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The multiple-scattering series for elastic scattering is investigated numerically for a model of the neutron-
deuteron system, at neutron laboratory energies of 14.1, 50, and 100 MeV. The model is that of Aaron,
Amado, and Yam, with spin-dependent, s-wave, separable, two-body interactions. It is found that the
doublet L=0 series converges only slowly even at 100 MeV, and that it strongly diverges at 14.1 MeV. On
the other hand, the convergence is rapid for both doublet and quartet partial waves beyond I-= 2, and for
these the single-scattering plus Born-pickup terms provide an accurate approximation. Differential cross
sections and partial-wave amplitudes are given for various orders of multiple scattering, and for a unitary
version of the erst-order approximation, and are compared with the exact results.

1. INTRODUCTION and valuable insight into the multiple-scattering series

may be gained in this way. Such studies have been made
previously for the X —d,4 E+—d, ' and A —d ' systems.
In this paper, we consider the m-d system, which divers
in the important respect that rearrangement collisions
are possible. Our main aim is to study the convergence
of the multiple-scattering series of Faddeev-type' for
this system. We hope that the results will serve as a
guide to the usefulness of the multiple-scattering series
for more realistic potentials.

The multiple-scattering series is derived in Sec. 2, and
in Sec. 3 we briefly describe the model (the separable-
potential model of Aaron, Amado, and Yam'). The
methods used in calculating the multiple-scattering
series and in analyzing the convergence are described

PPROXIMATIONS based on truncated multiple-

x

~ ~

scattering series have often been used to study the
scattering of elementary particles by deuterons. Of
these, the most widely used is the impulse approxima-
tion, ' which in its usual application may be regarded
as the first-order contribution to the multiple-scattering
series. Some attempts have been made to calculate
second-' ' and higher-order' terms, but with realistic
potentials even the first-order term requires approxima-
tion, and drastic simplifications must be made to calcu-
late higher-order terms. With separable potentials,
however, exact calculation to all orders becomes possible,

4 J. H. Hetherington and L. H. Schick, Phys. Rev. 137, B935
(1965).

~ J. H. Hetherington and L. H. Schick, Phys. Rev. 138, B1411
(1965); 139, B1164 (1965).

6L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
LEnglish transl. : Soviet Phys. —JETP 12, 1014 (1961)].

7R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 140,
B1291 (1965).

*Research supported by the Australian Research Grants
Committee.' G. F. Chew, Phys. Rev. 80, 196 (1950);G. F. Chew and G. C.
Wick, ibid 85, 636 (19.52); J. Ashkin and G. C. Wick, ibid 85, .
686 (1952); G. F. Chew and M. L. Goldberger, ibid. 87, 778
(1952); H. Kottler and K. L. Kowalski, ibid. 138, B619 (1965).
The last paper contains many references to earlier calculations
with the impulse approximation.

s A. Everett, Phys. Rev. 126, 831 (1962); A. K. Bbatia and J.
Sucher, ibid. 132, 855 (1963).

'N. M. Queen, Nucl. Phys. 55, 177 (1964); 66, 673 (1965).
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in Sec. 4, and the results obtained for elastic scattering
of 14.1-, 50-, and 100-MeV neutrons are discussed in
Sec. 5. In Sec. 6, we report the results of calculations,
using a unitary version of the first-order approxima-
tion. ' '

The main results are as follows: The multiple-scat-
tering series converges well for the higher partial waves,
and in fact for L)2 the zero-order (Born-pickup) plus
first-order (impulse) terms provide an excellent approx-
imation at each energy. For 5 waves, on the other hand,
the convergence is extremely slow even at the highest
energy, and at 14.1 MeV the multiple-scattering series
strongly diverges. Thus, at the energies considered,
there would seem to be little point in explicitly calcu-
lating second- or higher-order terms. A better policy
would seem to be to calculate the zero-order and B,rst-
order terms, with the low partial waves subtracted out.
Then the problem reduces to finding reasonable alterna-
tive approximations for the low partial waves.

The unitary version of the first-order approximation
is found to give substantially better diQerential cross
sections than the ordinary fi.rst-order approximation,
with striking improvement at the lower energies. How-
ever, the quantitative agreement is only fair, and it is
clear that better methods are needed. From the partial-
wave results it can be seen that the unitary correction
greatly improves the S-wave amplitudes, in the sense
that the gross violations of unitarity are removed. For
partial waves with 1.~2, however, the unitary correc-
tion tends to give a worse result, though in these cases
the difference is fairly small.

2. MULTIPLE-SCATTERING SERIES

We denote the particles by 1, 2, and 3, and the
interaction between 2 and 3 by V»= V&, correspondingly,
it will sometimes be convenient to refer to 2 and 3 as the
pair 1, etc. The channel in which particle 1 is free and
particles 2 and 3 are bound (or correlated) is called
channel 1, and, following Lovelace, ' the three-free-
particle channel is called channel 0. In this section,
breakup processes are included in the discussion, and
for this purpose it is convenient to introduce a fourth
interaction VO=O. Greek letters have the values 0, 1, 2,
3 unless stated otherwise.

The multiple-scattering series is most easily derived
from the elegant formulation of the three-body problem
due to Alt, Grassberger, and Sandhas. "The three-body
transition operator for transitions from channel a to
channel P is Up, defined by

Up-(s) = (&—~p-) (s—Ho)+ Z Vv
P~y~a

+ 7 Z V,G(s)V, (2I)
p~p

' I. H. Sloan, Phys. Rev. 165, 1587 (1968).
R. W. Finkel and L. Rosenberg, Phys. Rev. 168, 1841 (1968)."C. Lovelace, in Strong Interactions end H~gh Jinergy Physics,

edited by R.G.Moorehouse (Oliver and Boyd, Ltd. , London, 1964)."E.O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B2,
167 i1967l.

(Ho+V ) C =EC,
(Hp+ Vp) Cp'=EC p'.

(2.3a)

(2.3b)

The essential ingredients in the Faddeev approach to
three-body theory are the operators T„, defi, ned by

where
2;(s) = V„+V„G,(s) T,(s),

Go(s) = (s—Ho)
—'.

(2 4)

(2.5)

T~ is essentially the two-body transition operator for
the pair p, the only difference being that Go includes the
kinetic energy of the third particle.

In terms of the T~'s, it is easy to show that the
transition operators Up satisfy the coupled integral
equations"

Up ——(1—8p ) (s Hp)+ Q—T,GpU, . (2.6)

These equations express the content of three-body
collision theory in remarkably concise form.

With this formulation it is a trivial matter to generate
the multiple-scattering series for any type of three-body
process (elastic, rearrangement, and breakup). In fact,
on iterating (2.6) we obtain immediately the multiple-
scattering series

Up-= (~ ~p-) (s—H—o)+ Z &7
P+y+a

+ gg rGr+" .

For future reference, we call the successive terms of the
series zero order, first order, second order, and so on.

The multiple-scattering series (2.7) does not appear
to be well known, especially for the rearrangement case
(PWn; P, +=1, 2, 3), therefore, a brief discussion of the
physical interpretation of the various terms is perhaps
desirable. In the following, we set s=Ejim.

The zero-order term of (2.7) contributes only to
rearrangement collisions, for example,

Upi=(E —Hp)~ ~ ~ ~ (2.8)

/Note that in the breakup case the on-shell matrix
element of (E—Ho) is zero. $ This terin gives in fact the
Born approximation for the pickup process, " in which
the incident particle 1 collides with particle 3, and forms
a bound state with it, leaving particle 2 free; for it
follows from (2.3b) that the zero-order contribution to

'2 G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950).

where Ho is the three-body kinetic energy in the c.m.
system, s is the complex energy parameter, and

G(s) = (s Ho —Vi——V2—Vg) '. (2.2)

The physical amplitude for a transition from channel n
to channel P is (Cp', Up (E+ie)C ), where C and Cp'

are the initial and Anal channel states, satisfying



MULTIPLE-S CATT ERIN 6 A NAL Y SI S ON SOLUBLE e-d MODEL 1363

the amplitude may be written as

(c,', (z—a,)e,) =(e,', v„c,). (2.9)

The triplet potential produces a bound state, the
deuteron, with the wave function'

From the physical interpretation, it follows that the
zero-order contribution is peaked in the backward
direction in the c.m. system.

Written out to first order, typical elastic, breakup,
and rearrangement transition operators are

Ull 712+218+' ' 'y (2.10)

~01 7 12+ T18+ ' ' ' (2.11)

U„=(F. a,)+ r—„+", (2.12)

where for ease of interpretation we have used the
alternative notation T3——T~~, etc. For the 6rst two cases,
the physical interpretation is clearly that the incident
particle is scattered by one or other of the bound
particles; this is of course the impulse approximation. '
For the rearrangement case, the first-order term may be
interpreted as a "knock-on" term, in which the incident
particle 1 strikes the target particle 2 and ejects it,
itself remaining behind to form a bound state with the
third particle. The first-order terms may be expected to
be peaked in the forward direction.

Higher-order terms are of course interpreted as
multiple-scattering terms. The prescription is that only
those multiple-scattering events are allowed in which
successive scatterings occur between different pairs of
particles, and in which the first (last) scattered pair
includes the initially (finally) free particle. Queen" has
argued that higher-order terms are increasingly iso-
tropic, since after several scatterings the incident par-
ticle "forgets" its original direction. This conclusion is
borne out strongly by our calculations.

3. MODEL

Our model is the separable-potential model of Aaron,
Amado, and Vam, ' "of three identical nucleons inter-
acting through spin- and isospin-dependent, s-wave,
separable, two-body interactions. Thus the two-body
potential is"

(q' l V I q) = —g X g„(g') g (g) P„, (3.1)

where Pp is the spin-isospin projection operator for the
deuteron (spin .1, isospin 0), and Pi the corresponding
projection operator for the singlet state (spin 0, iso-
spin 1) . The form factors g„(g) are of the Yamaguchi"
form,

g. (v) =&-/(v'+p-') (3 2)

For the present we use units in which S-=no=1, where
nz is the nucleon mass.

"N. M. Queen, Nucl. Phys. 55, 177 (1964)."Since our approach is through a potential, the model discussed
here is that of Ref. 7 with the "wave-function renormalization
constant" set equal to zero."Momentum states have the normalization (q'

~ q) =8 (q' —q) .' Y. Yamaguchi, Phys. Rev. 95, j.628 (1954).

Io(q) =—go(V)/(V'+no')

and with binding energy bp=o, p ~ We note the relation

go(v) =(ql l'I 4 ), (3.4)

which follows from (3.3) and the Schrodinger equation.
On choosing Ep to normalize the wave function, we

have
Eo ——2r-'I noPo(Ps+ no) 8$'12; (3 5)

&8=I no(ps+no) g
' (3.6)

It is convenient to define the singlet parameters in a
similar way. Thus we introduce nj, and define

&1=~ 'Ll ni I pi(pi+ni)'j" (3 7)

i~i=I:I ni I (pi+ni) j '. (3.8)

Since the singlet potential does not produce a bound
state, it follows that vi&0.

Then the two-body scattering amplitude at energy
e+ie is"

(q'I t(e+se) I q)= g g„(g')F„(e)g„(q)P, (3.9)

where

arg~=0 or 1

We see that Fo(e) exhibits the deuteron pole at tr=ino
or e=—bo, whereas the pole in Fi(e), at a=ini=

i I ni I,
—is on the second sheet. The parameters n„and

p„were fixed by fitting the scattering length and
binding energy in the triplet case, and the scattering
length and effective range in the singlet case, using the
same data as Ref. 7.

Ke now turn to the three-body problem, restricting
attention from here on to elastic and rearrangement
processes. Since the total spin and total isospin are both
conserved in this model, we work with states of definite
spin (5=2 for the doublet case, 5=2 for the quartet
case), definite s-component of spin, isospin T='„and-
third component of isospin T3= ——,. It is convenient to
denote by x~ the unique three-body spin-isospin func-
tion with the above quantum numbers, for which the
pair p has the quantum numbers of the state 28 (n =0
for the deuteron, 28= 1 for the "singlet deuteron") .

Three-body states in momentum space may be
specified by the momentum pair pi and qi (or by p2
and q2, etc.), where pi is the momentum of particle 1 in
the c.m. system, and q& is the momentum of particle 2
in the c.m. of particles 2 and 3. In this representation,

'2 C. Lovelace, Phys. Rev. 135, 31225 (1964).

then by fixing ) p to give the correct binding energy, we
obtain
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the matrix elements of T7 I Eq. (2.4) $ are

(p.'q, 'I 2;(s) I p, q, )

=~(y, '—y, ) (q.' I 4(s——:p,') I q ) (3»)
We use the concise notation of Lovelace, '~ and define

a ket vector I y22), through

(q, I vm) =x,.g. (q,). (3.»)
Then it follows from (3.11) and (3.9) that

and
rn

Zn', n = 2Z2n', 1n. (3.23)

Then on summing over P in Eq. (3.15), and using the
particle identity, we obtain

A 1

Xn', n Zn', n+ g ~n', n"rn"Xn", n&

n~~M
(3.24)

which we may write as the explicit coupled integral
equations

T,(s) = P I yN)r„(s) (y22 I,
n=p

(3.13)
(p' I &. ..I y)=(p' I &. ..I p)+ Q dp"

where

x,„..=(P.~'I G.vp.G. I I) (3.16)

~p, = (1—4 ) (r322'
I Go I

~22) (3 17)

Both X and Z are operators on plane-wave states
I p). If p is the momentum of the incident nucleon, then
it follows from (2.5), (3.12), and (3.3) that

G, I ~o) I P) =c.„ (3.18)

where 4 ~ is the initial unperturbed state of the system.
Thus if y and p' satisfy the energy-conservation condi-
tion,

(3.19)
then

(P' I X o,-o I P) = (C' ' & -~-.). (3 2o)

In words, the on-shell matrix elements of Xpp, p are the
physical amplitudes. Similarly,

(P' I Z o, -o I P) = (c' ' (&—Ifo)c'-.), (P& )

(3 21)

so that the on-shell matrix elements of Zpp, 0 ale the
zero-order (pickup) amplitudes. We note that the Eqs.
(3.15) have exactly the same structure as the original
equations (2.6), and, in particular, that the terms of
given order in their respective iterations precisely cor-
respond. Our purpose in following through the deriva-
tion is in fact to make this point clear.

Since the particles are identical fermions, the Eqs.
(3.15) may easily be uncoupled. '2 We define

Xn', n +in' ln+X2n' i&n+ 2n' l&n&(3.22)

where 7n is an operator in a two-body Hilbert space,
with matrix elements

(O' I -(s) I p) =~(p' —p) F-(s—lP') (3 14)

The Lovelace" equations for the three-body ampli-
tudes can now be readily derived" from the integral
equation (2.6). On substituting (3.13) into (2.6), and
multiplying on the right by Go I nn), and on the left by
(p22' I Gp, we immediately obtain the Lovelace equations

A

Xpn', an =~pa'an+ , +pn', yn"rn "Xyn"an& (,3 15)

&& (P' I ~- .-- I P")F-"(s 4p'"—) (P" I X--,- I P) (3 25)

where Jn n is the spin-isospin factor,

& n'n X2n' Xln

(3.26)

(3.27)

It has the values' Jpp= 2& Jpy=J]p=JU=O for the
quartet case, and Jpp=J]]=g Jp]=Jap= —

~ for the
doublet case.

4. METHOD OF SOLUTION

The coupled integral equations (3.25) may be re-
duced to one-dimensional equations by the partial-wave
expansion

3 oo

(y'I&-.- I y)=—,Z (21-+1)
8z'k L,~

X (p'n'
I

T& I p~)r, (71' 71), (4.1)

where k is the initial momentum in the c.m. system,

E= 43k2 —np2.

We denote the on-shell partial-wave amplitude by T~,

2,=qoI T, Iso). (4 2)

With the normalization given by (4.1), the partial-wave
elastic unitarity relation is

(4.3)

corresponding to the obvious fact that the total cross
section exceeds the elastic cross section. "

Similarly, a partial-wave expansion of the amplitudes
(p' Z„.„ I p) LEq. (3.26)$ may be defined. The cor-
responding partial-wave amplitudes can be expressed in

'2 I, H, Sloan& Phys. Rev. 162, 855 (1967).

The on-shell matrix elements of Xp, p are the fully anti-
symmetrized elastic-scattering amplitudes.

From (3.23), (3.17), and (3.12), the matrix elements
of Zn, are

&, z 2z g- (I -'p'+y l)g-(I ly+y' I)

p' —p 'p —p'
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closed form, " in terms of I.egendre functions of the
second kind. Ke omit the details here.

The method of exact solution of the one-dimensional
analogs of (3.25) has been thoroughly discussed by
Aaron and Amado. "The rightmost momentum is set
equal to k, and e is set equal to 0, and the integration
contour with respect to p" is deformed, so as to avoid
the singularities in the kernel. The contour is de6ned by
p"=

I
p"

I e @, where p is a phase angle; it must be
chosen so that no singularities are crossed. Since we are
concerned with integral equations, it is also necessary
to deform the leftmost momentum p' along the same
contour. Then numerical solution of the integral equa-
tion yields the values of (P'e'

I Ti, I k0), with P'=
I
P'

I e ~'. A further application of the integral equation
is then required to obtain the on-shell amplitudes TI,

Our main interest in this paper lies, of course, in the
multiple-scattering series. In principle, the individual
terms of the multiple-scattering series (2.7) are multi-
dimensional integrals. In the present case, however, it is
very much easier to generate the series by the method
used in deriving the series, namely, by iteration of the
integral equation. As we have already remarked, the
integral equation (3.25) has precisely the same struc-
ture as the original equation (2.6), and in particular, the
iterations of one correspond exactly to the iterations of
the other. The great advantage of generating the series
iteratively is that there is no limit, apart from numerical
accuracy, to the order of multiple scattering that can be
studied.

There is a technical point that requires some caution.
The iterative solutions, like the exact solutions, were
generated initially along the deformed contour, then the
integral equation was used again to obtain the on-shell
amplitudes. It is important to realize that this second
application of the integral equation is in effect an
additional iteration of the integral equation, thus it
increases the order of multiple scattering by one.

To obtain numerical solutions, integration with,
respect to p" was cut off at a large value of p", and the
integrals were replaced by sums, using Gaussian inte-
gration rules. The exact results were obtained by solving
the resulting simultaneous equations by Gaussian
elimination. Careful tests were made with various cut-
offs and various orders of Gaussian quadrature, to
ensure the accuracy of the results. It was also estab-
lished that the iterative solutions were not sensitive to
rounding errors, even in the cases where the series
diverges.

The exact results at 14.1 MeV should agree with the
corresponding results of Ref. 7. In fact, quite good
agreement was obtained for L&0, but for L, =O the
amplitudes were found to differ by the order of 10%.
The earlier calculations did not use the contour deforma-

' R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 136,
S6S0 (1964).

'0 R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966).

tion method, and it seems likely that the discrepancy
arises from numerical inaccuracy in those calculations. "

A useful check on the calculations was obtained by
evaluating the first-order (impulse) terms by explicit
three-dimensional integration, and then deducing the
partial-wave first-order amplitudes by numerical partial-
wave analysis. '

In the remainder of this section, we describe the
technique used to analyze the convergence of the
partial-wave multiple-scattering series. We write the
partial-wave equivalent of the integral equation (3.25)
symbolically as

T(s) =B(s)+E(s)T(s)'.
Then the corresponding multiple-scattering series is

g Emg
m=0

and the series for the on-shell partial-wave amplitude
Tr, LEq. (4.2)$ is

(4.4)

with
TI.,„=(k0 I

E"B
I k0),

and s=E+ie.
The kernel E(s) is compact for any s not on the

scattering cut, and therefore has a discrete spectrum. "
If s is real and less than —bo, the kernel becomes
Hermitian after a trivial similarity transformation, and
therefore has a complete set of eigenfunctions. Under
certain reasonable assumptions, the completeness prop-
erty can be analytically continued to any s in the cut
plane, "and in particular to s =E+ie.

I.et the eigenfunctions and the corresponding eigen-
values of E(E+ie) be denoted by Irl;) and X;, with
i=1, 2, ~ ~ . Using the completeness property, we can
write

so that Tl„becomes

(4.5)

On substituting (4.5) into the multiple-scattering series
(4.4) we immediately obtain the result, well known for
the Born series, " that the series converges if and only
if I Xr I (1, where Xr is the eigenvalue with largest
absolute value. This result was used to provide a
sensitive test of the convergence or divergence of the
series.

The above argument can also be used to actually

"The inherent di%culty in obtaining accurate solutions with
the method of Ref. 7 is clearly shown by Fig. 5 of Ref. 20. See
also the comment at the end of p. 861, Ref. 20.

'2R. 6. Newton, Scattering Theory of 8'aves and Particles
(McGraw-Hill Book Co., New York, 1966).
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E (MeV)

TABLE I. Doublet partial-wave amplitudes.

Multiple scattering series

Exact

0.593
—0.211

0.073
—0.026

0.009
—0.004

3.094+2. 147i

0.100+0.272i

0.110+0.036i
—0.021+0.005i

0.010+0.001i

0.858+5.860i

0.185+0.173i

0.106+0.037i

—0.220+0.573i

0.151+0.189i

0.106+0.037i
—0, 021+0.005i

0.010+0.001i
—0.004+0.000i

50 0.236
—0.120

0.054
—0.023

0.010
—0.004

0.002

1.341+0.923'
0.184+0.264i

0.129+0.070i
—0.004+0.019i

0.015+0.006i
—0.003+0.002i

0.002+0 ~ 001i

0.149+1.795i

0.295+0.228i

0.124+0.068i

0.192+0.50Tj

0.265+0.214i

0.123+0.067i
—0.004+0.019i

0.015+0.006i
—0.003+0.002i

0.002+0.001i

100 0.112
—0.066

0.034
—0.016

0.008
—0.004

0.002

0.684+0.357i

0.157+0.143i

0.112+0.051i
0.011+0.018i
0.018+0.007i

0.000+0.003i

0.003+0.001i

0.194+0.654i

0.227+0. 130i

0.107+0.049i

O. 234+0.268i

0.215+0.116i
0.107+0.048i

0.011+0.018i
0.018+0.007i

0.000+0.003i

0.003+0.001i

Z (MeV)

TAaLK II. Quartet partial-wave amplitudes.

Multiple scattering series

Exact

50

100

0

2

3

5

0.422
—0.146

0.052
—0.019

—0.472

0.240
—0.108

0.047
—0.020

0.009
—0.004

—0.224

0.133
—0.ON

0.033
—0.015

0.007
—0.003

0.468+0.260i
—0.145+0.032i

0.051+0.004i
—0.019+0.001i

—0.041+0.806i

0.345+0.218i
—0.085+0.054i

0.052+0.014i
—0.019+0.004i

0.009+0.001i

0.064+0.329i

0.238+0.127i
—0.033+0.043i

0.045+0.015i
—0.011+0.006i

0.009+0.002i
—0.003+0.001i

—l.187 —0.625+2. 123i 1.543+1.183i

0.406+0.273i
—0.144+0.033i

0.705+0.613i
0.290+0.213i

—O.084+0.056i

0.360+0.251i

0.204+0. 122i
—0.031+0.045i

0.289+0.895i

0.392+0.263i
—0.144+0.033i

0 ~ 051+0.004i
—0.019+0.001i

0.425+0.379i

0.287+0.202i
—0.084+0.056i

0.052+0.014i
—0.019+0.004i

0.009+0.001i
—0.004+0.000i

0.285+0.147i

0.204+0. 116i
—0.032+0.045i

0.045+0.015i
—0.011+0.006i

0.009+0.002i
—O. 003+0.001i
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calculate Xq. It follows from Eq. (4.5) that if ai/0, then

Xi ——lim Tr„~i/Tr„.

1000 I I I I I I I I 1 1 1 ( 1 1 l

That is, the largest eigenvalue X& is simply the limiting
ratio of successive terms in the multiple-scattering
series. This method is in fact exactly equivalent to the
power method for finding the largest eigenvalue of a
matrix. "We also used the 6' process" to accelerate the
convergence to the value Xi, thus allowing X~ to be
determined with fewer terms.

The rate of convergence of the series may be described
by the number of multiple-scattering terms required to
give amplitudes of specified accuracy, and results of
this sort are given in Sec. 5. For a slowly convergent
series, this information can be deduced from just the
early terms of the series, since successive terms quickly
settle down to the constant ratio X».

TAaLE III. Convergence of the multiple-scattering series. The
series converges if and only if i Xi i (1, where X~ is the largest
eigenvalue of the kernel. Terms of the series up to order n are
required if the multiple-scattering amplitudes are to be accurate
to within 10%.

8 (MeV) L

14.1

Doublet
i@[ e

1.47

0.46

=0.1

Quartet

0.944 56

0.29 2

=0.1 1

50 0.990
0.38

=0.1

=300 0.63

0.24

100 0.74

=0.3
=0.1

10

2

0.48

=0.2
=0.1

"A. Ralston, A First Coursein lVumericul Analysis (McGraw-
Hill Book Co., New York, 1965).

S. RESULTS

We consider first the partial-wave results. In Tables
I and II, we show the exact results at three energies,
and also the results from the truncated multiple-
scattering series of orders 0, 1, and 2. For visual clarity,
the second-order results have been omitted where they
agree to three decimal places with the first-order results.

It is immediately clear that the multiple-scattering
series converges rapidly for the higher partial waves,
and that for L&2 quite good accuracy is obtained if the
series is truncated at 6rst order (giving the impulse-
pickup approximation) . For L= 1, on the other hand,
it is clear that the convergence is much slower, while
for L=O it is not at all clear that the second-order
approximation is better than the first-order, except
perhaps at the highest energy.

$100

10

r ~ I t i I ~ I li i l

30 60 90 120 150 180
C.M. ANGLE IN DEGREES

Fio. 1. DiA'erential cross sections at 14.1 MeV. At this energy
the multiple-scattering series diverges, because of the divergence
of the doublet S series.

Table III contains further information on the rate of
convergence of the multiple-scattering series for low
partial waves. The most striking aspect of the table is
the extremely slow rate of convergence of the doublet S
series. At 14.1 MeV, it does not converge at all, and even
at 100 MeV the convergence is so slow that multiple-
scattering terms up to the tenth order are needed to give
partial-wave amplitudes with 10%accuracy. The diver-
gence at low energies is associated with the existence of
a doublet Sbound state, the triton. The quartet S series
converges more rapidly, but the convergence is still
slow, especially at the lowest energy. Table III con-
firms that the higher-order terms become increasingly
isotropic, since the series converge rapidly for higher
partial waves.

The results serve as a corrective to the belief, often
implied if not stated, that the multiple-scattering series
necessarily converges, and that it converges fairly
rapidly. (The belief shows, for example, in the notion
that second-order terms necessarily improve the first-
order result. )

The results of Tables I and II, and similar results for
higher orders of multiple scattering, have been com-
bined to give differential cross sections, giving the graphs
shown in Figs. 1—3. (More significant figures were
carried than are shown in the table, and the tables were
supplemented with higher partial-wave amplitudes
calculated in the first-order or zero-order approxima-
tion. ) We also show the results of the impulse approx-
imation, because of the widespread interest in it. The
impulse-approximation amplitudes were obtained by
subtracting the zero-order amplitudes from the first-
order (or, as noted in Sec. 4, by direct calculation) .'4

24 It should be noted that the impulse approximation used here
is that with fully off-shell antisymmetrized two-body amplitudes.
In most practical calculations these amplitudes are approximated
by their on-shell values.



1368 IAN H. SLOAN 185

+10

I I I I I I I I I I I

30 60 90 120 150
C.M. ANGt E.IN DEGREES

180

FIG. 2. Differential cross sections at 50 MeV. At this energy
the multiple-scattering series converges, but the convergence is
extremely slow, some hundreds of terms being required for ac-
curate cross sections.

The zero-order (pickup) approximation is not shown,
but the pickup contribution is almost entirely respon-
sible for the backward peak in the first-order ampli-
tudes, since the impulse term is small in backward
directions. In the forward direction, the pickup contri-
bution is small, so that the impulse and first-order
curves closely agree.

From the figures, it is clear that the first-order
approximation greatly improves as the energy increases,
but that nevertheless a considerable discrepancy re-
mains even at 100 MeV, especially near the deep
minimum at 130'. The error is smallest in the forward
direction, but still not negligible (24% at 100 MeV) .
It has been pointed out previously" that the impulse
approximation appears to give significantly larger
values than experiment at angles near 30', in spite of
the frequent contention that the impulse approximation
is accurate in forward directions. Our results generally
confirm the conclusions of Ref. 25.

Although it cannot be seriously maintained that the
present model is at all realistic, nevertheless a brief
comparison with the experimental differential cross
sections, summarized by Bunker et al.,' is of some
interest. The exact results in Figs. 1—3 agree quite well
with the experimental results near the forward and
backward directions. '~ Furthermore, the experimental
cross sections from 20 to 100 MeV are all characterized

2' H. Kottler and K. L. Kowalski, Phys. Rev. 138, B619 (1965).
'6 S. N. Bunker, J. M. Cameron, R. F. Carlson, J. R. Richard-

son, P. Tomas, W. T. H. Van Oers, and J.W. Verba, Nucl. Phys.
A113, 461 (1968) .

~7 In comparing the present results with experimental proton-
deuteron results, the small-angle Coulomb interference region
in the p-d curves is to be ignored.

The approximations derived by truncating the
multiple-scattering series at first or second order have
the disadvantage that the constraint of unitarity may
be violated. For example, it is easy to see the first-order
doublet S amplitudes in Table I all violate the con-

I l
I

I I
I

I I I
I

I I
I

I I

1

R

4

01

30 60 90 120 150
C.M. ANGlE IN DEGREES

180

Fio. 3. Differential cross sections at 100 MeV. At this energy
the multiple-scattering series slowly converges. To avoid a con-
fused diagram, the 6fth-order curve is shown only in the region
of the minimum; at 0' and 180' it exceeds the, exact result. by
7.5 attd'5%, respectively.

"Iam indebted to Professor I. E. McCarthy for this observa-
tion.

by minima near 130', and it can be seen that this feature
is well reproduced by the model. However, at energies
above 20 MeV the experimental minimum becomes
progressively weaker, instead of strengthening as is the
case with the model. At 50 MeV, for example, the
calculated value at the minimum is about one-third of
the experimental value. A possible source of the devia-
tion is the increasing importance of higher partial waves
in the two-body amplitudes as the energy increases,

To conclude this section, we remark that multiple-
scattering approximations might be more eft'ective for
scattering by heavier nucleons than for deuterons, "
provided that the target nucleus can reasonably be
treated as nucleon plus core, and provided that the
strong distortion by the core is treated explicitly. The
possibility arises because of the strong absorption of low
partial waves by the core, whereas it is precisely the low
partial waves that cause the poor results for scattering
by deuterons.

6. UNITARY FIRST-ORDER APPROXIMATION
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TABLE IV. Partial-wave amplitudes in the unitary first-order approximation. The ordinary first-order
amplitudes and the exact amplitudes are shown for comparison.

E
(MeV) L

14.1 0

First order
(ordinary)

Doublet
First order
(unitary) Exact

First order
(ordinary)

Quartet
First order
(unitary) Exact

3.094+2.147i 0.178+0.839i —0.220+0.573i —0.625+2. 123i —0.188+0.485i 0.289+0.895i

50

100

0.100+0.272i 0.066+0.190i 0.151+0.189i

0.110+0.036i 0.102+0.041i 0.106+0.037i

1.341+0.923i 0.254+0.647i 0.192+0.501i

0.184+0.264i 0.115+0.217i 0.265+0.214i

2 0.129+0.070i 0.112+0.076i 0.123+0.067i

3 —0.004+0.019i —0.004+0.018i —0.004+0.019i

0.684+0.357i 0.301+0.409i 0.234+0.268i

0.157+0.143i 0.119+0.138i 0.215+0.116i

0.112+0.051i 0.100+0.054 0.107+0.048i

0.011+0.018i 0.010+0.018i 0.011+0.018i

0.468+0.260i 0.337+0.222i 0.392+0.263i

—0.145+0.032i —0.139+0.031i —0.144+0.033i

—0.041+0.806i —0.016+0.369i

0.345+0.218i 0.235+0.208i

0.425+0.379i

0.287+0.202i

0.052+0.014i 0.051+0.014i

0.064+0.329i 0.039+0.220i

0.238+0.127i 0.185+0.138i

0.052+0.014i

0.285+0. 147i

0.204+0. 116i
—0.033+0.043i —0.031+0.038i —0.032+0.045i

0.045+0.015i 0.044+0.016i 0.045+0.015i

—0.085+0.054i —0.078+0.047i —0.084+0.056i

t&'&(s) =t(s) —t ' (s).

Correspondingly, the operator T~ has two parts,

2;(s) = T,&'&(s)+T "&(s)

An operator Up ~o is introduced, defined by

U» &'&=(1—Bp )(s—Ho)+ Q ,T'G&&oU&7'&

P+y

(6.3)

(6.4)

(6.5)

straint (4.3), with the violation very large at the lower
energies, and, in fact, this is the main reason why the
first-order elastic cross sections are so large. We brieAy
describe an alternative first-order approximation"" in
which unitarity is always satisfied.

Using the notation of Ref. 8, we split the two-body
transition operator into two parts,

t(s) =t&'&(s)+t&'&(s),

where t"& is the b-function contribution from the
deuteron pole,

t"&(s) =—i~l I 4o)~(s+f&o) (Ao I I &o (6 2)
and

It is easy to see, with the aid of (3.11) and (6.2), that
(6.7) gives an equation for the physical (on-shell)
amplitudes in terms of the corresponding on-shell
amplitudes of Up &'~. In partial-wave form it becomes

Tr, Tl, &r&+iTr&i&T——r„ (6.8)

where TI.&'~ is the on-shell partial-wave amplitude cor-
responding to Ut& &". This has, of course, the trivial
solution

Tr, = Tr, &i&j(1—iTr, &'&) (6.9)

The unitary first-order approximation is obtained by
truncating the series (6.6) at first order, and then
solving (6.7) exactly with the aid of (6.9) . It may be
shown' that in this approximation the unitary con-
straint is always satisfied. In fact, in partial-wave form
the unitary condition (4.3) follows immediately from
(6.9), and from the fact that ImTr, &'&&O.io The ampli-
tudes TI.&" in this approximation are closely related to
the ordinary multiple-scattering amplitudes of Tables I
and II: Let TJ.,O and Tl,„,~ be the zero-order and first-
order amplitudes from the ordinary multiple-scattering
series, then

=(1—&t-) (s—&o)+ Z Tv"&+" (66)
P&y&a

Tl, (') ——TL„g—i', o'. (6.10)

U&-= Ut-&'&+ Z U& r&"GoT7&"GoUV- ~

'~ The approximation described here is that referred to as ap-
proximation I in Ref. 8.

so that Ut& &" is analogous to Ut&. LEq. (2.6) j, b«with
T~&'& replacing T~. Then it may be shown that Up
satisfies

(6.7)

The second term in (6.10) is the contribution to the
first-order integral from the 8 function at the deuteron
pole.

In Table IV, we show the partial-wave amplitudes in
the unitary first-order approximation, and compare
them with the exact amplitudes and the ordinary first-
order amplitudes from Tables I and II. The doublet 5
amplitudes are seen to be greatly improved by the
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100

With a separable-potential model, the residual part
of the two-body amplitude t&"

I Eq. (6.3)$ is itself
separable, and it is therefore possible to generate the
modified multiple-scattering series for Up & ' using the
techniques already described in Sec. 4. We have done
this, and have found that at the higher energies the
modified series (6.6) converges markedly more slowly
than the original series (2.7), especially for the high
partial waves. It is now easy to understand the situation
mentioned above, that the first-order amplitudes for
higher partial waves are better without the unitary
correction: In these cases the ordinary multiple-scatter-

10

30 60 90 120 150
C.M. ANGLE IN DEGREES

10

Fzo. 4. Differential cross sections at 14.1 MeV in the unitary
first-order approximation, compared with the ordinary first-order
approximation.

unitary correction. For the quartet S case, and for both
E'-wave cases, it is not so clear that the unitary correc-
tions give a systematic improvement, while for higher
partial waves there is a definite tendency for the
unitary correction to make matters worse, though the
difference is not very large for these cases. This trend
for higher partial waves is also apparent in the E —d
results4 analyzed in Ref. 9.

g

g
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—I I
i

I I
j

I I
(

I I
i
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i

I I— 30 60 90 120 150
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FzG. 6. Differential cross sections at 100 MeV in the unitary
first-order approximation, compared with the ordinary first-order
approximation.

I I I l I I l 1

30 60 . 90 120 150

C.M. ANGlE IN DEGREES

Fzg. 5. Differential cross sections at 50 MeV in the unitary
first-order approximation, compared with the ordinary first-order
approximation.

ing series has already converged, whereas the modified
series is still some way from convergence.

In Figs. 4—6, we show the differential cross sections
calculated in the unitary first-order approximation. It
is clear that in spite of the shortcomings mentioned
above the unitary corrections considerably improve the
first-order results at all energies and almost all angles.
The most striking aspect of the curves is that the
unitary method reproduces the deep minima in the
exact cross-section curves, though at somewhat too
small an angle, and. with somewhat different shape,
whereas the ordinary first-order method fails badly in
this region. Presumably, the minima should be inter-
preted as diffraction effects, and it is perhaps reasonable
to conclude that the unitary method is quite successful
in handling such effects.


