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The method of the resonating-group structure is used to study the n+a and a+X systems. With a
nucleon-nucleon potential of a near-Serber exchange mixture, it is found that good agreement with the
empirical phase-shift data can be obtained. Using the resultant radial scattering functions, effective potentials
between the clusters are derived, which yield the same phase shifts as does the resonating-group calculation.
These potentials are quite similar to the phenomenological potentials obtairied by Ali and Bodmer, and
Darriulat et ul. in the a+a case and by Swan and Pearce in the cz+E case. They consist of a hard core with
a radius which is weakly energy-dependent but strongly /-dependent and an attractive long-range part
which has only a weak dependence on the relative orbital angular momentum and the energy in both even-
and odd-l states. In addition, it is found that the long-range part has an odd-even feature which
has previously been noted by Gammel and Thaler in their phenomenological study of the a+p scattering
data, but has not been commonly considered in the usual local-potential approach to a scattering problem.
Based on the experience here, an effective potential is also proposed for those cases where a straightforward
application of the resonating-group method is impractical.

I. INTRODUCTION

QHENOMENOLOGICAL, effective cr+1V ' cr+n ' 4

and 0"+0"' ' potentials have recently been con-
structed by various authors. In all these potentials,
one of the common features is that they contain a
short-range repulsive part. In the a+cr case, where a
very careful phenomenological analysis' using the exper-
imentally determined phase-shift data has been made,
it was found in addition, that the repulsive part is
angular-momentum-dependent (l-dependent), while the
attractive long-range part can be made both /- and
energy-independent in the low-energy region below
reaction thresholds.

In a recent study, ' the He'+cr elastic scattering
problem was considered with the method of resonating-
group structure which employs a completely anti-
symmetric wave function and a nucleon-nucleon poten-
tial. From this study, an effective potential between
the He' and the u clusters was derived which, in fact,
contains nearly all the features mentioned above for

* Supported in part by the U.S. Atomic Energy Commission,
under Contract No. AT (11-1) 1764, by the National Science
Foundation, under Grant No. GP 9114, and by the 0%ce of
Naval Research, under Contract No. NONR 220 (47).

t A preliminary account of this work was presented at the
American Physical Society, Miami Beach Meeting, 1968; Bull.
Am. Phys. Soc. 13, 1401 (1968).' P. Swan, Phys. Rev. Letters 19, 245 (1967);W. A. Pearce and
P. Swan, Nucl. Phys. 78, 433 (1966).

2 S. Ali and A. R. Bodmer, Nucl. Phys. 80, 99 (1966).' P. Darriulat, G. Igo, H. G. Pugh, and H. D. Holmgren, Phys.
Rev. 137, B315 (1965).

4 O. Endo, I. Shimodaya, and J. Hiura, Progr. Theoret. Phys.
(Kyoto) 31, 157 (1964).' R. J. Munn, B. Block, and F. B. Malik, Phys. Rev. Letters
21, 159 (1968).' K. A. Brueckner, J. R. Buchler, and M. M. Kelly, Phys. Rev.
173, 944 (1968).' R. E. Brown and Y. C. Tang, Phys. Rev. 176, 1235 (1968).
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the phenomenological cr+cr potential. In this calcula, —

tion, we use the same method to study the rr+n and
cr+X problems. It is hoped that by considering various
cases, where different composite particles are involved,
a better understanding of the nature of the effective
potential and the origin of the short-range repulsive
core may be obtained.

Resonating-group calculations, s including the n+n s

and cr+X cases, 'o have been carried out by a number
of authors to obtain scattering phases; hence, only a
brief description of the formulation will be given in
Sec. II. In Sec. III, we present the results for the phase
shifts in the et+a and cr+E cases; these results are
somewhat different from those obtained previously, ' "
which is due to the fact that in our present calculation
a different cluster size or a different nucleon-nucleon
potential has been chosen. In Sec. IV, a study of the
effective potentials is presented; here also, we compare
the resultant potentials with those determined phenom-
enologically and discuss features which should be pres-
ent in a description of the interaction between two
composite particles using local potentials. Finally, in
Sec. V, we summarize the results of this investigation
and discuss a possible extension to more complicated

' D. R. Thompson and Y. C. Tang. Phys. Rev. 159, 806 (1967);
Phys. Rev. Letters 19, 87 (1967);NucL Phys. A106, 591 (1968);
Phys. Letters 26B, 194 (1968). References to earlier resonating-
group calculations are contained therein.

9 E. Van der Spuy, Nucl. Phys. 11, 615 (1959);A. C. Butcher
and J. M. McNamee, Proc. Phys. Soc. (London) 74, 529 (1959);
E. W. Schmid and K. Wildermuth, Nucl. Phys. 26, 463 (1961);
S. Okai and S. C. Park, Phys. Rev. 145, 787 (1966);R. Tamagaki
(to be published).' S. Hochberg, H. S. W. Massey, and L. H. Underhill, Proc.
Phys. Soc. (London) A67, 957 (1954); S. Hochberg, H. S. W.
Massey, H. H. Robertson, and L. H. Underhill, ibid. A68, 746
(1955).

'
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problems where a straightforward application of the
resonating-group method is impractical.

and
e..=o,P gbpF (Ri—Rp) t(~,r) )
+ ~=apiF(R, —r,) $(o., r)),

respectively, where 0', is an antisymmetrization operator
and ( denotes the appropriate charge-spin function.
The functions Pt and Ps describe the spatial behavior
of the n clusters; they are given by

&i= exp'- p~ Z (r'-Ri)') (3)

and

4,= e pL —-', g (r,—R,) 1 (4)

where Rl and R2 are the position vectors of the c.m.
of the two n clusters, respectively. The function F(r)
describes the relative motion of the clusters and is
determined from the variational principle

e*(H F')+dr = 0—,

where H is the Hamiltonian of the system, and E' is
the total energy.

The nucleon-nucleon potential is chosen as

V,j= —Vp exp( —gr. ' ) (zg+mP~&"+bP &s —kP, & )

+ (s'/4r' ) (1+r'.) (1+r *) (6)

with Vp ——72.98 MeV, i~=0.46 F ', and the constants
m, m, b, and h satisfying the equations

aI1d
w+m+b+k= 1

tt+m —b—k= 0.63.

(7)

As in previous resonating-group calculations, ' we have
written V,.; as

Vjj pVserber+ (1—y) Vsymmetsiet (9)

IL BRIEF FORMULATION

The wave functions for the n+n and a+ jV systems
are assumed to be

can be derived, with fi(r) defined by the equation

F(r) = g Lft(r)/r)Pt(coso). (11)
g l

In Eq. (10), jt I.epresents the reduced mass, while F.
represents the relative energy of the two clusters in
the c.m. system. "The explicit forms of VD(r), Vc(r),
and ki(r, r') are given in the Appendix. "

By solving Eq. (10) with the proper boundary condi-
tions, phase-shift values can be obtained. Using the
resultant function fi(r), we can then construct an
effective local E- and l-dependent potential

Vi (r) =Vii(r)+$ft(r)) ' ki(r, r')ft(r')dr' (12)
0

between the clusters. Clearly, because of the particular
way of construction, the potential V&* will yield the
same values for 8~ as those calculated with the reso-
nating-group method.

With the two-body potential of Eq. (6), it 'can be
easily shown" that the binding energy of an n particle
is much larger than that found experimentally, while
the rms radius is much smaller. Evidently, this comes
from the fact that this particular potential, being purely
attractive in the relative s state, is too simple to give
a detailed account of the features of a tightly bound
system, such as the n particle. To remedy this situation,
it is clear that one needs to use a more realistic poten-
tial, including at least a repulsive component. " This
would, however, complicate the numerical computa-
tion immensely. In this calculation, therefore, we shall
adopt the crude procedure of fixing the width param-
eter n of the internal functions $i and Pp such that the
experimentally determined value of 1.48 F for the
n-particle rms radius" is given correctly. In this way,
we obtain o.=0.514 F '. Using this value, the expecta-
tion value of the o,-particle Hamiltonian obtained with
the function Pi of Eq. (3) is —27.79 MeV, which is
quite close to the experimental value of —28.3 MeV.

The use of a one-channel approximation in this
study means that the specific distortion effect, i.e., the
distortion effect over and above that already implicitly
given by the antisymmetrization procedure, is not
properly considered. To crudely compensate for this
omission, we shall treat the quantity y in Eq. (9) as
an adjustable parameter, with its optimum value
determined from a best fit to the experimental data.

where Vs„b„ is given by Eq. (6) with w= m and b= k,
and Vsrmmetrie is given by Eq. (6) with m=2b and
k=2'.

Using Eq. (5), an integrodifferential equation of
the form

"All energies will be in the c.m. system unless otherwise
specified."Since the Coulomb interaction between two protons is
long-ranged, the exchange contribution to Ug(r) can be omitted
for simplicity. This will cause a slight overestimate of y defined
in Eq. (9) and prevent the occurrence of redundant solutions of
the type discussed in Ref. 8."Y. C. Tang and R. C. Herndon, Nucl. Phys. A93, 692 (1967) ."Y.C. Tang, E. W. Schmid, and R. C. Herndon, Nucl. Phys.
65, 203 (1965);I.R. Afnan and Y. C. Tang, Phys. Rev. 175, 1337
(1968)."R. F.Frosch, J.S.McCarthy, R. E.Rand, and M. R. Yearian,
Phys. Rev. 160, 874 (1967); Y. C. Tang and R. C. Herndon,
Phys. Letters 18, 42 (1965).

ki(r, r') fi(r') dr' (10)

5' t'ds l(E+1) l
I+F- V(r) V.(r) f,(r)— —

2js &dr' r' j
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As has been discussed in previous calculations, " this
is a reasonably valid procedure when the clusters in-
volved have a low compressibility. Further, it should
be noted that for the sake of simplifying the calcula-
tions, we have employed a nucleon-nucleon potential
with no repulsive core and equal range in the triplet
and singlet spin states. It is hoped that an adjustment
in the value of y may also partially correct the defects
caused by the adoption of such a simple potential.

We should mention here that there is a consistency
check on the above-mentioned procedure of varying y.
The value of y determined by the best-fit criterion
should be close to 1, since it is known that the exper-
imental two-nucleon scattering data favor a near-Serber
exchange mixture for the nucleon-nucleon potential. If
the resultant value for y should turn out to be quite
different from 1, it would be a rather clear indication
that this crude procedure is not accurate enough, and
a better way of including the specific distortion eGect,
together with the adoption of a more realistic nucleon-
nucleon potential, must be considered.
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FIG. 1. Calculated phase shift Bo for n+n scattering as a
function of the c.m. energy. The experimental values are those
given in Refs. 17—20.

' D. R. Thompson and Y. C. Tang, Bull. Am. Phys. Soc.
13, 99 (1968);Phys. Rev. 179, 971 (1969).

'~
¹ P. Heydenburg and G. M. Temmer, Phys. Rev. 104, 123

{1956).

III. PHASE SHIFTS

A. e+n System

Calculated phase shifts for I,=0, 2, and 4 are shown
as a function of E in Figs. 1—3, using a=0.514 F 2

and various values of y. In these figures, the empirical
phase shifts of Heydenburg and Temmer'~ in the energy

E (Mev)

FIG. 2. Calculated phase shift 82 for n+a scattering as a
function of the c.m. energy. The experimental values are those
given in Refs. 17—20.

range 0.2—1.5 MeV, of Tombrello and Senhouse" in the
energy range 1.9—5.9 MeV, of wilson et al. ,

" and of
Werner and Zimmerer" in the energy range 5.0—11.5
MeV are a1so shown. From these figures, it can be seen
that the optimum value of y depends somewhat upon
the value of the relative orbital angular momentum,
although a single value of y equal to about 0.95 does
yield a reasonably good fit to the empirical data. Using
the best-fit criterion, the y values for /=0, 2, and 4 are
equal to 0.89, 0.92, and 1.03, respectively; these values
are rather close to 1, indicating that the procedure of

y variation is a fairly satisfactory one.
Using y=0.89, the resonant energy in the l=0 state

is 0.077 MeV," which is quite close to the experi-
mentally determined value of 0.092 MeV."This shows
that with a single value of y, the behavior of the 80

phases can be described satisfactorily from about
10 MeV to as low as 0.1 MeU. From this, we infer that
the specific distortion effect in the case of a+a scatter-
ing must be relatively unimportant, since it seems
unlikely that this eGect, if important, could be so
energy-independent over such a wide energy range.

'8T. A. Tombrello and I. S. Senhouse, Phys. Rev. 129, 2252
(1963).' R. Nilson, W. K.'Jentschke, G. R. Briggs, R. 0. Kerman,
and J. N. Synder, Phys. Rev. 109, 850 (1958).

"H. Werner and J. Zimmerer, in Proceedings of the Inter-
national Conference on Nuclear Physics, Paris Z964 (Editions du
Centre National de la Recherche Scientifique, Paris, 1965), p.
241.

2' lf y is changed by 0.01, the resonant energy is changed by
0.065 MeV.

~ J. Berm, E. B. Dally, H. H. Muller, R. E. Pixley, H. H.
Stanb, and H. Winitler, Phys. Letters 20, 43 l1966l.
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composite particles, we shall not insist on using a
single y value for all angular momentum states, as was
done in previous resonating-group calculations, ' "but
shall use the optimum value for each l state in the
following discussions.

B.n+N System

In Fig; 4, the solid lines represent the 1=0 and I
phases for cr+I scattering, calculated with n =0.514 F '
and y=0.95. The dots and crosses represent the phase-
shift values obtained by using the central potential of
Eq. (8) published in a recent paper by Satchler et al. ,

s'

who did a careful phenomenological analysis of the
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FIG. 3. ~Calculated phase shif t 84 for n+n scattering as a
function of the c.m. energy. The experimental values are those
given in Refs. 17—20.

tP

V)f- 100—
Uz
M

Thus, the variation of the optimum value of y with /,

mentioned in the previous paragraph, is probably not
caused by the omission of the specific distortion effect,
but can be attributed mainly to the fact that an overly
simple two-nucleon potential has been used in our
calculation.

Since the main concern of this investigation is to
study the behavior of the eGective potentials between
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FIG. 4. Calculated phase shifts bo and b~ for o.+n scattering as
a function of the c.m. energy. The data points shown are obtained
by using the central potential given in Kq. (8) of Ref. 23.

FIG. 5. Comparison of the calculated phase shifts for a+n
scattering with the experimental phase shifts of Refs. 17-20.
The parameters used are a=0.43 F ' and y=0.95.

n+X scattering data in the energy region below the
reaction threshold. Here it is seen that the agreement
between calculated and empirical values is only fair.
As in the n+rr case, one can again attempt to improve
the fit by varying the parameter y. Unfortunately,
however, this procedure leads to a rather small value
of y, equal to about 0.6, in the l=0 state. On the other
hand, if y is kept 6xed at 0.95, then one Ands that a
decrease in o; from 0.514 to 0.43 F 2 can produce good
6ts to the empirical data in both the E=O and 1 states;
this is shown by the dashed lines in Fig. 4.

It is somewhat surprising that even in the et+a
case the phases calculated with o.=0.43 F 2 and y=0.95
(see Fig. 5) agree very well with those empirically

"G. R. Satchler, L. W. Owen, A. J. Klwyn, G. L. Morgan,
and R. L. Walter, Nucl. Phys. A112, 1 (1968).
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determined. This does not mean, however, that one
should attach more physical meaning to this new value
of 0.. Clearly, with a=0.43 I ', the asymptotic be-
havior of 0' or 4' ~ is not given correctly. Rather, one
should take the viewpoint that the adjustment in the
value of a is just another crude procedure to compen-
sate for the lack of certain features in our nucleon-
nucleon potential.

In spite of the above discussion, it still seems that,
since our major emphasis is on" the effective potential,
we should use a combination of o. and y values which
yield the best phase-shift set. Thus, in the following,
the discussion for the n+X case will be based entirely
upon computations using n=0.43 F 2 and y=0.95.

The a+p phases for /=0 to 6 in the energy region
15—/6 MeV are tabulated in Table I. From this table,
we conclude that, "except for the /=1 level in the low-
excitation region, " there is no other resonant level in
Li' (or He') which has an n+p (or tr+e) cluster
structure and is narrow enough to be detected experi-

TABLE I. Calculated phase shifts, in degrees, for the n+p system.
The parameters used are a=0.43 F ' and y=0.95.

(MeV)
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Fzo. 6. Comparison of the calculated differential cross section
for a+p scattering with experimental data at 31.84 MeV. The
experimental data are those of Ref. 27.

15
20
25
31.84
40
50
60
76

97.55 81.50
88.53 74.21
81.40 67.90
73.45 60.63
65.79 53.66
58.30 47. 10
52.39 42. 22
45.28 36.80

2.82
5.98
9.32

13.38
17.14
20.35
22. 42
24.03

1.46 0.06 0.02 0
2.74 0.2i 0.05 0
4.24 0.48 0.12 0.01
6.48 1.07 0.28 0.04
9.09 2.01 0, 58 0. 12

11.79 3.35 1.13 0.30
13.76 4.74 1.82 0.56
15,63 6.84 3.09 1.16

lated values can still be used as starting values for a
detailed phase-shift analysis. In fact, even the differ-
ential cross section at 31.84 MeV obtained with our
purely real phases seems to agree fairly well with
experiment (see Fig. 6).

mentally. The levels known to exist at 16.65 and 20.0
MeV '4 must have a cluster structure which is distinctly
different from the tr+p cluster structure. "

At 8=31.84 MeV, Giamati and Thaler" have per-
formed a phase-shift analysis using both differential
cross section and polarization data. ' "The spin aver-
aged values of the real parts of their resultant phases are

bp= 66.5',

83= 10.4',
bg ——60.9', 82 ——16.9',

84 2.1', Bs 1.2——'. (13)——

Comparing with our calculated values given in Table I,
we note that there is a reasonable agreement, " indi-
cating that even at relatively high energies our calcu-

~T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78,
(1966).' L. D. ,Pearlstein, Y. C. Tang, and K. IWildermuth, Phys.
Rev. 120, 224 (1960)."C. C. Giamati and R. M. Thaler, Nucl. Phys. 59, 159 (1964).

'~M. K. Brussel and J. H. Williams, Phys. Rev. 106, 286
(1957)."C. F. Hwang, D. H. Nordby, S. Suwa, and J. H. Williams,
Phys. Rev. Letters 9, 104 (1962).

s9 C. C. Giamati, V. A. Madsen, and R. M. Thaler LPhys. Rev.
Letters 11, 163 (1963)7 have also performed an analysis using
only real phases. The values they obtained are quite similar to
those given in Eq. (13).

Illk I I I

y=l.05

r (frn)

FIG. 7. The radial functions fg and g~ at 5.0 MeV in the n+a
case. The curves represent the functions fg as calculated from Eq.
(10), while the solid dots represent the functions gg as calculated
from Eq. (14).
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IV. EFFECTIVE POTENTIALS

A. rg+e System

The radial functions fs(r), fs(r), and f4(r) for 8=5.0
MeV are shown by the solid lines in Fig. 7. For com-
parison, we have also shown the values, represented by
solid dots, of the functions gi(r) given by

g, (r) = csrL1 —(g/3) trr'+ (16/15) n'r'$ exp( —nr'),

g&(r) = c&rsL1—(4/7) nr'J exp( —nr'), (14)

g4(r) = c4r' exp( —are),

with n=0.514 F '. With these expressions for gi(r),
the functions

~.=O'I ~~ -'g ()I'.(fl)t(., )1 (»)
are the usual shell-model wave functions describing the
lowest configuration (1s)'(1p)4 in an oscillator well

with width parameter o.. The quantities co, c&, and c4
in Eq. (14) are normalization constants; they are chosen
such that fp=ge and fs=gs at the positions of the first
maximum, and f4 g4 at r——= 1.0 F. From this figure, it
can be immediately seen that the functions fi and gi
are quite similar to each other for r less than 'about
2 F, which is approximately the value of the rms radius
of the folded matter distribution of the two o. clusters.
In particular, the nodes of the two functions nearly
coincide. Further, it should be mentioned that the
positions of the nodes of the radial scattering functions
are only weakly energy-dependent'; for example, at
8=2, 5, and 12 MeV, the outermost node of fs occurs
at r=2.00, 1.98, and 1.93 F, respectively, while that
of gp occurs at 1.99 F.

The above-mentioned features about the positions of
the outermost nodes in the radial scattering functions,
occurring at r = r&p,

"are very useful when one attempts
to construct an efIective potential between two more
complicated clusters, such as between two 0'6 clusters
or between a proton and a Pb"' nucleus. In these
latter situations, these positions will be hard to 6nd,
since it will obviously be an impractical matter to set
up the integrodiGerential equation using the resonating-
group method and then solve for fi, however, they can
be easily found by considering the function g& in the
oscillator shell model.

From Fig. 7, It is seen that the functions fs and fs
take on rather large values at r &2 F. As has been
pointed out previously in an analogous case of He'+He4
scattering, ~ this certainly does not mean that the two
o. clusters have a large probability of being close
together. Rather, it should be realized that these func-

"This has also been pointed out by R. Tamagaki and H.
Tanaka, Progr. Theoret. Phys. (Kyoto) 34, 191 (1965); S. Okai
and S. C. Park, Phys. Rev. 145, 787 (1966)."If the node at the origin is also counted, then the outermost
node in the a+a problem is the 'third node in the 1=0 case,
second node in the l = 2 case, and first node in the l =4 case. For
these nodes, the values of r&o at 8=5 MeV are equal to 1.98, 1.88,
and 0 F for l =0, 2, and 4, respectively.
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Fro. 8. Eflective potentials Vi*(r) for /=0 and 2 in the a+a case.

"K. Wildermuth and W. McClure, Cllster RepresentatiorI, of
XNclei (Springer-Verlag, Berlin, 1966).» The potential V~* will be complex; here, we are referring to
the real part only.

'4 R. Haefner, Rev. Mod. Phys. 23, 228 (1951);K. van der Spuy
and H. J. Pienaar Nucl. Phys. 7, 397 (1958);A. R. Bodmer and
S. Ali, ibid 56, 65 (1964);Y. C. T. ang and R. C. Herndon, Phys.
Rev. 138, B637 (1965).

tions occur under the antisymmetrization operator and,
hence, have no clear interpretation in terms of cluster
separation when the clusters are close to each other.

The effective potentials Vi*(r), as defined in Eq.
(12), are shown in Fig. g for /=0 and 2 at 5.0 MeV.
Because of the nonlocal nature of the interaction be-
tween the clusters, singularities occur in the effective
potentials at values of r for which fi(r) =0. It should
be noted that such singularities in V~* would not appear
in situations where there are open reaction channels
which are properly accounted for by a more detailed
calculation, such as a many-channel calculation. " In
fact, in those cases where the reaction probabilities
are large, the resultant potential V&* may even turn
out to be a purely attractive, smoothly varying poten-
tial." In our present case, however, we expect the
singularities to play a more prominent role, since there
is no reaction channel open below about 17 MeV.
Thus, it will not be possible to describe the features of
the n+rr phase-shift results with a purely attractive
and smooth potential, which is indeed in agreement
with the findings of many authors who have performed
phenomenological analyses on n+n scattering data
with effective potentials. ' ' '4

The fact that V~* contains singularities in the region
where the clusters overlap strongly means that this
effective potential has more academic than practical
interest. Thus, it seems desirable to construct another
effective potential Vg which deemphasizes this partic-
ular region. This can be done by defining V& in the
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following way':

V~(~) ="
= V)*(r),

r&rg

~&~to (16)

~l
7/ I I I

60—

40-

I j I
I / I I I

I
I I

He+"He
E =2.0MeV

where a hard core of radius r~o has been used to repre-
sent the much more intricate n+a interaction in the
interior region. Clearly, such a potential will yield
exactly the same phase shifts as those obtained using
the oonlocal potential in the resonating-group method.

The potentials Vp, V2, and V4 are shown in Fig. 9
at 8=2 and 12 MeV."Also, as a comparison, we have
shown in the same figure the values of the phenom-
enological energy-independent potentials determined by
Ali and Bodmer'" (solid dots), and Darriulat et aLs

(crosses). From this figure, it is seen. that the potential
V4 is quite energy-insensitive and very similar to the
potentials of the latter authors. In particular, it is
noted that our potential V4 has no repulsive core, and
indeed Ali and Bodmer have found that no repulsive

~ l]
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Fro. 9. Effective potentials V~(r) for /=0, 2, and 4 in thea+ex
case. The solid dots represent the values of the phenomenological
potentials of Ali and Bodmer (Ref. 2), while the crosses represent
those of Darriulat et al. (Ref. 3) .

"It is appropriate to mention that the potentials tj'~(r) do
not allow the existence of spurious bound s=0 and 2 states in the
o.+a system.

"The potentials tj
& have also very narrow singularities in the

surface region where the average potential depth is small. As has
been mentioned before (Ref. 7), these singularities have very
little e6ect on the scattering cross sections, since their spatial
extent is small compared to the wavelength K of relative motion
of the clusters in the energy region which is of interest to us. Thus,
for all practical purposes, these narrow surface singularities can
be replaced by smoothed potentials.

'~ The potentials of Ali and Bodmer (Ref. 2) are their potentials
dp, dg, and d4.

20-

nial I II I t I i I
jg

-20—

-40-

-so- r ~e~ g 4

-80-
~j t I I I
7r 2

I I I i i I I

4
r(fm)

Fxo. 10. Effective potentials tj'~ for /=0, 2, and 4 at 2.0 MeV
in the o.+o. case.

core of any significant strength is permissible in their
l=4 potential. On the other hand, it seems that, at
first sight, the potentials Vo and V2 are quite different
from the phenomenological potentials in the region
where r &3 F. But this is almost entirely due to the
fact that different ways of parametrization have been
utilized for the repulsive parts; thus, while the poten-
tials Vg have a hard repulsive core, the potentials of
Ali and Bodmer and of Darriulat et al. have a soft
repulsive core. In fact, upon closer examination, we do
find that there are a number of relevant quantities,
namely, the classical turning distances and the intrinsic
ranges of the repulsive parts, where our potentials V~
and the phenomenological potentials yield similar re-
sults. For instance, the classical turning distances,
computed with the Coulomb and centrifugal potentials
also taken into account, are equal to 2.00 and 1.90 F
at 12 MeV for l=0 and 2, respectively, which compare
very favorably with the corresponding values of 2.10
and 1.98 F obtained with the potentials of Ali and
Bodmer,

The particular way in which the hard-core radius
changes with energy is also interesting. When the
energy is changed from 2 to 12 MeV, roo changes from
2.00 to 1.93 F, while r2o changes from 1.89 to 1.83 F.
The fact that both these radii decrease with energy
indicates that, in a crude way, the slightly energy-
dependent hard cores used in this investigation can be
replaced by energy-independent soft cores. Together
with the observation from Fig. 9 that the long-range
parts of V& are only weakly energy-dependent, this
therefore explains the fact that, even with an hypothesis
of energy independence, Ali and Bodmer and Darriulat
et al. were still able to obtain good 6ts to the empirical
phase-shift results.

The f dependence of Vq(r) is shown in Fig. 10. Here,
the interesting point to note is that the variation of
the effective potentials with l is very much the same
as that found phenomenologically by Ali and Bodmcr
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-40)
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V4

I~o that this latter observation is a particular feature of
the n+n scattering problem. In the n+N case to be
discussed below, we do find that even in the long-range
part the antisymmetrization procedure plays a much
more important role.

O"
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FIG. 11. Comparison of the effective potential V4 and the direct
potential VD in the a+a case.

and by Darriulat et a/. In particular, it is seen that the
l dependence manifests itself mainly in the short-range
part, and that the tails of the potentials for all three I
values are quite similar.

In Fig. 11, we show a comparison between the direct
potential Vli(r) and the effective potential V4(r) ss

From this figure, we see that especially in the region
where r &2 F, there is a close resemblance. This indi-
cates that in the surface region where the effective
potential is only weakly energy- and l-dependent, the
antisymmetrization procedure seems to be of only
minor importance. It should be emphasized, however,

r(&m)
4 5

) I
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B.a+N System

The features of the radial scattering functions and
the effective potentials V)* in the n+N case are very
similar to those in the n+n case; hence, they will not
be further discussed here. In Fig. 12, we show the
effective potentials V~ for /=0, 1, and 2 at 2 MeV in
the n+p system. From this figure, it is seen that the
l = 2 potential has no hard core, but does become
moderately repulsive for small values of r. We should
mention, however, that this latter type of repulsion
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FIG. 13. Comparison of the effective potential V» and the direct
potential Vg& in the n+n case.
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Fxo. 12. Effective potentials V~ for l =0, 1, and 2 at 2.0 MeV in
the alp case.

will have little inhuence on the scattering phases, since
the centrifugal potential has a much larger magnitude
in this particular region.

The potential I/'0 contains a hard core of radius
equal to 2.21 F," followed by a very weak attractive
component, while the potential V& is purely attractive.
Both of these potentials are quite similar to the phenom-
enological potentials derived by Swan and Pearce' using
the empirical phase-shift data.

The odd-even feature in the long-range part of the
effective potential, noted recently in a He'+He' scatter-
ing calculation, 7 is also present here, although to a
lesser extent. As has been mentioned previously, this
eGect was first discovered by Gammel and Thaler" in
their phenomenological analysis of the n+p scattering
data using local potentials. Thus, it is indeed gratifying

"It is interesting to note that if one uses an unantisymmetrized
wave function for the n+n or n+E system and a two-body
potential given by Eq. (6), but with I';." replaced by —I' P
then the effective potential between the clusters will just be given
by the direct potential Va.

"This hard-core radius is also somewhat energy-dependent,
changing from 2.21 F at 2 MeV to 2.09 F at 12 MeV.

4' J.L. Gammel and R. M. Thaler, Phys. Rev. 109, 2041 (1958);
see also C. C. Giamati, V. A. Madsen, and R. M. Thaler, Phys.
Rev. Letters 11, 163 (1963).
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to see that such an effect emerges from a more basic
calculation using totally antisymmetrized wave func-
tion and a nucleon-nucleon potential.

Figure 13 shows the energy dependence of the poten-
tial V~ and a comparison between Vj and the direct
potential VD. Here we see that the energy dependence
is quite slight, as in the o.+n case. On the other hand,
the difference between V~ and V~ is rather large, indi-

cating that in this particular case a proper considera-
tion of the antisymmetrization effect is essential.
Further, we note from this figure that there is a peculiar
feature in V~ occurring near r=4.5 F. At the present
moment, we are not sure why this feature arises,
although we tend to think that it is connected with the
fact that in the u+E case, one of the clusters involved
is not a composite particle.

V. CONCLUSION

In this investigation, the resonating-group method
is used to study the a+n and cr+Jt't systems in the
energy region below the reaction thresholds. With a
nucleon-nucleon potential of a near-Serber exchange
mixture, it is found that good agreement with the
empirical phase-shift data can be obtained in both
cases. Using the resultant radial scattering functions,
effective potentials V~ between the clusters are con-
structed, which yield the same phase shifts as those
obtained from the resonating-group calculations.

Except for minor details, the eGective potentials
constructed here are quite similar to the phenomeno-
logical potentials obtained by Ali and Bodmer' and by
Darriulat et al. ' in the a+a case and by Swan and
Pearce' in the n+1V case. Essentially, they consist of
a hard core with a radius which is weakly energy-
dependent but strongly l-dependent, and an attractive
long-range part which has only a slight dependence on
the relative orbital angular momentum and the energy
in both even- and odd-l states. In addition, it is noted
that the long-range part has an odd-even feature
wherein the potentials in the odd-l states are different
from those in the even-l states.

It is our opinion that not too much physical meaning
should be attached to the hard core in the effective
potential. In our way of construction, the hard core is
placed at the outermost node of the radial scattering
function in the region where the clusters overlap
strongly. In this latter region, the et+a and rr+X
interactions have a very intricate nature. Thus, in our
viewpoint, the introduction of a hard core is mostly an
artifice which avoids the construction of a potential
inside this region.

Also, we wish to comment briefly on how to con-
struct a potential in a case, such as 0"+0"scattering,
where a straightforward application of the resonating-
group method is impractical. Based on the experience
learned here, we propose an l-dependent potential of

the form

= GI,VD (r) y

~«io

r& r)0

where the hard-core radii r~o can be determined &roun

the positions of the nodes in the oscillator-shell-model
wave functions, as outlined in Sec. IV A, and the direct
potential V& can be obtained by a simple folding
procedure" using assumed matter distributions for the
clusters. The quantities c~, which can take on two
values, based on whether l is even or odd, are intro-
duced to take into account the effect of the Pauli
principle and the odd-even feature mentioned above;
these quantities will be treated as adjustable param-
eters in this potential. At present, we are planning to
use this type of potential in a number of relatively
simple cases, such as p+0" scattering, and so on. It
is hoped that the results of such an investigation will

help us in gaining a better understanding of the features
of the effective potential and in extending the local-
potential approach to more complicated problems.

At this point, it is perhaps appropriate to mention
that the present investigation is our initial attempt to
study the features of the effective interactions between
composite particles. ~ The construction of these effec-
tive interactions is based on the results of a resonating-
group calculation, which, although in reasonable agree-
ment with the empirical data, do contain some limita-
tions. For example, the finding that the quantity y has
to be somewhat dependent on the relative orbital
angular momentum of the clusters is clearly an un-
desirable feature. To remedy this, it will probably be
necessary to calculate with a more realistic nucleon-
nucleon potential, e.g., one which has diferent ranges
in the triplet and singlet spin states. 4'

APPENDIX: EXPRESSIONS FOR Vn(r), Vc(r),
AND k)(r, r')

n+rg System

The direct potential Vn(r) is given by

Vn(r) = —Vs(16w —4m+Sb —Sh) L2u/(2u+3a) js~'

Xexp L
—2o.ltr'/(2rr+3~) j. (A1)

+ G. W. Greenlees, G. J.Pyle, and Y. C. Tang, Phys. Rev. 171,
1115 (1968).

4' There have been a number of calculations in the a+a case;
these have been carefully reviewed by S. A. Afzal, A. A. Z.
Ahmad, and S.Ali, Rev. Mod. Phys. 41, 247 (1969).In particular,
we should mention the work of I. Shimodaya, R. Tamagaki, and
H. Tanaka, Progr. Theoret. Phys. (Kyoto) 27, 793 (1962), who
have made a study similar to ours. In this latter work, effective
interactions between the a clusters were obtained by using, for
the functions f~, trial functions which are consistent with the
Pauli principle /see also L. D. Pearlstein, Y. C. Tang, and K.
Wildermuth, Nucl. Phys. 18, 23 (1960)f This is a procedure
different from the one employed here; however, the features of
the a+n interactions found by these authors are quite similar
to those obtained in this investigation.

4' I. Reichstein and Y. C. Tang, Nucl. Phys. (to be published).



1360 THOMP SON, REICHSTEIN, McCLURE, AND TANG

where M is the nucleon mass and 8' is given by

ji,'I —1/,'+ 2Ji

The Coulomb potential has the form

V ()=(-'"/)~[(-: )""], (A2)

with s and s' being the atomic numbers of the two with
clusters and

(AS)

2
4 (I) = exp( —t') dt.

7r p

The kernel ht(r, r') is written as

hi(r, r') = —(h'/2M) 3—Vp'U+E'8,

(A3)
E'.= (h'/2M)-, 'n 6(—w+m) Vp[u/(a+2~)]'/ +e'(2n/~) / .

(A6)

(A4) The quantities 3, 'U, and 8 are defined as follows:

3= (8n/3ir) / exp[—(5/3) u(r'+r")]

X f 62nSi[—(8/3) n]—(224/9) u'(r'+r'2) Si[—(8/3) n]+ (416/9) n2rr'Ti[ —(8/3) a]}
+ (2n/ir) '/' exp[ —n(r'+r") ](47rrr'bip) [6a'(r'+r") —(81/2) n], (A7)

'U = (8n/3ir) P/' (—24w —24m) [n/(a+2~) ]' 'St[—(8/3) n] exp[—(5/3) n(r'+r") ]
+ ( —4w+ 16m —8b+ 8h) Si[—(8/3) n —8a] exp f [(5/3—)a+4'] (r'+ r") I

f 3u ' ' /' 8n'+8nK't ( Su'+8n~+ (—36w+ 24m —24b+24h)
~

[exp]— (r'+ r'~)
)Un+4~ ( 3u+«j & 3u+«

3u l'/' 8n'+16n~+ (—24w —24m)
3n+4~ j 3n+4~

Sn'+8n~ Sn'+12n~, Sn'+12n~ Su'+8ng,X exp r2- r" +exp r2- r/2
3n+4~ 3n+4~ 3n+4~ 3u+4~

3//2

+ —
~

(12w+ 12m) (4irrr'B&p) exp[—n (r'+r") ]+(24w 36m+ 2—4b 24h)—
m) u+ 2K

2m~ 'I u +2uK 3/2

X Si —
I exp (r'+r") + (24w+24m)

~
(4irrr hip)u+ K u+ Kj u+ K &2n+ 3~

exp —ar2—2n'+Su~, l ( 2u'+Su~r" +exp — r' nr", —A8
2n+3x j & 2n+3x j

with

and

8= 4(8n/3m) '/'Si[ —(8/3) n] exp[—sn (r'+ r")]—3 (2n/ir) p/'(4~rr'b@) exp[—n (r'+ r")]
Si(X) = (4'ir/X) pi+&/2(Xrr')

Tt(X) = (4~/X) [pi+,/, (Xrr') —(t/l%. rr') g/+i/, (Xrr') ],

(A9)

(A10)

(A11)

where g(x) is a hyperbolic spherical Bessel function.

ot+N System

The expressions for V~, V~, 3, 'U, and 8 are as follows:

VD(r) = —Vp(4w m+2b 2h)—[4 /(4un—+3~)]"exp f
—[4u~/(4a+3~)]r'}

Vc(r) = (ss'e'/r) C [ (~u) '/'r]

3= (p) P(4a/3n. ) 3/' exp[—(34/75) u(r +r")]
(A13)

&& f (47/5) nSi[(32/75) u]—(1216/1125)n'(r'+ r")Si[(32/75) n]—(1568/1125)n'rr'Ti[(32/75) a]}, (A14)
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'U = (e)s(4n/3sr)'t' ( t—v+4m 2—b+2h) St/(32/75) n (—32/25) xg exp{—L(34n+481t)/75$(r'+r") }

+ (—3tv —3m) Ln/(a+ 2') g' 'St[ (32/75) nj expL —(34/75) a (r +r' )j
3n ' ' t'32n'+64ntt)i+ —3to—3m st

&3n+2K & 75n+50tt j
34n'+28am 34n'+108nlt, l ( 34a'+108nlt 34n'+28n~

&( exp ~— r2- r" i+exp ~— r2- r"
75n+ 50K 75n+50tc 3 & 75n+50» 75n+50tt

8= (s) '(4n/3sr) st'St((32 /75) n) expL —(34/75) a (r'+r") ).
Also, the quantity E' in Eq. (A4) is given by

g~=g+g

(A15)

(A16)

(A17)
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The multiple-scattering series for elastic scattering is investigated numerically for a model of the neutron-
deuteron system, at neutron laboratory energies of 14.1, 50, and 100 MeV. The model is that of Aaron,
Amado, and Yam, with spin-dependent, s-wave, separable, two-body interactions. It is found that the
doublet L=0 series converges only slowly even at 100 MeV, and that it strongly diverges at 14.1 MeV. On
the other hand, the convergence is rapid for both doublet and quartet partial waves beyond I-= 2, and for
these the single-scattering plus Born-pickup terms provide an accurate approximation. Differential cross
sections and partial-wave amplitudes are given for various orders of multiple scattering, and for a unitary
version of the erst-order approximation, and are compared with the exact results.

1. INTRODUCTION and valuable insight into the multiple-scattering series

may be gained in this way. Such studies have been made
previously for the X —d,4 E+—d, ' and A —d ' systems.
In this paper, we consider the m-d system, which divers
in the important respect that rearrangement collisions
are possible. Our main aim is to study the convergence
of the multiple-scattering series of Faddeev-type' for
this system. We hope that the results will serve as a
guide to the usefulness of the multiple-scattering series
for more realistic potentials.

The multiple-scattering series is derived in Sec. 2, and
in Sec. 3 we briefly describe the model (the separable-
potential model of Aaron, Amado, and Yam'). The
methods used in calculating the multiple-scattering
series and in analyzing the convergence are described

PPROXIMATIONS based on truncated multiple-

x

~ ~

scattering series have often been used to study the
scattering of elementary particles by deuterons. Of
these, the most widely used is the impulse approxima-
tion, ' which in its usual application may be regarded
as the first-order contribution to the multiple-scattering
series. Some attempts have been made to calculate
second-' ' and higher-order' terms, but with realistic
potentials even the first-order term requires approxima-
tion, and drastic simplifications must be made to calcu-
late higher-order terms. With separable potentials,
however, exact calculation to all orders becomes possible,

4 J. H. Hetherington and L. H. Schick, Phys. Rev. 137, B935
(1965).

~ J. H. Hetherington and L. H. Schick, Phys. Rev. 138, B1411
(1965); 139, B1164 (1965).

6L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
LEnglish transl. : Soviet Phys. —JETP 12, 1014 (1961)].

7R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 140,
B1291 (1965).

*Research supported by the Australian Research Grants
Committee.' G. F. Chew, Phys. Rev. 80, 196 (1950);G. F. Chew and G. C.
Wick, ibid 85, 636 (19.52); J. Ashkin and G. C. Wick, ibid 85, .
686 (1952); G. F. Chew and M. L. Goldberger, ibid. 87, 778
(1952); H. Kottler and K. L. Kowalski, ibid. 138, B619 (1965).
The last paper contains many references to earlier calculations
with the impulse approximation.

s A. Everett, Phys. Rev. 126, 831 (1962); A. K. Bbatia and J.
Sucher, ibid. 132, 855 (1963).

'N. M. Queen, Nucl. Phys. 55, 177 (1964); 66, 673 (1965).


