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A microscopic description of analog resonances is presented in the framework of the shell-model theory.
The separation of the total Hamiltonian into an independent-particle Hamiltonian IIO and the residual
interaction V is discussed. A choice of Bp is made that minimizes the residual interaction —in particular,
the matrix elements between the continuum eigenstates of IIO. The diagonalization of the two-body residual
interaction on an appropriately chosen set of 2p-1h con6gurations is carried out, and the numerical results
are presented for "'Bi.A group of —,

'+ states of analog spin 8"& is predicted to be about 11 MeV below the
ggf~ analog resonance in ' Bi. Coupling of the various continua to the S"& state gives rise to the isobaric
analog resonance in the corresponding channels. The inelastic proton decay of the g&p& analog resonance
in "'Bi to the particle-hole states of ' 8Pb is calculated, and the results are compared with experimental data.

. An expression for the energy-average S-matrix elements is derived starting from the multilevel expression
describing the coupling of both T& and T& states to the various continua. There expressions differ from
those given by Weidenmiiller and by Mekjian and MacDonald and are in agreement with Robson's results
in the one-channel case. Our expressions also agree with recent results obtained by Tamura.

I. INTRODUCTION

lHE study of isobaric analog resonances has pro-..vided us with a useful tool for the determination
of nuclear structure of the parent analog states. Prom
an analysis of the elastic scattering of protons through
isobaric analog resonances, it is now possible to de-
termine the neutron-spectroscopic factors of the low-

lying states of nuclei with an accuracy comparable to
or even better than that obtained using the (d, p)
stripping reaction. The inelastic proton decay of the
isobaric analog resonances, however, is capable of
yielding very important nuclear-structure information.
This was first realized by Allan, ' and a large number
of papers2 since have been devoted to the study of
inelastic proton decay of these resonances. There are
two fairly distinct mechanisms involved, either of
which can lead to the decay of an isobaric analog
resonance into an inelastic proton channel. The first
situation arises when the low-lying states of the parent-
analog nucleus contain admixtures of the collective
excited states of the target nucleus. In this case one
expects the analog resonances to decay to the cor-
responding excited state of the target. This situation,
originally studied by Allan, ' has been observed3 ~ in
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a number of nuclei and analyzed in terms of the
weak-coupling model.

In heavy nuclei, particularly in the lead region, the
analog resonances occur at an excitation energy of the
order of 20 MeV. These resonances decay into a large
number of inelastic proton channels' "populating the
excited states of the target nucleus up to 6 MeV in
excitation energy. The inelastic scattering of protons
from ''Pb proceeding through the isobaric analog
resonances in '"Bi is particularly interesting. In this
case the analog resonances are caused by the isobaric
analogs of the nearly pure single-particle states" " of
'"Pb. The inelastic decay of these resonances populates
states in '"Pb, many of which are superpositions of
simple particle-hole states. There is considerable ex-

perimental evidence in favor of this simple interpreta-
tion. The inelastic proton scattering leading to the 4
state in ' 'Pb has been analyzed by Bondorf et al."
In their analysis these authors employed single-particle
decay widths deduced from the inelastic scattering of
protons from ' Pb. This ingenious technique has rather
limited application and requires a significant correc-
tion of the partial widths, to take into account the
difference in energy of the outgoing proton. Their
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P. von Brentano, Phys. Rev. 165, 1312 (1968).
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analysis, however, yielded a neutron —neutron-hole con-
figuration for the 4 state, in agreement with shell-
model calculations.

In this paper we report a description of the isobaric
analog resonances that is based directly on the shell-
model theory of nuclear reactions. ' ' The basic as-
sumption underlying this description, which is common
to all shell-model calculations, is that there exists a
small set of eigenstates of the independent-particle
Hamiltonian Hp, such that the diagonalization of the
eGective residual interaction V on this set yields wave
functions that provide an adequate description of the
physical situation under consideration. In the descrip-
tion of nuclear reactions initiated by a nucleon inci-
dent upon a target nucleus, it is necessary to consider
eigenstates of Hp with at least one nucleon in the
continuum. The inclusion of configurations with more
than one nucleon in the continuum is beset with dif-
ficulties. Ke shall ignore such configurations alto-
gether. The set of functions on which the residual
interaction is to be diagonalized includes, then, func-
tions characterized by a continuous-energy variable
corresponding to a nucleon in the continuum. It is,
however, possible to choose a finite number of con-
figurations of this type together with a finite number
of entirely bound configurations.

The proper choice of the Hamiltonian Hp is crucial
to a successful application of the shell-model approach
to nuclear reactions. The main reason for this lies in
the necessity for diagonalization of the residual inter-
action on the set of configurations involving one
nucleon in the continuum. This diagonalization con-
stitutes one of the basic practical difhculties of the
shell-model approach to reaction theory and in practice
can at best be carried out in Born approximation. In
view of the approximate tre'atment of the continuum-
continuum interaction, it is important to choose Hp

and V very carefully, so that the terms that have to
be treated approximately are small relative to the
ones to be treated exactly. Such considerations suggest
the inclusion in Hp of all those components of the
residual interaction, the inclusion of which will not
interfere with the exact diagonalization of Hp on the
space of configurations chosen. More specifically, one
should construct simple interactions, like an "eGective
one-body potential", subtract these from the residual
interaction V, and then compensate by adding the
same simple interaction to Hp. This is basically the
approach adopted by MacDonald. " In choosing Hp,
attention must be paid to the single-particle resonances
displayed by the continuum solutions of Hp. The ma-

'~H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287
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"W. M. MacDonald, Nucl. Phys. 54, 393 (1964); 56, 636
(1964).
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(1966).

trix elements of the continuum-continuum interaction
are strongly enhanced in the vicinity of the single-
particle resonances, and an approximate treatment of
the continuum-continuum interaction employing the
Born series becomes questionable. If, however, the
single-particle resonances are "sufficiently sharp" (i.e.,
occur low enough in energy) they can be handled,
roughly speaking, in much the same way bound eigen-
states of Hp are treated. Techniques for treating such
single-particle resonances are discussed by Weiden-
muller"' and also by Garside and MacDonald ' It
must be pointed out, however, that these techniques
are useful only when the resonances are in fact suf-
ficiently shap. Thus a second criterion for a good
choice of Hp is that the single-particle resonances occur
at low enough energies so that techniques similar to
those of the above references can:be applied.

The theory of isobaric analog resonances given by.
%eidenmiiller" is based on a choice of Hp which is
useful for an understanding of the nature of these
resonances; however, the continuum eigenstates. of.Hp

display single-particle resonances very close to the,

energy of the isobaric analog resonance. These single-
particle resonances are, in general, too broad for the
techniques of Ref. 22 to apply. Weidenmuller gives
arguments for factorizing the energy dependence of
the continuum functions in the neighborhood of the.
single-particle resonances. The contributions from the,

single-particle resonances are then represented as a
sum of separable terms, and the remaining part of
the continuum-continuum interaction is deleted. .

Ke choose an independent-particle Hamiltonian such
that the only well-pronounced single-particle resonances
displayed by its solution occur below the Coulomb
barrier and have very small widths (typically less
than 1 keV). Our choice of the independent-particle
Hamiltonian corresponds to the inclusion in Hp of a
large component of the residual interaction which, in
the phenomenological description, has its counterpart
in the well-known symmetry term of the optical po-
tential for nucleons. Clearly, the residual interaction
is considerably reduced with this choice of .Hp. The
residual interaction is then diagonalized on a suitably
chosen set of bound configurations and of configura-
tions involving a single proton in the continuum. The
continuum-continuum part of the residual interaction
is neglected, but we expect that with our choice of
Hp this interaction is very weak in general. Exceptions
might, however, arise in dealing with the collective
states of the target nucleus.

The diagonalization of the residual interaction on
the bound eigenstates of IIs yields a state

~
Z) em-

bedded in the continuum at an energy close to the

"L.I. Garside and W. M. MacDonald, Phys. Rev. 138, 3582
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energy of the isobaric analog resonance. Its coupling
to the various continua gives rise to the isobaric
analog resonance in the corresponding channels.
Throughout the present investigation we will use the

ggp analog resonance in ' 'Bi as an example to illus-
trate the formal developments. Numerical results are
also presented for this case.

In the next section we discuss our choice of Hp
and some properties of its eigenstates. The sets of
bound and continuum configurations, on which the
diagonalization of the residual interaction is considered,
are also specified in this section. The shell-model de-
scription of analog resonances is formulated in Sec. III.
In Sec. IV we present numerical results obtained by
diagonalizing the residual interaction on the bound
neutron —neutron-hole —proton configurations in "'Bi.
The analog spin and isospin properties of the eigen-
states are also discussed. The coupling of the isobaric
analog state

~
Z) to the various proton continua is

treated in Sec. V. Isospin properties of the continuum
wave functions are also discussed, and the scattering
matrix elements are calculated. In Sec. VI the eGects
arising from the numerous T& states are considered,
and the expressions for the energy-averaged scattering
matrix elements are presented. Details of this calcula-
tion are given in Appendix A. We 6nd that approxi-
mations used in Ref. 22, to treat the T~ states, can
be improved upon. Section VII is devoted to the
discussion of the numerical results obtained in the
calculations on the g9~2 isobaric analog resonance in
"'Bi. The results are also compared with the experi-
mental data of Richard et al.2' The relevant formulas
are given in Appendix B.

IL CHOICE OF INDEPENDENT PARTICLE
HAMILTONIAN Hg

One simple choice for Hp would be the interactions
of the last nucleon or nucleon hole with the closed
shells of 82 neutrons and protons represented by a
one-body nuclear potential, which then would be the
same for neutrons and protons. In accounting for the
low-lying states in "'Pb or '"Pb, one would then need
to consider the interactions of the last neutron or
neutron hole with all the neutrons occupying the orbits
from %=82 to 126. Similarly, for a description of low-

lying states in ' 'Bi or "Tl, it would be necessary to
consider the interaction of the excess neutrons with
the last proton or proton hole. The interaction of the
last neutron (neutron hole) with the neutrons oc-

cupying the orbits between X=82 and 126 involves
exchange terms which are absent in the interaction
of the last proton (proton hole) with the excess neu-
trons. Thus, with this choice of Hp the matrix elements
of residual interactions for neutrons and protons are

"P. Richard, W. G. Weitkamp, W. Wharton, H. Wiernan,
and P. von Brentano, Phys. Letters 26B, 8 (1968}.

quite diGerent. Indeed, this is the origin of the well-
known symmetry term in the nuclear optical potential.

These considerations show that it will be desirable
to choose an independent-particle Hamiltonian which
provides an adequate description of the single-neutron
states in '"Pb as well as single-neutron —hole states
in 2P~Pb. Similarly, it should provide a description of
the single-proton and single-proton —hole states in "'Bi,
and '"Tl, respectively. If one searches for a one-body
Saxon-Woods potential that provides the best descrip-
tion of the low-lying states in "'Bi and "Tl, and a
similar potential for states in '"Pb and '"Pb, one
finds that the effective proton potential is about 15
MeV deeper than the neutron potential.

It is, however, possible to obtain a good description
of the low-lying states in each of these four nuclei as
single-nucleon or single-hole states. The second choice
of Hp is well suited to our description. With this
choice, the residual interaction is oddly the interaction
between particles and holes defined relative to '"Pb.
The eGective two-body residual interaction correspond-
ing to our choice of Ho must be consistent with the
diGerence between neutron and proton potentials em-

ployed in the definition of Ho. This consistency problem
has been discussed by Pinkston. '4 In the following we
will see that it leads to a constraint on the eGective
two-body residual interaction.

We now turn to the effective one-body potential
for continuum eigenstates of '"Bi with one proton in
continuum. The empirically known optical potential
that best describes the elastic scattering of protons
from "'Pb is complex and energy-dependent. The
energy dependence and imaginary part of the optical
potential are expected to arise naturally if one diago-
nalizes the residual interaction on the continuum eigen-
states of Hp and complicated bound eigenstates of Hp

lying in the vicinity of the excitation energy of the
compound system. Empirically, one finds that the
elastic scattering of protons from '"Pb at energies
between 14 and 19 MeV is well described by an optical
potential whose real part has the same geometry as
the bound-state potentials discussed above and depth
given by

V„=66.3—0.4E~,

where depth of the proton potential V„and the proton
energy E„areexpressed in MeV. Extrapolation of this
well depth to small values of the proton energy E„
gives excellent agreement with the potential chosen for
the proton bound states.

We choose the single-particle potentials for protons
and neutrons to be different to accommodate the in-
teraction of the last nucleon with the excess neutrons.
This enables us to describe the low-lying states in

Pbp Pby Big and Tl as eige»tates of Ho. The
real part of the optical potential that best describes

~ W. T. Pinkston, Nncl. Phys. 53, 643 (1964).
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the proton scattering is in very good agreement with
the potential chosen to describe the low-lying bound
states in ' 'Bi and ' Tl. Since we will not carry out
the diagonalization of the residual interaction with
respect to the continuum, our last-mentioned choice
of proton potential seems to be very desirable. The
parameters of the Saxon-Woods potentials employed
are listed in Table I.

Our choice of Ho has yet another merit in that the
continuum eigenstates of Hp with one proton in the
continuum do not display single-particle resonances
in a large energy region around the energy of the
isobaric analog resonance. This is very important
because close to the energy of a sharp single-particle
resonance the amplitude of the continuum wave func-
tion becomes large in the nuclear interior. As a result,
the continuum-continuum interaction is enhanced, and

IO

IO =

HE)
(MpV)'-

IO =

lO

SQUARE OF THE AMPLITUDE OF

THE Pl],~ PARTIAL WAVE

Vp
(MeV) (F) (MeV)

TABLE I. Parameters of the Saxon-Woods potentials used to
calculate the wave functions of neutrons and protons in bound
states. The potential for the continuum eigenstates of proton has
depth given by Eq. (1) and the same geometry as the bound-
state potential.

IO
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E(MeV)

I

40

Fro. 1. Square of the amplitude of the p&12 continuum wave
function, integrated over the nuclear volume. The ordinate is a
measure of the continuum-continuum interaction involving two
continuum wave functions, with the proton in the p1~2 partial
wave in each case. The dotted curve is calculated for an H p with
V„=U„.The solid line corresponds to our choice of potentials.

Neutrons
Protons

0.75
0.75

51
66

1.19 the framework of the shell-model theory of reactions.
1.19

The peculiar role of the residual interaction in split-
ting the proton single-particle resonance and pushing

it ma no longer be permissibl~ to ignore it. It is away a fraction 2Te/(2Te+1) of its strength is par-
covenient to de6ne ticularly transparent in these references. It is also

clear, however, that the choice of Hp implied in these

(2) references can be improved by including in Hs all the

where

Qi,z I Az )=&(&—&'),

and E is of the order of the nuclear radius. The quan-
tity defined by Eq. (2) is a measure of the square
of the amplitude of continuum wave function Pi~
over the nucleus. ln Figs. 1 and 2, I(E) is plotted
for two partial waves of interest for our choice of Hp

and for an independent-particle Hamiltonian obtained

by equating the single-particle potentials for neutrons
and protons. " We find similar qualitative behavior
for other partial waves. Continuum eigenstates of the
independent-particle Hamiltonian defined. in the spirit
of Ref. 22 display well-pronounced single-particle reso-
nances in contrast to our choice. Technique discussed

by Weidenmiiller22 for handling these single-particle
resonances are useful only if they are suKciently sharp,
which holds only for low energies and high angular
momenta.

Before concluding this section we mention that the
Lane modeps has been discussed and extended'6'~ in

"A. M. Lane, Nucl. Phys. 35, 676 (1962).
26C. Mahaux and H. A. Weidenmuller, Nucl. Phys. A94, 1

(1967).
27 C. Mahaux, Z. Physik 196, 240 (1966).
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Fzo. 2. Square of the amplitude of the friz continuum wave
function, integrated over the nuclear volume. In this case the
single-particle resonance displayed by the continuum wave
function of Ho with U„=U is much sharper than in the p1~~
case. Also, for this partial wave, our choice of potentials con, -
siderably reduces the continuum-continuum interaction,
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tion for these 2p-1h wave functions:

Xp.= } Jp*(or); Jp3IIp),

X;,= [ LJ, (or)Z;(v)goJo(v); JoMo).

(3)

(b) (c) (d)

I zc. 3. Schematic representation of the 2-particle-1-hole bound
and continuum eigenstates of IIp.

diagonal parts of the residual interaction, so that the
residual interaction U consists entirely of the coupling
between the (pC) and (isA) channels. This is, in
eAect, the approach adopted in .Ref. 15. Recently
Mekjian and MacDonalds and Tamura have pub-
lished theories of isobaric analog resonances which are
based on a choice of Hp similar to the one adopted
here. Tamura critically discussed the various theories
of isobaric analog resonances in considerable detail.

III. SHELL-MODEL DESCRIPTION OF
ANALOG RESONANCES

The choice of one-body potentials made in the last
section defines our independent-particle Hamiltonian
Hp. We consider the following bound configurations
{-P;} that are eigenstates of Hp, a neutron in the 2go~s

, orbit. together with a neutron hole in one of the excess
neutron orbits and a proton in the corresponding pro-
ton orbit. The proton and the neutron-hole are coupled
to zero total angular momentum, and we have a prop-
erly antisymmetrized two-particle, one-hole state. There
is one such two-particle, one-hole state corresponding
to each excess neutron orbit occupied in "'Pb. In ad-
dition to these bound states, we consider the gg/2

single-proton state in "'Bi. This state is unbound by
about 3.5 MeV. Being far below the Coulomb barrier
and having an orbital angular momentum of 4, it
gives rise to an extremely narrow single-particle reso-
nance with an estimated width of less than ore-teeth
of ups electrom volt. In the following we treat this state
$o in exactly the same way as the true bound states
{P;},ignoring the fact that it is unbound. Thus pp is
assumed to be the bound single-particle 2gg12 proton
state depicted in Fig. 3(a). We also introduce the set
of continuum con6gurations yp„y~„~~, x„,. Each of
these is obtained from the corresponding bound con-
6guration by replacing the bound single-proton state
by a continuum solution with the same total angular
momentum. The energy of the proton in continuum
is denoted by e. A typical continuum con6guration of
this type may be represented as shown in Fig. 3(b).
It will be convenient to introduce the following nota-

'SA. Mekjian and W. M. MacDonald, Nucl. Phys. A121,
385 (1968)."T. Tamura, University of Texas technical' report (unpub-
lished); and Phys, Rev. (to be published).

The 6rst one denotes a particle in the proton orbit 0,
whereas the second one denotes a particle in the
proton orbit i, a hole in the neutron orbit i coupled
to a total angular momentum 0 and a particle in the
neutron orbit 0. The asterisk is to remind us that a
continuum state of that angular momentum is implied.
The extremely narrow single-particle resonance dis-
played by the g9~2 proton-continuum eigenstates is now
to be excluded from xp„since it has already been
included among the bound states as @p. The exclusion
of this resonance from the gg~2 proton-continuum states
is straightforward, since it occurs far below the Cou-
lomb barrier and is extremely sharp. This may be
compared to the treatment of single-particle resonances
by Garside and MacDonald. " Con6gurations similar
to {x;,} have been used by a number of authors in
discussing isobaric analog resonances; they are Inen-
tioned here for comparison. For the following discus-
sion it is necessary to consider a larger set of con-
tinuum configurations. We introduce a set of 2-par-
ticle —1-hole con6gurations with the proton in a con-
tinuum state, with the energy e, and with a definite
state of total angular momentum; a neutron hole in
one of the excess neutron orbits; and a neutron in
one of the shell-model orbits beyond 3pi~, . The angular
momentum of the proton is rot necessarily the same
as that of the neutron hole in this larger set. The
angular rnomenta of neutron and the neutron hole
are coupled to form the core spin I, which is coupled
to the angular momentum of the proton in the con-
tinuum, to give the total angular momentum of the
2-particle —1-hole state. We denote these states by Pp, .
Here P is an index specifying the set of quantum
numbers of the core and the proton.

4p.= } J'*(~)(A,(v)J.(v) jr, Jo&o) (5)

A typical configuration of this type is shown in Fig.
3(c). Similarly, we include in {fp,} those configura-
tions that involve a proton —proton-hole excitation of
the core. One such configuration is depicted in Fig. 3 (d) .

(6)

We consider a total number of E such configurations
(P=1, ~ ~, 1V). It is clear that those functions of the
set {fp,} that involve a neutron in the go~s orbit and
a neutron hole in one of the excess neutron orbits,
together with a proton in the same angular-momentum
state as the neutron hole, diGer only in angular-
momentum coupling from the functions of the set
Ix'. I

The Hamiltonian function of our system can now
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be written
H=HO+ v,

where Hp is the independent-particle Hamiltonian dis-
cussed in the last section. The configurations

{x,,}, and. {fp,} are all eigenstates of Ho. We seek
an expansion of the wave function of our system in
terms of the configurations {P,}, {I;,}, and {A,}.

A.—Q Pi,cp)„ (13)

which implies
ap(~) = Z ~~(~)cpi

We introduce continuum functions {gi,} that are ob-
(7) tained through an orthogonal transformation over the

set {A,} and write

I

~)—= Z ~,
I
e.)+ 2f d ~,(.) 14,,).

Putting this expansion into the Schrodinger equation,
we get a system of coupled equations for the coeffi-
cients b, and ap(e):

(~.—~)b+ 2 &~. I
v

I ~'&b;

ts () e r qui d to s tsfy the
equation

(&p &i—) cpi+ 2 &01 v.h I ~ )cp i=0 (15)

In terms of the new basis for the continuum we get

(~* E)b*+—Z &4" I vlf'&bs

+ Z «'&O'
I
v

I A "&~ip (e') =0) (9)
p/

Z &A. I vie»&b+ (&p+~ &)ap(—~)

+ Z «'&A
I vl A "&~p (")=o. (1o)

pf

The set of eigenstates {fp,} of Ho that involve a proton
in the continuum are not well suited to satisfy the
boundary conditions of the scattering process being
considered. Thus, for large values of the proton co-
ordinate, the functions {A,} describe the motion of a
proton and a core configuration of 208 nucleons, which
is in general not an eigenstate of ' 'Pb. This is because
the residual interaction has not been diagonalized on
the particle-hole excitations of the "'Pb core."A change
of basis functions {A,} is required to accomplish this
diagonalization. We observe that the matrix elements
of the residual interaction between continuum eigen-
states of the Ho may be written

Qp I vl A "&=b(~—~') &~ I v.hl&'&+&A I v~1 A "&.

(11)

The states
I g) are eigenstates of Ha corresponding to

bound-particle —hole excitations of ''Pb. The second
term on the right-hand side involves transitions of the
proton in continuum or its exchange with the bound
proton depicted in Fig. 3(d), whereas the first term
corresponds to the proton in continuum remaining in
the same state. Returning to Eq. (10), we get

ZQ, .Ivl~;&b, +(~+ ~) ()
+ Z &p ~ v.h ~ p'&&p (~)

+ g «'&A, I vp I A, &up (e') =0. (12)

"C.Bloch, in Muny-Body Description of Nucleur Structure und
Eeuctions, edited by C. Bloch (Academic Press Inc. , New York,
1967).

+Z «&e;I via. '&..(.)=o, (16)

Z «" I
v

I ~,&b,+(~.+ -~).-.(.)

+ 2 «'&0 ~ I
v IA "& (")=o (17)

We observe that if we make another change of basis
such that the Hamiltonian Hp is diagonalized on the
new basis {t2)„}for the bound configurations, then

(z'—z,) d,,+ 2 O' I
v

I @;)z'=0,

where

(18)

4p= Z d'~4') (19)

with d;„,similar to the Cpq, making up an orthogonal
matrix. In terms of the sets {p„}and {Pi,},we finally
obtain

(&. &)4+—Z «'&4.
l
v

I A" )~i (~') =0 (20)
gt

Z gi. I
v

I e.)5.+(&~+e—&)oi(~)

+Z «(A. l
v. ly,„,&.-,, (, )=0. (21)

V

The isobaric analog of the g9~2 ground state of "'Pb
is observed at a proton energy of approximately 15
MeV. At this energy the cross sections for direct in-
elastic scattering are quite small in general. We con-
clude from this that the matrix elements of the inter-
action Vq between diGerent continua are small in
general. The direct inelastic scattering to the 3 state
at 2.6 MeV is, however, quite appreciable. This is due
to the collective nature of that state. In the present
analysis we wish to study the inelastic decay of the
analog resonance into those channels in which the
direct inelastic scattering is very small. If one now
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TAsI,E II. The eigenvalues 8; and the expansion coefhcients d„;of the eigenfunctions of Eq. (18) in terms of the bound eigenstates
@; depicted in Fig. 3(a). The function @0 is simply a proton in the "bound" gg12 state in ~'Bi (see Sec. III). The function denoted by
p& has a neutron in the 2gpf2 state and a neutron hole and a proton in the corresponding 3PII2 states. Similarly the function @2 has a
neutron in the 2gels state and a neutron hole and proton in the corresponding 2f&12 states and so on. Finally, Ps has a proton and a
neutron hole in the corresponding 1hgi2 states.

d4i

15.030
6.567
4.568
3.058
3.297
3.744
3.547

+0.1262
+0.0508—0.1232
+0.9297—0.3115—0.0593—0.0373

+0.2077
+0.3708
+0.2194—0.0035—0.0776
+0.1114
+0.8676

+0.3712
+0.2061—0.5124
+0.1216
+0.7221
+0.1446—0.0008

+0.3059
+0.6174
+0.5505—0.0017
+0.0668—0.0495—0.4640

+0.5290
0 AAA6

+0.2174—0.0086
+0.1442—0.6656
+0.1068

+0.4213
+0.2385—0.5323—0.3469—0.5769—0.1355—0.1038

+0.5023—0.4262
+0.2012—0.0210—0.1318
+0.7067—0.0915

neglects the coupling between diGerent continua, re-
alizes that with our choice of independent-particle
Hamiltonian the continuum corresponding to the elas-
tic channel has been diagonalized in the spirit of the
optical model, and that each of the continua cor-
responding to the inelastic channels is also approxi-
mately diagonalized, then it seems reasonable to neglect
the last term of Eq. (21). We are then left with

(Z„—Z)5„+g de'(y„I V
I gg. )a~ (.') =0, (22)

V

Z Q'&~ I
V

I Ps)5s+ (E&+e—E)ag(e) =0. (23)

action on the set of bound 2-particle —1-hole configura-
tions. This amounts to the solution of the eigenvalue
equation (18). As always, the particles and holes refer
to the '"Pb core. The zero-order energies are obtained
from the experimentally observed separation energies
of the corresponding low-lying single-particle states of
"'Pb, '"Pb, and "'Bi. (These zero-order energies are
given in Table III.) The effective two-body inter-
action was chosen to be of the form

V(1, 2) ='U(rt, r,.)

X I VSE+SE+ VTE~TE+ VTO+To+ Vso+So) (24)

IV. DIAGONALIZATION OF V ON THE BOUND
CONFIGURATIONS Ip;}

'U (rt, rs) = exp( —
I

rt —rs I'/p') . (25)

To proceed further, we present the results of the
diagonalization of an eGective two-body residual inter-

The projection operators E&z, E'&E, E&o, and Eso have
the usual meaning. Parameters of the two-body inter-
action chosen for this calculation were

16-

APPROXIMATE EIGENFUNCTION OF ANALOG SPIN

RESULTING FROM SHELL-MODEL DIAGONALIZATION

VgE ———35.0 MeV,

Vgo= 5.0 MeV,

V~K= —52.5 MeV,

Vsp= 33.0 MeV,

l5- &x )w,& -o.999

l4-

BMeV~;:

6-
la&

--
&a t w,)~ -o.oos

)b)

icy
Id&
le&-

&b[w & -o.oos

cIw,)~+ooss
gd(w, l ~-0.004
-&el')i 0.042

flw ) t O.oil

Fn. 4. Eigenenergies of the 2-particle —1-hole eigenstates of
IIo depicted in Fig. 3 (a), and the result of the diagonalization of
the residual two-body interaction on that set of states PEq.
(18)g. The new eigenenergies emerging from this shell-model
calculation are shown together with the projections of the cor-
responding eigenstates on the analog spin eigenstate I W) ), de-
fined by Eq. (26).

and P=1.85 F. These values were obtained as the
result of an attempt to 6nd an optimum description
of the low-lying states of ' Pb in terms of 1-particle—
1-hole states. Indeed, these values are quite similar to
those given by Carter, Pinkston, and True. 3' The
matrix elements of this two-body interaction were
calculated using wave functions of appropriate bound
states of the single-particle potentials given above.
Figure 4 shows the energies of the almost degenerate,
unperturbed levels and the eigenvalues emerging from
the shell-model calculation. Table II gives the expan-
sion coeKcients d„;of the eigenvectors of Eq. (18) in
terms of the states Q„.

All reasonable choices of the two-body interaction
display the same general features in their eGect on
the eigenvalue spectrum. One of the eigenvalues E~
is isolated and pushed up quite considerably, whereas
the others are somewhat spread, but still lie close to
the original unperturbed set of levels. Qualitatively

"J.C. Carter, W. T. Pinkston, and W. W. True, Phys. Rev.
120, 504 (1960).
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eter ro for the potential proton were chosen slightly
larger than that for the neutrons potential. We con-
clude that the state

I Z) is quite close to being an
eigenstate of isospin; however, owing to uncertainties
associated with the choice of single-particle potentials,
it is not possible to investigate accurately the mag-
nitude of the isospin admixture in

I Z).

V. DISCUSSION OF CONTINUUM
SOLUTIONS AND S MATRIX

The state
I
Z) is well isolated, so that in a limited

energy region around the eigenvalue Ez we may ne-
glect the coupling of other eigenvectors of Eq. (18)
to the various continua. ~ Equations (22) and (23)
then reduce to

(Ez—E)5z+ Q de ($z I
V

I lP), e )Q) (e ) = 0,

(E)+»—E)(t), (e) + (if)„I V
I gz)bz ——0, )& = 1, ~ ~, /V.

(29)

(30)

In the terminology of the shell-model theory of reactions, these equations describe the coupling of a single bound
configuration

I
Z) to the continua {P)„}.The equations can be explicitly solved, p' and one obtains

The function p„,E E„corresponds to the target nucleus

being in one of its excited states (excitation energy E„)
and the proton in continuum with the energy E—E„.
We have here and throughout used the abbreviations

V„(»=(yz I
V

I g,.), Vz(»= (jz I
V

I P, ,E E„). (32)

Also note that
Ep= Ez+~z,

then

5,(» = V,&»/(E —E,+-', ir), (39)

VE& )~(ky/prE), ) sin(kyar 22ri+6),)

Notice that the partial-width amplitude (I'z(»)'/' is
de//sed by Eq. (38) and is not necessarily positive.
We have a Breit-Wigner resonance and a unitary S
matrix. If we choose

y ())y (x)
Az=— Q hz&»= QP ' '

de,E—Ex—e

~/2 I. ( ) i/2 I (w) i/2—2ZI
&2rE„EEo+-,'iI'—

Xexp Li(k„r—22rlg+ ()„)$, (40)

(33)

and
I'= 22r Q Vz&"' Vz&"'. (34)

The above solution (31) satisfies the boundary con-

dition that the only ingoing waves are in channel X.
There is one such solution for every continuum X.
The functions f)„arenormalized so that

and the ingoing parts of 0'~("~ coincide with those of
it g. taken at e=E E),. —

We now wish to discuss the isospin of the solution
%~("&. It is convenient to start with the one-channel
case, which can be obtained from Eq. (31) by spe-
cializing to one continuum f,. Then

Q') ~ I
it'v~')=~&)'&)(e e ) (35)

and" Vz Vzg, E—Ep

p)„~(k/2re)"' sinLkr —
—2,2rl+8), (e)j. (36) E E,+ tii ' E, Vz

From the asymptotic form of +E("' one can now read
oG the S matrix: ol

(Pz&») &/2(l'z(p)) &/2)

s,„=exp &~(s,+s„)] (s,„—~
E—Ep+-', iI' j '

where
(P (x)) 1/2 —(2~) 1/2V (»

(37) %E= (E—Eo+—',iI')

Vz.Vz,
X Vzgz+P de Vz+ (E Ep)PE-

E—e Vg,
(38) (42)

'4 This is expected to be a very good approximation for a heavy
nucleus like 2P'Bi because although the states ) W&) are strongly
coupled to a number of continua {)p&„},the effect of that coupling
may be ignored in the neighborhood of the eigenvalue Ep which
is about 9 MeV away from the eigenvalue of the closest

~ W&)
state (Fig. 4). In the case of lighter nuclei with small neutron
excess this approximation may not be as good.

35 U. Fano, Phys. Rev. 124, 1866 (1961).
"Actually pq, is a Slater determinant; Eq. (37) gives the

asymptotic form of that function in the determinant that has
nonvanishing amplitude asymptotically. For simplicity we imagine
a screened Coulomb Geld.

To proceed further, we assume that the energy de-
pendence of (if,/Vz, ) Vz may be ignored over the
energy region which contributes significantly to the
integral. Numerical calculations show that this is a
good approximation if the proton coordinates in the
continuum function P, are restricted to the nuclea, r
dimensions. We obtain

e =(E—E,+-',ir)-){v,y,+~,.y + (E—Ep)4}, (43)
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or, since Ep Ez——+hz,

~.= (E E.+—!I)- {V~.+(E E.—)k}. (44)

For energies in the neighborhood of Eq and over the
nuclear region, the product Viz is only a few percent
of Pz, so that over an energy region of several times
the width F the first term dominates. At the energy
E=E~ and over the nuclear region, the continuum
solution becomes proportional to the bound configura-
tion Pz. In particular, it becomes as good an eigen-
state of isospin as pz. This is the origin of the well-

known asymmetry factor discussed originally by
Rob son."

Making similar approximations in the multichannel
case, we get

(i) (E E+iI')—i

x {v,y,y Z (~,i ~ —-',~r, & &)

Xf„,~ ~„+(E—Ep+ ', i,I')g, ~ z-q}. (45)

Clearly, the unique situation encountered in the single-
channel case no longer prevails. The continuum solu-
tion now contains contributions from all open channels,
and the amplitude in only one of these channels dis-

plays a zero. In the intermediate case, where the
elastic channel dominates but other channels are also
open, we expected to recover some features of the
single-channel case.

To summarize, we have taken the coupling of the
state pz to the various continua {Pi,} exactly into
account. This coupling leads to the resonance behavior
of each of the continua. The solution can be written
explicitly in terms of the continua {fz,}, the state pz,
and the matrix elements of the residual interaction
between pz and {Pi,}.The strongly energy-dependent
coefficients of this linear combination are given ex-

plicitly.

7I. T& STATES AND NEUTRON CONTINUA

In heavy nuclei, the isobaric analog resonances are
observed at high excitation energies of the compound
system. At these energies the density of compound-
nuclear levels of T& isospin is rather high. These
states {C»}, k=1, ~ ~ ~, L, by virtue of the high ex-
citation energy, are expected to involve much more

complicated shell-model configurations than those con-
tained in the state

~
Z&. However, if the residual

two-body interaction were diagonalized on a suffi-

ciently large space of shell-model configurations, these
complicated states would be expected to result from
the calculation in a way similar to the state

~
Z).

Each of the states {4»} generally will be coupled to
each of the appropriate continuum states through the
residual interaction. In addition to the functions de-
fined by Eqs. (31) and (39), we now consider a
number of functions {%s~»},X=1V+1, ~ ~, M, each
of which involves a neutron in the continuum, and
the residual nucleus in one of the states that may be
populated by a (p, e) reaction on the target nucleus
under consideration. We have a total number 3f of
functions, the first Ã of which describe a proton in
continuum, and the rest of which describe a neutron
in continuum. The states {C»} will be coupled to the
various continua through the residual interaction. This
coupling would, for example, cause these states to
decay into one of the neutron continua after they
have been populated through one of the continua
{@z&»},X=1, ~ ~, X

In contrast to the states {Ci,.}, the state
~
Z) will

be coupled only very weakly to the neutron continua.
This is because ideally the wave functions that de-
scribe the neutron continua have isospin one unit less.
than the isospin of the state

~
Z&. A very weak cou-

pling is expected, due to isospin admixtures in the
low-lying states of the residual nucleus populated by
the (p, n) reaction or to the isospin impurity of the
state

~
Z). In the following, we shall ignore the cou-

pling of the state
~

Z& to the neutron continua. The
residual interaction is assumed already to be diago-
nalized on the neutron continua. In addition, we as-
sume that the matrix elements of the residual inter-
action between different neutron continua are negligible.
In addition, we assume that the matrix elements of
the residual interaction between different neutron con-
tinua are negligible. This implies that the direct in-
elastic scattering of neutrons from the residual nucleus
of the (p, e) reaction is negligible. In the framework
of the above assumptions, it is now possible to solve
the Lippman-Schwinger equation for the solution%'~'"&
of the total Hamiltonian on the space of functions
{e i»} and {C,.}:

I
~z"'&=

I
+~'»&+ & dE'(E" E') '

I
+~'"'&(+~—'"'

I II
I C")&C» I

~~'»&

+ & ~E'(E ") '
I

C'i&&C» I
& l—+~'"'&&+~'"'

I ~igloo& (46)
k,p,

After a somewhat lengthy calculation given in Appendix A, one finally obtains the energy averages of the S-matrix
elements if one invokes the statistical assumptions regarding the matrix elements involving the states {4»}.
Indeed, this is just the approach of Ref. 22 as far as the effects arising from the T& states are concerned. We find,

"D.Robson, Phys. Rev. 137, 3535 (1965).
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however, that the approximations made there can be improved upon, and one obtains results different from those
reported by %eidenmuller. "For the energy average of the S-matrix elements, we find

~~=emI '(~.+~.)j
F„+2~(g )/I' )F„(Io )U2(l )Umi

2
(47)

where
(fz(»)i/2 —(Pz(»)i/2

I
g» I

—i

g„„=1+F„+2z (2!z(")/ I'z(")) Fi
=

I
1+F+2~(& '"'/I'z(») F)

I «p(W)) ~

Also,

(4g)

(49)

Ref. 22 lies in the circumstance that I"q is typically
of the order of 10% or less. This has the consequence
that the factor multiplying the partial widths turns
out to be close to unity. For heavy nuclei and isobaric
analog resonances of low angular momenta, I' may be
as large as 25%. In such cases the results of Ref. 22
would deviate quite significantly from ours.

g=&+ g& '"'F f2+F I."1+4(A '"'/I' '"')'3j
I ~»I '

(50)

g —jv+Qg o) (51)

Finally,

G=2 (V;),/~+ g I'z(»

+ Z I'z'»F) LI+4(~z'»/I'z'"')'1 (52)

and

exp(zx), ) = L1—F)!+2i(hz("/ I'z " ) F),$

X
I

1—F),+2i(& (»/I'z~))F
I

'. (53)

The quantities Eq, 6„,and F~&"& were defined in Sec.
V. Finally, the quantities 2m(Vz'), /(E and F), are
defined in Eq. (A31). The most prominent difference
between our results and those derived by Weiden-
muller22 is in the "effective partial-width amplitudes"
(f'z&")) '" and the corresponding quantities of his paper.
We find that, due to the presence of T& states, the
background phase shifts 8z have not only acquired a,

complex part ipz characterized by

54
1—F) + 2i(az(»/rz(») F),

1+ F,+2i(~,(»/r, (») F, '

but that the reu/' parts have also been modified. This
result is comforting, since one does expect both the
real and the imaginary parts of the optical-model
phase shifts to be influenced by the coupling to the
continuum of the complicated states (C~I.

The total width G may be written as the sum of
the internal spreading width 2)r(Vz'), /d plus the
summed partial widths I'~&"~ and the spreading width
due to external mixing. Our expression for the ex-

ternal spreading width is again different from that
derived. in Ref. 22. In the limiting case 2hz(»/I'z(»((1
our expressions would agree with those of Ref. 22.
However, in general we find that 2d,z(»/I'z(»~1. The
reason for the success of the expressions derived in

VII. NUMERICAL RESULTS AND DISCUSSION

Differential cross sections for the inelastic scattering
of protons to a number of anal states in ' Pb show
a strong energy-dependence characteristic of a Breit-
Wigner resonance. '" At the ggp resonance the ratio
of the resonance scattering to the direct inelastic scat-
tering background is as high as 40 for some states. "
In many cases the cross sections also display sym-
metry about 90'. This indicates that in the descrip-
tion of inelastic scattering to these states it may be
a good approximation to neglect the continuum-
continuum interaction discussed at the end of Sec. V.
To calculate the cross sections one needs to evaluate
the partial-width amplitudes FJ„&Jp'~' defined by Eq.
(81). As explained in Appendix 3, we shall restrict
outselves to continuum functions involving only a
neutron —neutron-hole excitation. In this case from
(31) and (3/) we obtain

I'~er.~o"'= (~i/~o) ~ieI'zpz, ",
where we have defined

'"= (—I)""""'(1/Je)(2 )'"Z4

X.(LJe*( )Je( ) jo I I=. I LJ'( )~'( )jo)' (56)

Equation (55) gives the factorization of the partial-
width amplitude into the coeKcient Cqp, which per-
tains to the structure of states of the target nucleus,
and the quantity FJpJp p which may itself be regarded
as a decay-width amplitude. The latter is dependent
only upon the structure of the state pz. We shall
refer to FJ~J, as the partial width for pure configura-
tion because it describes the decay of the state !))z
into a continuum which involves the core in a pure
particle-hole configuration. Figure 6 shows these partial
widths for the partial waves of interest as a function
of the energy of the proton in continuum. These partia, l
widths were calculated using the two-body force pa-

38W. R. Wharton, P. von Brentano, W. K. Dawson, and
Patrick Richard, Phys. Rev. 170, 1424 (1968).
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rameters and eigenstates of Hs discussed in Secs. III
and IV, respectively. The details are given in Ap-
pendix B. Similarly, Pig. 7 shows the sum of the
nuclear and Coulomb phase shifts for the partial waves
of interest.

The coeKcients Cqp were obtained from a Tamm-
Dancoff calculation in which the two-body residual
interaction of Sec. IV was diagonalized on the 1-par-
ticle—1-hole eigenstate of Bp. The shell-model orbits
and the corresponding zero-order energies are given in
Table III.

Matrix elements of the two-body interaction were
evaluated using the single-particle wave functions cal-
culated for the Saxon-Woods potentials for neutrons
and protons given in Sec. II. Both the diagonal and
off-diagonal matrix elements of the residual two-body
Coulomb interaction were treated exactly. The eigen-
energies given in Table III were obtained from Rost."
The eigenenergies of the pr/s, fs/s, and ps/s neutron
orbits have been adjusted slightly to improve the
agreement between the observed center of gravities
of the (gs/s, pt/s '), (gs/s fs/s ), and (gg/s ps/s ) multi-
plets and the calculated center of gravities of these
multiplets. States observed by Richard et al.'3 are
compared with our calculation in Fig. 8. Finally, in
Fig. 9 we compare our calculated cross sections with
the experimental results obtained by Richard et al.
The following resonance parameter of the g9~2 reso-
nance in '~Bi were employed in the calculation of the

160
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FIG. 7. The sum of the nuclear and Coulomb phase shifts
8&;+0&; are shown as a function of the energy of the proton in
the continuum.

resonance energy

elastic proton width

total width

14.98 MeV,

25 keV,

260 keV.
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Fxo. 6. Partial widths for pure con6gurations de6ned by Eq.
(55) are shown for the three partial waves of interest as a function
of the energy of the proton in continuum.

as E. Rost, Phys. Letters 26B, 184 (1968).
40 S. Darmodjo, S. A. A. Zaidi, D. G. Martin, P. Dyer, and

S. Ali (to be published).

Comparison of the cross sections given in Ref. 23
with the corresponding values in Ref. 9 showed some
discrepancies that are probably within the limits of
experimental- uncertainties of the experiments. The
over-all agreement between the two experimental re-
sults is considerably improved if all the cross sections
in Ref. 23 are multiplied by 0.8. The data shown in
Fig. 9 are obtained in this way.

Comparisons of the calculated cross sections with
experimental data revealed that the calculated angular
distributions were much more sensitive to the nuclear
structure of the excited states of sssPb (through the
coeKcients CM) than to the details of the reaction
mechanism. This is encouraging for studies of nuclear
structure through analog resonances; however, the
same circumstance makes it dificult to test the de-
scription of the reaction mechanism. Fortunately, there
exist a number of states in "'Pb that appear to be
rather pure neutron —neutron-hole excitations. For such
states the calculated inelastic scattering cross sections
provide a test case for the description of the reaction
mechanism. The 4 state at 3.45l MeV, the 6 state



1344 S. A. A. ZAIDr AND P. D YER

TAsLE III. Single-particle states and their eigenenergies used in the description of the low-lying
states of ~'Pb as superpositions of particle-hole excitations.

State

Proton particle
Eigen-
energy
(MeV)

Neutron hole
Eigen-
energy

state (Mev)

Neutron particle
Eigen-
energy

State (MeV)

Proton hole
Eigen-
energy

State (MeV)

3P1/2
3p3/2
2f5/2

2'~
1hg/g

—0.10—0.66—0.96—2.90—3.80

3P1/2
2/5/2

3'/2
2/712

Ihg/g

7.22
7.86
8.10
9.71

10.84

2gg/2

1111/2

3d5/2
4$1/2

2gvn
3d3/2

—3.940—3.170—2.380—1.910—1.470—i.420

3$1/2

2de/2

2d5/2

8.03
8.38
9.70

4.5-
6
6

EXPERIMENT THEORY

6"

5
(2 3

(7 3

5

2

5 '

4.0-
6
5

4"
5,5
65"
7"
5

5

5.5-

5
5

5.0
Fn. 8. Results of the Tamm-Dancoff calculation for the low-

lying states of ' Pb. Also shown are the states populated by the
inelastic decay of the gg/2 analog resonance in "'Bi. Spin assign-
ments of the observed levels are on the basis of the correspondence
between observed and calculated cross sections shown in Fig. 9.
The dottedlinesfor the2 and 7 states are.onlymeant toindicate
the possible candidates for these spin values g,mong the observed
levels. These two assignmentg y,rq gncqrty@,

at 3.948 MeV, and the 6 state at 4.463 MeV are
predicted to be essentially pure (g~i&, p&t2 '), (gee, j5/Q '),
and (g9t2, py2 ') neutron —neutron-hole configurations,
respectively. This result remains unchanged for all
reasonable values of nuclear-force parameters and
changes of the zero-order energies of these configura-
tions. The agreement between theory and experiment
for these states shows that our description of the
reaction mechanism is basically correct.

The corrections arising from the "sea of T& states"
surrounding the state gq were estimated to be small
and were ignored. This is because the inelastically
scattered protons have energies of the order of 11 MeV.
The l'q occurring in Eqs. (47)—(54) are 10% or less.
As a result, the partial widths are not modified by

more than a few percent. In view of the simple shell-

model description of the low-lying states of '"Pb
reported here, we do not expect the coefficients Cqp

to provide an accurate description of the low-lying
natural-parity states. However, the higher-lying states,
particularly those of unnatural parity, are expected
to be described correctly by our approach. Comparison
of our calculations with experimental results allows

us to assign spins and to identify dominant configura-
tions of the excited states in "'Pb. This knowledge
will be useful in more sophisticated calculations for
the excited states of "'Pb.

We have shown that the microscopic description of
analog resonances developed here predicts results in

fair agreement with the experiment. The basic ideas
underlying this description are simple, and the cal-
culation can easily be performed for other nuclei.
Indeed, our choice of independent-particle Hamiltonian

Ho which has the merit of greatly simplifying the
residual interaction is a very natural one from the
physical point of view. One aspect of this description
that has generally been ignored in the literature is
the coupling of the state pq to continua involving

protorl, protorl, hole excit—ations -of the target nucleus.
In general, we expect the analog spin state pq to
decay both into continua involving neutron —neutron-
hole excitations of the target and continua involving

proton —proton-hole excitations of the target. The rel-

ative importance of the two decay modes will be de-

termined by the structure of the 6nal state of the
target nucleus. Thus the amplitude for the decay of
an analog state Pz into a low-lying collective state of

the target nucleus may be a superposition of a number
of amplitudes corresponding to each of the two decay
modes. In this sense our microscopic description is

capable of explaining the decay of analog resonances
into low-lying collective states as well as simple par-
ticle-hole states of the target nucleus. It is clear,
however, that for the description of collective states
the simple particle-hole excitations considered here
would not suffice. We planned to repeat these cal-

culations in conjunction with improved shell-model

calculations and to include approximately the eRects
arising from the contin@urn-continuum interaction ne-

glected here,
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FIG. 9. Comparison of the cal-
culated cross sections with the experi-
mental data. In general, there is fair
agreement between theory and experi-
ment. The results are, however, quite
sensitive to the structure of the final
state populated by inelastic scattering.
Comparison of the theoretical cross
sections with the experiment for the 4
state at 3.218 MeV, the 6 state at
3.948 MeV, and the 6 state at 4.463
MeV is a test of our description of the
reaction mechanism, since these states
are almost pure neutron-neutron-hole
configurations. It is encouraging to see
good agreement for these states. Our
assignments of the 2 and 7 spins to
the states at 4.272 and 4.225 MeV are
uncertain. The comparison of the
observed and calculated cross sections
for these states is presented for com-
pleteness and should not be taken
seriously.
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APPENDIX A: DETAILS OF CALCULATION
LEADING TO AVERAGE 8-MATRIX ELEMENTS

The Lippman-Schwinger (LS) equation (46) for the
solution %~&"~ of the complete Hamiltonian H is
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written in terms of the sets of continuum solutions
f%z(")} and bound eigenstates {Cl,}.It is more con-
venient, however, to replace the set f4'z&")} by a set
of functions {Fz'»} such that the matrix elements
(Cp I III Fz&») become real (the merits of this re-
placement will become evident in the following). This
is accomplished by the unitary transformation

Fzo) —Q UxPz(» (A1)

where
+z&» =exp (9„)0z'». (A2)

0,„=(F,»/F) &';

e@=(E Ep—siF—)/I E Ep+ piF—I, F=F.. (A4)

The rest of the matrix elements 0&„arearbitrary so
long as 0 is an orthogonal matrix. Finally, 8„is the
phase shift displayed by the function g„defined in
Eq. (36). Similarly, we replace the function%'z&") by

FzO) —g U& iI«z(» (A5)

The LS equation satis6ed by F&~~& expressed in terms
of the sets fFz&")j and {Cpj is identical in form to
Eq. (46). It has the merit, however, that the matrix
elements (Cp I

H
I
Fz'")) occurring in it are real. This

is easily solved" using techniques discussed in Ref. 20.
The S-matrix elements can then be obtained by trans-
forming back to the functions %'~&"& and 4~~~&. One
obtains

S),„=8g„+27ri D&"»/D. (A6)

Here 8),
„

is given by (37) and D= det(D;p) . The
matrix D;I, is defined by

(cp I
II

I
F,&")) (F,&")

I
II I c;)

jv(+)

The quantity D~"» is the determinant of a matrix
obtained by adding a row and column to D;&.'

D,, (c,. I
H I e &»))

D&„——detl (»)
( (C" I

&
I
+z(")

Using the explicit expression for the solutions N~&"&

given by Eqs. (31) and (39) and the definition (A1)
of the functions E~~&, it is straightforward to calculate

4'In Ref. 20 the S-matrix elements are derived formally for a
given Lippman-Schwinger equation by assuming an expansion
of the solution on a limited number of bound and continuum
configurations. In deriving this result one assumes that a matrix
similar to the one defined by Eq. (Av) can be diagonalized by a
complex orthogonal transformation. This is always possible if
D;~ is symmetric. This, on the other hand, requires that the
matrix elements (C;

~
H

~
F,&")) and (J",&") [H( Cp) occurring

in (A7) be real.

The transformation matrix is

U),„L1+&)t——u(e 's—1)pox„exp(—il)„), (A3)
where

the matrix elements (C'; I
II

I
Fz(" ). One f&nds that

(C, I
II

I
Fz&») = (1—~») 2 0;V*(»

+i')xr(rsF/7r)'&p
I
E—Ep+-', iF

I

'

xi«;,+zend.

p',.(«) V& («) s p'. («)

P de = Az&«). (A12)= V(i ~, ' V()
With the approximation for the principal-value inte-
gral one obtains

D'p= (E—E') &'k —
)

f(e) de

where we have written

(A13)

j(e) —g P',. (»V& (» (2)r/F) g V& (»V, (»V&,(«)V& («)

+(F/2s. ) I
e—Eo+-', iF

I
'fi} f&}-(A14)

and introduced the abbreviation

. {i}=—V,z+ Q hz&
)

V~()

+ (2s./F) (e—Ep) Q V;,& ) Vy.,( ), (A15)

The integral involving the second and third terms in
the definition of f(e) can be evaluated by contour
integration if one notices that the matrix elements
V;,'» and V~, '» do not have singularities in a large
energy region around the energy of interest E E&.
This is evidenced by Figs. 1 and 2, in which the
square of the continuum wave function integrated

+ —(E-E.)ZV; V. I. (A9)
2x

F . ' ]
We have used the abbreviations

V ")=—(C;IHIP„, „) d V;,&)=—(c;t'ai/. ,),

(A10)

with similar expressions for V~~» and V~, '». Finally,
we have written

V..= (~'-i~i~.) (A11)

The matrix elements V;y describe the mixing of the
state Pz into the numerous background states {C,}.
It must be realized that the states fC;j and the state
pz are obtained by separately diagonalizing the re-
sidual interaction on suitably chosen sets of eigen-
states of Ho.

In the spirit of approximations discussed in Sec. V,
we can make good approximations to the principal-
value integral occurring in Eq. (A9). That is,

V~ ( ) V. ( ) V~ ( ) V (.) V, ( )
I' d =I' d

E V~, ( )
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over the nucleus is plotted as a function of energy.
The continuum wave functions do not display any
single-particle resonances, and we expect that V;,&
and Vq, '» continued to complex energies would not
have singularities in a suKciently large part of the
complex energy plane such that

~
E e~ ))—I' may be

satisfied along a path in the e plane that does not
enclose singularities of V;,(» and Vq, ~». Then we have

(~' I
II

I
~'"'& (~.'"'

I
&

I
C'

&
ddc

g(+)

V. (»V (»(! kt

g(+)

+(E g)—i(y. + QQ(»y. (o)y (~))

X (y/, s+ Q Q&")y/, &")Vg&")), (A16)

we 6nally get" (C" I
II

I
~ &")& (~.(")

I
If

I
C'. &

d
" , („),(„)

X=1 g(+) p 0

(A22)

In writing the above expression we have included the
terms involving neutron continua (/i=X+1, ~ ~ ., M).
These can be evaluated in the same manner as we
treated the expression (A12). In the following we

make statistical assumptions regarding the matrix
elements involving the states (C';}.These assumptions
lead to great simpli6cations in the expression for the
energy-average S-matrix elements. For this purpose
it is necessary to write the determinants D and D"&

in a diGerent form,

D= detP();/, (E—E;)—Q a;&Map&")j

where we have defined for brevity

Q')= —im[1+2i(hs(')/I'q& ))j and E=ED 'iI'—-

L
= g (E—E;) det(DER„), X=0, ~ ~, M, i=1, ~ ~, I.

(A23)
(A17) where

The first term on the right-hand side of (A16) may
be written

V,,( ) V&,(» V,,(»V„(»

i~ g—V;»V, &». (A18)

L g,P)g (»
Afar„=8),„—g

X, /i= 0, 1, ~ ~ ~, 3f, i= 1, ~ ~ ., I.. (A24)

The statistical assumptions are"

If one deletes the principal-value integral and retains
only the imaginary part, then one obtains an ex-
pression for D;& which 6nally leads to energy-average
S-matrix elements similar in form to those reported
in Ref. 22. Numerical calculations indicate, however,
that the real part of the integral is generally as large
as the imaginary part. It is thus not permissible to
delete the first term and retain the second one. We
approximate this principal-value integral in a way
similar to that done above and obtain

(y.(x) V'.
&

~0
(y*. y* &. =((y )')--

(A26)

(A27)

~ g,.(»g,.(o)

(E g)—i/2 (Q») ()/2 y&(» V
;=j E—E;

The angular brackets imply average with respect to
level index i. Performing the energy average, we obtain
~ a,(»a;(") i———Q&»F b p ) =1 ~ ~ X (A28)

j-] — i

X r — d6
jv(+) and

/i= 1, ~ ~, 7)7 (A29)

= g Q(»y,.(»y„(»+(E g)—i

y (y;s+ P y,.( )ys( )Q( )) ( ypg+ g yp( )yg( )Q( ))

g,(o)g,(0) ———(E E) '[W+ Q (V—s&')Q'))'V $,
;=g E—E; m 0'

(A30)

Using the definitions

a,.(»= (Q(»)i/2V, .(»

a =(E E) "(V;/+g V )Vg&—)Q"), i=1,

where we have introduced the quantities

W= (7r'/d) (Vr,')g~ and I' = (7r'/d) ((V(»)'&/~.
(A31)

The average energy interval between the states C; is

(A20) denoted by d. The determinant D"& involves the matrix
elements

(A21)
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It is convenient to rewrite D"/' in a form similar to (A23):

D'"= g (E E;)—d«(Q „). (A33)

—Qg, .t)g,.t)/(g —g,.) )
0, p, lj., p, = 1, ~ ~, M, i= 1, ~ ~, L. (A34)

One can again invoke the statistical assumptions (A25) and (A27) and obtain

g LZ, &»a;&+/(E —E;)]——(i/n) exp(iB„)(E—E) '/'Vs&»)&
f (E E) '(W—+ g (Vs&'0&')'Y,]+0&»Y I (A35)

IZ, ~, /(E —E,)j=—(i/~) «pLi(~„+~„)3{Y„~„„+(E—E)- V,»V,

X (Qo& Y~+Q/» Y„)+(E—E) 'V&&'&V&&»LW+ g (V&&'&0&~&)'Y~)I, (A36)

and

g La,'"~S;~»/(E—E;))=—(i/m)exp(i5„) Yq(Q~"~) '/'Lbq„+ (E—E) 'Q&~& V o'& V / &j. (A37)

In terms of the following quantities the energy averages of the determinants D and D~~ take on a very simple
form and are easily evaluated:

L g.(&)g.l.p)

(A38)

I, Z.(a)g.o)

E—E. P, d=1, 2, ~ ~ ~ S (A39)

Z.()')g (0)

A/, o= —g
jV jV,

g.(o)g, (0)

X=1, 2, ~ ~ ~ S (A40)

a, .(a)g.(P).

aa8 a8 ~ a, p=1, 2, ~ ~ ., S
and

L g.l. )g.(0)

0.=1, 2, ~ ~, S. (A42)

The energy-average 5-matrix elements now become

/S,„)g=8&„+2i(A,„—Q
a +aa

Straightforward calculation now yields

(Ao Za +a0~ax/~aa) (~p0 Za &a04ap/aaa)

&00 a ~a0~0a ~aa
(A43)

(A44)

where
~„„=1yY„y2i(a,~-&/r. &-/) Y„. (A45)

APPENDIX B: CALCULATION OF PARTIAL
WIDTHS AND CROSS SECTIONS

Finally, one can bring (A44) into the form given by
Eq. (47)—(53) of Sec. VI.

In this appendix we give in some detail the basic
relationships between the partial-width amplitudes
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(r,&»)i~o and the matrix elements of two-body inter-
actions. From Eq. (38) we have

(ps(»)iIp p~ r ~ i/p

~ I 4&. (B1)

The index X stands for quantum numbers needed to
specify the continuum state Pz„zE„.This consists in
the specification of the energy Ez, the spin Iz, and
some additional quantum numbers pertaining to the
residual nucleus. In addition, X specifies the state of
motion of the proton, which includes the energy and
total angular momentum of the proton, Jp(pr) . Finally,
P&„~~„will be understood to imply the angular-mo-
mentum coupling

Jo(~)+&~=Jo. (ll2)

The angular momenta are coupled in the order they
appea, r in the equation, and Jp stands for the total
angular mornenturn of the system. We now relate the
matrix element in Eq. (31) to matrix elements in-

volving the shell-model configurations considered in
Sec. III:

(&~,~-~. I
l'

I &~&= & cud'~(A, ~-~. I
l'

I &'&.

We recall that {Ci~} are the coefficients of expansion
of the final states of the residual nucleus in terms of
1-particle —1-hole excitations. The coefficients {d,q} give
the amplitudes of the various 2-particle —1-hole con-
figurations that make up the state pn, [see Eq. (19)].
Numerical calculations show that for the g9~2 isobaric
analog resonance in "'Bi the coefFicients are very close
to the following ones expected for an ideal analog
state:

d;g= (E Z+1) "J;.—
Here and in the following we use the abbreviation
g,—= (2j;+1)'~o. The numbers X and Z pertain to the
target nucleus. However, it is not necessary to spe-
cialize to this ideal case. Making the angular mo-
mentum coupling more explicit, we write

(A.~-~.
I
l'I &'&= (Jp*(~)I Ji(v)J.(.)]r„

&&Jo~p
I
~

I [J'(~)J'( )V'o(v) Jo3fo&' (ill)

In this expression J03fo stands for the spin of the
isobaric analog resonance. The notation chosen is such
that, for example, J' (v) denotes that the shell model
state J is occupied by a neutron. A bar denotes that
the state is occupied by a vacancy or hole. Finally,
Jo*(vr) implies that the particle is in the continuum
with the total angular momentum Jp and a fixed
energy E—Ez. From now on we will delete the index

and understand that the continuum functions are
to be taken at the energy E—E&.

We are dealing with matrix elements of the residual
interaction between 2-particle —1-hole configurations
depicted in Fig. 3. The two-body interaction gives
nonvanishing matrix elements between configurations

making up the state pr, and the 2-particle-1-hole con-
figurations involving a proton in the continuum and
the core in either a proton —proton-hole or neutron—
neutron-hole configuration. Ke shall, however, restrict
the discussion to those continuum functions that in-
volve a neutron-particle —neutron-hole excitation of the
target nucleus. This is because the simple shell model
calculation for the bound states of '"Pb considered
in Sec. VII predicts small amplitudes for proton-
particle —proton-hole excitation in the low-lying states
of ' Pb. Our description of the excited states of ' 8Pb

does not apply to low-lying collective levels like the
3 state. The following three distinct contributions
remain:

&=Inn+I=-+I-n. (86)

If we restrict our discussion to spin-0 target nuclei,
the nonvanishing contributions arise only for J =Jo
and Jp= J~, in which case, by changing the coupling
scheme on the left, we obtain

.(Js*(~)[A(v) J (v) ]rJo~o I I;, I [J*(~)J'(v) ]o

&&J.( )J.~.&.= (—1)'"o"(&/J&.)

&&.(LJo*(~)J~(v) ]o I I=n I LJ*(~)J'(v) ]o&.~a~~-o (f1~)~

The term involving the neutron —neutron-hole I„-„does'
not contribute if the bound single-proton wave func-

tions are orthogonal to the wave functions describing
the proton in continuum state. This is strictly true
if both the continuum and bound-state functions are
eigenstates of the same Hamiltonian. Similarly, for
the contribution of the neutron-proton interaction
we obtain

,(J&*(~)[J&(v)J„(v)]rJoMo II„„I [J;(~)J;(v) ]oJo(v)

Jodo�&

=(—)"' "Z(I'/J4)&'I
Jg Jo I'

)& (Jp*(n)J.(v) I' I I.n ~
J;(pr) Jo(v) I'&6~ (fl8)

The configuration on the right-hand side of the matrix
element is in each case a typical component of the
isobaric analog state @q and the one on the left-hand

side is one of the continuum configurations {Po}.It is

interesting to note that the contribution considered in

(B8) would lead to the decay of the isobaric analog

state into a proton continuum such that the angular

inomentum of the neutron hole in the final nucleus

The first term is the neutron-hole —proton-particle in-

teraction. The second gives the neutron-hole —neutron-
particle interaction, and finally the third term is the
neutron-particle —proton-particle interaction. Ke con-
sider now the first contribution:

.(Jo'(~) [Ji(v)J.(v)]rJo~o I I;n I

y [J;(vr)J;(v)]pJp(v) Jodo&,
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is diferent from that of the emitted proton. This
possibility has generally been ignored in discussing
the decay of isobaric analog resonances into particle-
hole states of the residual nucleus, without much

(J,*(~)J2(.)JiV ) I„-„~J,(~)J,(.)JM)

justi6cation. Numerical calculations show, however,
that this contribution is generally much smaller than
the one given by (B7). The matrix element occurring
in (37) is easily evaluated. We have in general

sp s2 S '

t s1 $4 S

LS

~ Jp J2 J I J1 J4 J I
where t J$=2J+1 and

'

l3 12 L
V(L, S)=(—1)'"& (—1)'L~—(—1)'3jZ

/4 /'l

lg l2 L

(4 II c. II 11) (~2 II c„II ~4) z(rpi1
I

~2~4)

.... 'Jl J2 J
= —Q t J'$J1JdjpJ4 X Q LS$ PL] lg l2 L ~ 4 14 I. ~ V(L, S), (39)

+ F'—(—1)'Dj Z
ll /4

We have dined the Slater integrals

(4 II cp II ~4) (4 Il c~ II ~&)~(~2«) 2 1) ( )

ddr(/II)4 )
(rl ) —= ff.„(rr)rr;(r)/' (r, ,r)rr;(r ),rr;, (r ,)rrr drrdr, (311)

and used the multipole expansion

The two-body interaction was taken as

froxn expression (37) for the S matrix:

~) Qf ( )c ( ) c ( ) ( 1 )
(& ld~)(~ )= (—1)'(~'~.l ')( Jo+ )( o '~)

k 2JO—l
X Q E7, (COS|&)Zr(lpJplpJp, —',L)

( 1)71+72 cos((7 (I)& ) ps 77 1/21 s rs 1/2

V='U ( ~
r1—r,

~ ) (A+BI'( &+CI'&"&+DI'('&I"&'&).

(313)

The usual spin and space exchange operators are de-
noted by P(') and P&"~. Radial wave functions occurring
in (311) are radial parts of the eigenstates of Hp,
which includes spin-orbit interaction. I'"inally, we give
the expression for the differential cross section derived

XZ(l1J&lj'2/ —',L) W(J1JpJ2Jp,. IL) . (314)

It is important to realize that the quantity I'J,zJ,'"
is defined by Eq. (31) and is not necessarily positive.
The elastic partial width and total width of the reso-
nance are denoted by F„and F, respectively. Also,
spin and parity of the resonance are Jp and (—1) ',
respectively. Finally, tan/&l= (E—E/4)/2F and E74 is the
resonance energy.


