will not be greatly altered if this minor
adjustment is made. The local and nonlocal potentials
yield matrix elements which are surprisingly similar for
a small gap in the oscillator spectrum but which begin to
diverge as the gap size is increased. The HJ matrix
elements drop off more quickly with increasing A,
presumably mirroring the comparable behavior with e
observed in the corresponding reference-spectrum
matrices. The McCarthy results provide striking
confirmation of our contention that the gapless 35;
reaction matrix elements are unaffected by the amount
of tensor force in the underlying potentials.

V. PLANE-WAVE INTERMEDIATE STATES

The final component of our calculations which we
would like to alter is the shell-model Hamiltonian H,.
To permit a more direct and meaningful comparison
with the results of Wong® for the local HJ potential, we
will now use, with our potential, a set of plane-wave
intermediate states. We retain the oscillator description
for the occupied states in the 1s, 1p, 2s-1d shells and
orthogonalize the plane-wave particle states to these
hole states. Specifically, we will rewrite the propagator
in Eq. (24) as

QL1/(E'-1)10,

where T=T(1)+7(2)=t+Tem. is the total kinetic
energy of a nucleon pair and E’ as given in Eq. (25).
There is some doubt whether one should use the
kinetic-energy operator 7" or an operator like Q7°Q
which commutes with Q in the energy denominator in

(41)
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(41) 2 We will discuss the relevance of this view later.
We will simplify our calculations by making the as-
sumption that Q is completely diagonal. Thus, our
results will correspond to those obtained in the GA(0)
treatment of Wong. Our earlier discussion of the effect
of a diagonal assumption on LS matrix elements and
the small variations seen between Wong’s G4 (0) and
GA(2) results attest to the accuracy of this assumption.
It is interesting that for oscillator intermediate states
one can write

Q/ (E—Ho) =Q[1/(E—Ho) 10, (42)

provided one treats both sides of this equation exactly.
If, however, one assumes that Q is a diagonal operator,
then the existence of matrix elements of Q which are less
than unity leads to a reduction in the right-hand side
of Eq. (42) relative to the left-hand side. It is a simple
matter to check the extent of this reduction. The 357,
n=0 matrix elements which are most effected by a
diagonal approximation in Eq. (42) are reduced
approximately 109, when a vanishing gap is used in the
oscillator spectrum. When the gap in the oscillator
spectrum is increased to 47 or 94 MeV one finds a very
small decrease in all matrix elements. If (as one might
expect) the plane-wave states are better represented by
oscillator states with an appreciable gap, then we can
probably trust the diagonal restriction placed on Q in
the propagator (41).

To carry out the plane-wave intermediate-state
calculation along the lines of Sec. IV, only the matrix
elements

(iNL| Q[1/(E'=T)1Q [ W'V N'L’)

need be reevaluated. This requires the calculation o
matrix elements

(INL | QU1/(E'=T)1Q | w'¥N'L"),  (43)
which are given schematically for uncoupled s states by

S WNL|Q|w/IN"L) f 12dk PP Runi(k)

nll e

XRurrr1(k) Ry .(P) Ryerop (P)LE — (72/m) (R+3P?) T

XW'IN"'L|Q|nINL). (44)
Further, we write
OL1/(E'=T7)10= (-1 [1/(£'—-T1)1(Q—1)
+(Q-D[/(E'-T)1+[1/(E-17)](Q-1)
+[1/(E'=T)] (45)

% See, for example, M. Baranger (Ref. 1). An alternative
viewpoint could be based on the observation that “particle”
states lie in the continuum. Their spectrum is then just that
obtained from the kinetic energy operator. However, their wave
functions would be distorted by any potential interaction with the
nuclear core. One might then ask to what extent the particle-state
wave functions are approximated by plane waves orthogonalized
to the occupied states.
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The first three terms on the right-hand side of
Eq. (45) may be treated as indicated in Eq. (44),
since their contributions from the summations cut off
when the total oscillator quantum number in the
summed states exceeds a reasonably low value. The
final term in Eq. (45) is the propagator one would
expect were the exclusion principle inoperative. The
contribution of this last term to an uncoupled matrix
element (WINL | n7n (E)| w'UN'L') is

> f Rk / PP v () Rua(B) R 1. (P) R 1.(P)

nl?

XLE— (7i2/m) (B24-%P?) o¥ (n''])
= [ PP Reu(P)Rus(P) [ Bk wi(h)ot (8

X[E— (#/m) (R+1P) I (46)

In treating plane-wave intermediate states, one might
wish to use as a reference reaction matrix the solution of

Ko(B)=vtof1/(B—=T) 1Ko (B).  (47)

If one takes matrix elements of this latter equation in
plane-wave c.m. states, one obtains

1
E— (72P2/4m) —t
X(P| Kr(E)| P), (48)

(P| Kr(E)| P)=v+v

and, hence concludes that
(P| Kr(E)| P)=K(E—#2P*/4m). (49)

Nuclear matrix elements are then obtained by averaging
over the corresponding free-reaction matrix elements in
the fashion?

(mINL | Ky (E)| n'IN'L)

_ f PP Ry (P)Ry+1(P)

X {nl | K(E—#n2P/4m)| n'l). (50)

In Table IX, we have presented the Ky (E) matrix
elements deduced using our form of the separable
potential and the procedure described in this section.
For comparison, we also list the corresponding matrix
elements obtained by Wong in the approximation
GA(0), and a few of the matrix elements of Kr(E).

If one’s point of reference is the gapless oscillator
calculation of Kn(FE), then one must conclude a
substantial but not radical change is produced in

% One might well have guessed that the matrix elements in
Eq. (50) could be approximated by
(INL| Kp(E) | wINLY= {ul | K(E'—aByg) | #1)

with a=$. In practice, we found this approximation, which could
also be used in evaluating the c.m. integral in Eq. (43), to be
improved by the choice «=0.4.
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Kn(E) by the substitution of plane wave for oscillator
intermediate states. However, the introduction of a gap
into the oscillator spectrum simulates many .of the
changes wrought by plane waves. The matrix elements
most affected by the substitution are those for the 3S5;
states in which the force is strongest. For the 35; states
with #=0, /=0 the diagonal matrix elements obtained
with no gap in the oscillator spectrum are reduced by
some 30%, when a plane-wave spectrum is employed.
This reduction is reproduced by using an oscillator gap
of approximately 90 MeV. A crude but intuitively
appealing argument suggests that to recover the plane-
wave results from an oscillator basis one should employ
a state-dependent gap. If in solving for the nuclear
reaction matrix we assume Q is diagonal in the c.m.
coordinates, then we may write (E— Ho) '~ (E—En1L—
t—u)~L, for the oscillator case where Exr, is the oscillator
cm. energy and # the oscillator relative potential
energy. With the further, and not as well founded,
assumption of c.m. diagonality for T, we have in the
case of plane waves

(E'—T) '~ (E' —%Ey.—1)

One can easily argue that the relative potential energy,
because of the short range of the nuclear force, is small
in all situations which we consider.?* To make the above
two propagators agree, then, one should take E=
E'4+Ey—A=FE'+Eu— (Eu—3Ey1), thus introducing
the state-dependent gap

Axny=Thw—3(2N+L4-3)iw.

If one were to obtain the plane-wave reaction matrix
elements by interpolation from Table V, it may be
argued that a slight improvement in accuracy results
from the use of Ay, rather than the state-independent
value A=94 MeV. However, it is of crucial importance
to use the above state-dependent gap in comparing the
plane-wave results of Wong® with the oscillator cal-
culation of McCarthy. The HJ reaction matrix is far
more sensitive to changes in A.

One may note parenthetically that the use of (47) asa
reference matrix in the plane-wave situation is partic-
ularly bad for the 35y, =2 matrix element. If one used
Ky (E) with E= E'=—13 MeV, then one could expect
a Pauli correction ~6 MeV in this state. The averaging
in Eq. (50) takes one, for the n=1, 2 states, uncom-
fortably close to the deuteron pole in K(e). A better
state-independent reference matrix to employ is then
the free reaction matrix K(e), with ¢ having some
negative value reasonably far removed from the bound-
state singularity. The value e= —200 MeV is a good
choice for the previous plane-wave calculation. We
recall that for the separable potentials the gapless
oscillator matrix elements were reasonably well ap-
proximated by K (e) at e=—70 to —80 MeV, but that
the A=94-MeV oscillator elements would have required
e~—200 MeV.
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TaBLE IX. Nuclear reaction matrix elements using plane waves for intermediate states, The form of the propagator is varied as
indicated in the column headings. All plane-wave calculations are carried out in an angle-averaged diagonal approximation for the
operator Q'. We took fiw=13 4 MeV and E’=—13 MeV. Also we used only S-wave potentials possessing infinite cores. GA (0) results
of Wong (Ref. 9), which are included in the last column for comparison, were obtained using E’=—8 MeV and fiw=13.5 MeV’. All
matrix elements are listed in MeV.

() (b) (0)
1 1 1
n I o IV N L QE'—TQ QE’—QTQQ E'-T V&gr)lg
35,30,
0o 0 2 0 —10.73 —11.28 —15.43
potential (a) 1 2 —10.58 —11.07 —15.16 —38.85
0 4 —10.47 —10.85 —14.66
1 0 1 0 —8.76 —9.03 —14.53 —6.12
0 2 —8.72 —8.92 —14.60
2 0o 0 —6.52 —6.65 —12.96 —~3.32
1 0 2 1 0 -1.31 —1.33 —2.00 —-3.11
0o 2 —1.30 —1.32 —1.94
o 1 2 0 0 —1.45 —1.47 —2.51 —3.63
[UN 1 0 1.97 1.93 1.73 1.24
0 2 1.97 1.93 1.74
1 2 0 0 3.72 3.08 2.68 1.€3
351Dy 0o o0 1 2 —9.49
1 0 1 0 —-7.99
potential (b) 2 0 0o 0 6.43
0o 2 1 1 0 —3.82
1 2 2 0o 0 —3.96
0o 2 1 0 1.85
1 2 0 o0 2.52
1Py 0o 1 1 1 1.70 1.67
3 1.1 1.68
1 1 0 1 3.17 3.12
3D, 0o 2 1 0 —2.37 —2.40
—2.38 —2.41
1 2 0 o0 -3.21 —3.24
3D, 0 2 1 0 —0.12 —0.12
—0.12 —0.12
1 2 0 o0 —0.29 —0.29
1So 0 o 2 0 —6.48 —6.63 —7.81 —6.49
1 2 —6.43 —6.58 —7.74 —6.50
0 4 —6.39 —6.50 —7.61 —6.41
1 0 1 0 —4.75 —4.81 —6.12 —4.23
0 2 —4.73 —4.78 —6.03
2 0 0 0 —2.92 —2.94 —4.15 —1.77
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TABLE IX (Continued)

(a) (b) (©)
1 1 1
Q Q @ Q (d)
n I w UV N L E-T E —QTQ E-T Wong

3Py 0 1 1 1 —2.03 —2.05
3 —2.02 —2.04
1 1 1 —1.44 —1.44
3Py 0 1 1 1 1.94 1.91
3 1.95 1.92
1 1 1 2.94 2.90
3P; 0 1 1 1 —0.99 —1.00
0o 3 —-0.99 —1.00
1 1 0 1 —1.68 —1.69
1D. 0o 2 1 0 —0.48 —0.49
—0.48 —0.49
1 2 0 —0.84 —0.84

Since the suitability of the propagator (41) cannot be
easily justified, we have also investigated a previously
mentioned alternative®:

Q(E'=QTQ)7'Q=Q(E'=T)7'Q
+Q(E'=T)"H(QTQ—T) (E'=T)7'Q+---. (51)

We have retained only the first two terms in the right-
hand side of Eq. (51). Because of the positive definite
nature of the kinetic energy operator, one might expect
the matrix elements of the propagator of Eq. (51) to be
larger than those of Eq. (41), and, consequently, the
residual interaction in, say, the 3S; and 1S, states to be
more attractive. The matrix elements of Kn(E'),
obtained using (51) and shown in Column (b) of
Table IX, bear out this expectation and testify to the
relative accuracy of the propagator (41)—if one views
(51) as a more logical choice. Including the omitted
terms in our treatment of the propagator (51) would
not lead to a substantial increase in the attractive
residual interaction matrix elements.

In place of the expansion indicated in Eq. (51), one
might have written

Q(E'—QTQ)~0=Q(E'—QTQ)~1=Q(E'~T)~*
+Q(E ~T)=(QTQ~T) (E'~T)~14+++. (52)

The discussion associated with Eq. (42) suggests that
the diagonal assumption for Q is better coupled with the
expansion (52) than with (51). Indeed, a literal reading
of Wong’s paper® leads one to beieve he used as a
propagator Q(E'—T)! rather than (41).

In view of the markedly different behavior of the
reference-spectrum diagonal matrix elements obtained

by Wong from the Hamada-Johnston potential or by us
from a separable potential, one is not surprised by some
disagreement between the corresponding plane-wave
reaction matrix elements. However, the largest differ-
ences which are obtained in the 3S; matrix elements, are
not large as one might have predicted from Fig. (14).
The greater sensitivity of the HJ reaction matrix to A,
apparent when one uses oscillator intermediate states,
does not result in drastically altered plane-wave matrix
elements. Indeed, if one uses the reaction matrix
deduced from our potential (b), which possesses a
tensor strength comparable to that in the HJ potential,
then one finds the local and nonlocal 3S; #=0 matrix ele-
ments differ by only 6%. However, the more rapid
decrease with 7 observed for the purely oscillator based
HJ 35; reaction matrix persists even when plane-wave
intermediate states are employed.

Finally, we have in Table X, presented for comparison
the 3S1-D; reaction matrix elements deduced using
plane-wave intermediate states, specifically the prop-
agator Q(E'—T)71Q, and a variety of potentials. Our
purpose here is, as in Sec. IV, to determine the role of
the tensor force in these matrix elements. The HJ,
Yamaguchi-Yamaguchi, and our potential (b) yield the
smallest 351, #=0 matrix elements and the largest
818Dy matrix elements. The 3S;, #=0 reaction matrix
elements from the Yamaguchi potential or from our
potential (a) are some 109, larger than for these latter
three potentials.

The evidence extracted from our plane-wave cal-
culation serves to enhance conclusions we have drawn
in Sec. IV. The contribution of the tensor force to the
3.5} reaction matrix elements is quenched either in the
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TaBLE X. Comparison of the 35;-3D; reaction matrix elements obtained using plane-wave intermediate states, i.e., the propagator
Q(E —T)71Q, and the potentials 35;-*Dy, (a) and (b) of Kahana, Lee, and Scott, as well as the potentials of Tabakin (T), Yamaguchi
(Y), Yamaguchi-Yamaguchi (YY), and Hamada-Johnston (HJ). Reaction matrix elements are given in MeV.

n 1 # U N L 35, (a) 35, (3‘ T Y Yy HJ

0 0 1 2 —10.58 —9.49 —9.04 —10.20 —9.08 —8.85
1 0 10 —8.76 —7.99 —7.45 —9.11 —7.67 —6.12
2 0 0 0 —6.52 —6.43 —6.00 —7.88 —6.46 —3.33
1 0 0 2 1 0 —1.31 —3.82 —2.15 —3.38 ~3.11
2 0 2 0 0 —1.45 —3.96 —2.27 —4.08 ~3.63
0 2 1 0 +1.97 1.85 3.78 —1.51 1.24
1 2 0 0 3.12 2.52 3.58 —2.62 1.63

presence of a gap in the oscillator spectrum or when
plane waves are used for particle states. The degree of
quenching does not seem to be strongly related to the
range of the tensor force. However, the different
dependence on the numbers of relative nodes # exhibited
by the local and nonlocal reaction matrices is perhaps
explained by the disparity in ranges of the underlying
potentials.

VI. SUMMARY

We have used a variety of nonlocal potentials to study
the finite nuclear residual interaction. The simple
nature of our potentials enabled us to perform essentially
exact calculations of the Brueckner reaction matrix.
By restricting ourselves to the class of separable
potentials were able to demonstrate that account must
be taken of the high-energy scattering data which
manifests itself most clearly in a quenching of the
residual interaction in states with increasing numbers of
relative nodes. The manner in which the high-energy
data are fitted is of less importance. The Tabakin
potential with its rather weaker repulsive core led to a
1So residual interaction quite similar to that deduced
from our potentials. Whether one used a finite or infinite
repulsive core in our potential is of no consequence to
the interaction between valence particles. Unfor-
tunately, these conclusions are not necessarily valid for
local potentials.

It was also a straightforward task to evaluate the
accuracy of many commonly used approximations. In
the purely oscillator calculations, for example, we found
the assumption of a Q operator diagonal in c.m. quan-
tum numbers to be good, desipte the existence of some
fairly large off-diagonal matrix elements of Q. In
addition, it was clear that the free reaction matrix K (e)
provides one with a quantitatively accurate reference
matrix for a judicious choice of e<0. Of course, these
judgements have been previously arrived at by Wong.®
We did find one observation pertinent to plane-wave
calculations. If the intermediate state Hamiltonian is
chosen to be QTQ rather than 7, then one may expect

a rather stronger residual interaction in the 35; states
Clearly this point, as well as the more general question
of propagation in particle states, require further study.

Finally, we compare the separable potential with the
Hamada-Johnston potential. Perhaps the most im-
portant question to be answered in this comparison
concerns the latitude resulting in the final nuclear
reaction matrices from uncertainties in the tensor force
and in the wave functions and spectrum to be used for
intermediate states. When the gapless harmonic-
oscillator spectrum was combined with any potential
which gives an adequate fit to the purely 3S-wave data,
the resulting reaction matrix elements were remarkably
similar. Thus, the A=0, 35; reaction matrix elements of
both our potentials 3S; (a),3S: (b) and the HJ potential
agree quite well. When a finite gap A is introduced
between the valence and unoccupied levels (or when
plane-wave intermediate states are used), one finds,
understandably, that attractive reaction matrix ele-
ments are quenched while repulsive elements grow.
When opposed to the 239, reduction for the 3S; (a)
matrix element, the 309, diminuition in magnitude for
the 3S; (b) reaction matrix element (obtained by
replacing the gapless oscillator by a plane-wave
spectrum) suggests that the presence of a tensor force
enhances this quenching. Despite the obviously different
dependences of the local and nonlocal reference spec-
trum matrices on e or nuclear reaction matrices on A,
the n=0, 351 reaction matrix elements of the 357 (b)
potential or of the HJ potential differ by only 6%. The
H]J 381, n=1, 2 reaction matrix elements are, however,
considerably less attractive than their nonlocal counter-
parts. We tended to ascribe this heightened # depend-
ence of the HJ reaction matrix to the longer ranges
present in the local force. A similar, but weakened,
behavior may be observed in the 15, states.

If, as seems likely, the plane-wave description of
unoccupied states and the stronger tensor force are to
be preferred, then one must conclude that the nuclear
reaction matrix to be used as a bare residual interaction
in finite nuclei is quite well defined. In addition, our
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TasLE XI. The various functions m* = p / @dg v (@) v’ (q) Le— (h¥/m) ¢
0
(i) e>0
State 7 7 w(e)
150, 351 1/(B+a?) 1/ (k*+as?) m=—x(ei—e) /4ai(eite)? (A1)
mol2= —7(ae—e)/2(m+a) (ate) (e+e)  (A2)
D, R/ (Bt a)? B/ (B+a)? i = —[/32ai (ei+€)*]
X (e3+Sele+15¢ie2— S¢3) (A3)
m=—[r/4(a1+a2)3(ate)*(ate)?]
X e +eae[ 2e1 (e162) 1242 Je
FLa®+3(ae)?(a+e) +Tae+e? e
—[a+3(ae) e e} (A4)
T B/ (-a) o2 13/ (k24-a2)slz = — 1 (e Geae—3e2) /160 (eg+¢)? (A5)
2= —[7/32a(ea+€)*](ea3+ Sea?e+15eae2— 5¢3)
m2=—[71/256a(es+€)5]
X (Seqt+28es%+ 70e,%?
—+140e,e3— 35¢%) (A6)
1Dy, 3Dy, k2/ (k*+a%)? kY/ (k2 +a?)? molt=—[n/32a(eate)*]
X (ea3+Seale+15eqe® — S€3)
r2=Eq. (AG)
m®2=—[m/512a(eate€)t]
X (7ea+45este+126e,32
+210¢4%34-315€qe* — 63€5) (A7)
(ii) e=—na2<0
o, 2 w(—a?)
15y, 35 [see (i)] m¥t = —m/4Nai(aita)? (A1)
2= —r/2\ (@1} a2) (a1+a) (a2+a) (A29)
3Dy [see ()] m¥i= —x(ad+4aiat502) /32\ai(aita)t (A3)
= —[r/d\(a1+a2)*(m+a) (e ta)?]
X[altat+2maz(a+as)a
+ (e +-3ma+a2) o] (A4)
1P1,3Po1,2 [see ()] mil=—x(a+3a)/16Na(a+a)3 (AY)
m2=Eq. (A3)
m2=—[7/256Aa(a+a)]
X (5a3+25a2a+47ac2+35a%) (A6")
1De,3Ds3 [see ()] m1=Eq. (A3)

m*=Eq. (A¢)
m?=—[r/5122a(a+a)"]

X (7¢44-420°a+820%2+122a3a+63at)

(A7)
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F16. 16. The T'=0 spectra for the 4 = 18 nucleus, obtained from
diagonalizing K (e) for e=—380, —200 MeV in an oscillator basis.
The experimental spectrum is displayed for comparison.

separable potential (b) can provide a reasonably
accurate reproduction of the standard local potentials.
One might wish to question the significance of these
latter statements on the grounds that the free two-
nucleon potential is unlikely to be separable. We can
defend our calculations on two fronts. First, there is the
conventional statement that the free-space interaction
is definitely known to be local only for large nucleon-
nucleon separations. At small internucleon distances it
is hard to justify the existence of a potential, let alone
to establish its locality. Second, our residual interaction
and the one derived in comparable situations from the
HJ potential are not radically different. Indeed, the
differences which are obtained in the nuclear matrix
elements are perhaps an indication of the latitude one
can expect in the ultimate calculation of spectra. One
may view as extreme determinations from our potentials,
the interaction obtained from an oscillator spectrum
with no gap [Table V, column (a)7] and the interaction
arising from the propagator Q(E'—T)~'Q [Table IX,
column (a)]. An adequate representation of these
extremes is obtained from the K(e) spectra for e=
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17. The T=1 spectra for the 4 =18 nucleus obtained from
diagonalizing K (e) for e=—80, —200 MeV.

F16.

—80 MeV and e=—200 MeV. In Figs. 16 and 17, we
present the A=18,7=0 and T'=1 spectra obtained in
these two situations. A more reasonable fit to the
experimental level positions results for the choice
=—200 MeV and corresponds to plane-wave inter-
mediate states. Such a fit must be viewed as premature
and fortuitous, since we have not included core-
polarization forces. In addition, the present authors
intend to show that the use of more realistic Wood-
Saxon wave functions has an appreciable effect on the
calculated 4 =18 spectra.
Note added in proof. The authors would like to thank
D. M. Clement and I. R. Afnan for having pointed out
an error in our calculation of the D-state probability.

APPENDIX

We list in Table XTI the various functions
wi?=P [ gdgoi(g)n () le—(W/m) ¢ T
0

discussed previously. We introduce the notation
N=72/m, e;=Na2. We have given m;*¥(e) for ¢>0 and
€<0, spearately. For the latter case we also introduce
e= —\a ‘



