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A microscopic description of analog resonances is presented in the framework of the shell-model theory.
The separation of the total Hamiltonian into an independent-particle Hamiltonian H, and the residual
interaction V is discussed. A choice of H, is made that minimizes the residual interaction—in particular,
the matrix elements between the continuum eigenstates of Ho. The diagonalization of the two-body residual
interaction on an appropriately chosen set of 2p-1% configurations is carried out, and the numerical results
are presented for 29Bi. A group of §* states of analog spin W is predicted to be about 11 MeV below the
go2 analog resonance in 2 Bi. Coupling of the various continua to the W state gives rise to the isobaric
analog resonance in the corresponding channels. The inelastic proton decay of the go;» analog resonance
in 209B] to the particle-hole states of 208Pb is calculated, and the results are compared with experimental data.
An expression for the energy-average S-matrix elements is derived starting from the multilevel expression
describing the coupling of both 75 and T« states to the various continua. There expressions differ from
those given by Weidenmiiller and by Mekjian and MacDonald and are in agreement with Robson’s results
in the one-channel case. Our expressions also agree with recent results obtained by Tamura.

I. INTRODUCTION

HE study of isobaric analog resonances has pro-

vided us with a useful tool for the determination
of nuclear structure of the parent analog states. From
an analysis of the elastic scattering of protons through
isobaric analog resonances, it is now possible to de-
termine the neutron-spectroscopic factors of the low-
lying states of nuclei with an accuracy comparable to
or even better than that obtained using the (d, p)
stripping reaction. The inelastic proton decay of the
isobaric analog resonances, however, is capable of
yielding very important nuclear-structure information.
This was first realized by Allan,! and a large number
of papers? since have been devoted to the study of
inelastic proton decay of these resonances. There are
two fairly distinct mechanisms involved, either of
which can lead to the decay of an isobaric analog
resonance into an inelastic proton channel. The first
situation arises when the low-lying states of the parent-
analog nucleus contain admixtures of the collective
excited states of the target nucleus. In this case one
expects the analog resonances to decay to the cor-
responding excited state of the target. This situation,
originally studied by Allan,! has been observed®~” in
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a number of nuclei and analyzed in terms of the
weak-coupling model.

In heavy nuclei, particularly in the lead region, the
analog resonances occur at an excitation energy of the
order of 20 MeV. These resonances decay into a large
number of inelastic proton channels®? populating the
excited states of the target nucleus up to 6 MeV in
excitation energy. The inelastic scattering of protons
from 28Pb proceeding through the isobaric analog
resonances in ®Bi is particularly interesting. In this
case the analog resonances are caused by the isobaric
analogs of the nearly pure single-particle states’® of
209Pb. The inelastic decay of these resonances populates
states in 2%Pb, many of which are superpositions of
simple particle-hole states. There is considerable ex-
perimental evidence in favor of this simple interpreta-
tion. The inelastic proton scattering leading to the 4~
state in 2®Pb has been analyzed by Bondorf et al.’
In their analysis these authors employed single-particle
decay widths deduced from the inelastic scattering of
protons from 2”Pb. This ingenious technique has rather
limited application and requires a significant correc-
tion of the partial widths, to take into account the
difference in energy of the outgoing proton. Their
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analysis, however, yielded a neutron—neutron-hole con-
figuration for the 4~ state, in agreement with shell-
model calculations. ]

In this paper we report a description of the isobaric
analog resonances that is based directly on the shell-
model theory of nuclear reactions.~2 The basic as-
sumption underlying this description, which is common
to all shell-model calculations, is that there exists a
small set of eigenstates of the independent-particle
Hamiltonian Hy, such that the diagonalization of the
effective residual interaction ¥ on this set yields wave
functions that provide an adequate description of the
physical situation under consideration. In the descrip-
tion of nuclear reactions initiated by a nucleon inci-
dent upon a target nucleus, it is necessary to consider
eigenstates of H, with at least one nucleon in the
continuum. The inclusion of configurations with more
than one nucleon in the continuum is beset with dif-
ficulties. We shall ignore such configurations alto-
gether. The set of functions on which the residual
interaction is to be diagonalized includes, then, func-
tions characterized by a continuous-energy variable
corresponding to a nucleon in the continuum. It is,
however, possible to choose a finite number of con-
figurations of this type together with a finite number
of entirely bound configurations.

The proper choice of the Hamiltonian Hp is crucial
to a successful application of the shell-model approach
to nuclear reactions. The main reason for this lies in
the necessity for diagonalization of the residual inter-
action on the set of configurations involving one
nucleon in the continuum. This diagonalization con-
stitutes one of the basic practical difficulties of the
shell-model approach to reaction theory and in practice
can at best be carried out in Born approximation. In
view of the approximate treatment of the continuum-
continuum interaction, it is important to choose H,
and V very carefully, so that the terms that have to
be treated approximately are small relative to the
ones to be treated exactly. Such considerations suggest
the inclusion in H, of all those components of the
residual interaction, the inclusion of which will not
interfere with the exact diagonalization of Hy on the
space of configurations chosen. More specifically, one
should construct simple interactions, like an “effective
one-body potential”, subtract these from the residual
interaction ¥, and then compensate by adding the
same simple interaction to H,. This is basically the
approach adopted by MacDonald.® In choosing Ho,
attention must be paid to the single-particle resonances
displayed by the continuum solutions of Ho. The ma-
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trix elements of the continuum-continuum interaction:
are strongly enhanced in the vicinity of the single-
particle resonances, and an approximate treatment of
the continuum-continuum interaction employing the
Born series becomes questionable. If, however, the
single-particle resonances are “‘sufficiently sharp” (i.e;,
occur low enough in energy) they can be handled,
roughly speaking, in much the same way bound eigen-
states of Hy are treated. Techniques for treating such
single-particle resonances are discussed by Weiden-
miiller®? and also by Garside and MacDonald.* It
must be pointed out, however, that these techniques
are useful only when the resonances are in fact suf-
ficiently shap. Thus a second criterion for a good
choice of Hy is that the single-particle resonances occur
at low enough energies so that techniques similar to
those of the above references can be applied.

The theory of isobaric analog resonances given by.
Weidenmiiller?? is based on a choice of Hp which is
useful for an understanding of the nature of these
resonances; however, the continuum eigenstates. of Hy
display single-particle resonances very close to . the
energy of the isobaric analog resonance. These single-
particle resonances are, in general, too broad for the
techniques of Ref. 22 to apply. Weidenmiiller gives
arguments for factorizing the energy dependence of
the continuum functions in the neighborhood of the
single-particle resonances. The contributions from the
single-particle resonances are then represented as a
sum of separable terms, and the remaining part of
the continuum-continuum interaction is deleted. .

We choose an independent-particle Hamiltonian such
that the only well-pronounced single-particle resonances
displayed by its solution occur below the Coulomb
barrier and have very small widths (typically less
than 1keV). Our choice of the independent-particle
Hamiltonian corresponds to the inclusion in Hy of a
large component of the residual interaction which, in
the phenomenological description, has its counterpart
in the well-known symmetry term of the optical po-
tential for nucleons. Clearly, the residual interaction
is considerably reduced with this choice of Hy. The
residual interaction is then diagonalized on a suitably
chosen set of bound configurations and of configura-
tions involving a single proton in the continuum. The
continuum-continuum part of the residual interaction
is neglected, but we expect that with our choice of
H, this interaction is very weak in general. Exceptions
might, however, arise in dealing with the collective
states of the target nucleus.

The diagonalization of the residual interaction on
the bound eigenstates of H, yields a state | Z) em-
bedded in the continuum at an energy close to the
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energy of the isobaric analog resonance. Its coupling
to the various continua gives rise to the isobaric
analog resonance in the corresponding channels.
Throughout the present investigation we will use the
go/2 analog resonance in 2Bi as an example to illus-
trate the formal developments. Numerical results are
also presented for this case.

In the next section we discuss our choice of Hjy
and some properties of its eigenstates. The sets of
bound and continuum configurations, on which the
diagonalization of the residual interaction is considered,
are also specified in this section. The shell-model de-
scription of analog resonances is formulated in Sec. III.
In Sec. IV we present numerical results obtained by
diagonalizing the residual interaction on the bound
neutron—neutron-hole-proton configurations in ¥Bi.
The analog spin and isospin properties of the eigen-
states are also discussed. The coupling of the isobaric
analog state | Z) to the various proton continua is
treated in Sec. V. Isospin properties of the continuum
wave functions are also discussed, and the scattering
matrix elements are calculated. In Sec. VI the effects
arising from the numerous 7« states are considered,
and the expressions for the energy-averaged scattering
matrix elements are presented. Details of this calcula-
tion are given in Appendix A. We find that approxi-
mations used in Ref. 22, to treat the 7'< states, can
be improved upon. Section VII is devoted to the
discussion of the numerical results obtained in the
calculations on the gy, isobaric' analog resonance in
29Bi. The results are also compared with the experi-
mental data of Richard et al.2 The relevant formulas
are given in Appendix B.

II. CHOICE OF INDEPENDENT PARTICLE
HAMILTONIAN H,

One simple choice for Hy would be the interactions
of the last nucleon or nucleon hole with the closed
shells of 82 neutrons and protons represented by a
one-body nuclear potential, which then would be the
same for neutrons and protons. In accounting for the
low-lying states in 2*Pb or 27Pb, one would then need
to consider the interactions of the last neutron or
neutron hole with all the neutrons occupying the orbits
from N=82 to 126. Similarly, for a description of low-
lying states in 2°°Bi or 2T}, it would be necessary to
consider the interaction of the excess neutrons with
the last proton or proton hole. The interaction of the
last neutron (neutron hole) with the neutrons oc-
cupying the orbits between N=282 and 126 involves
exchange terms which are absent in the interaction
of the last proton (proton hole) with the excess neu-
trons. Thus, with this choice of H, the matrix elements
of residual interactions for neutrons and protons are

# P, Richard, W. G. Weitkamp, W. Wharton, H. Wieman,
and P. von Brentano, Phys. Letters 26B, 8 (1968).
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quite different. Indeed, this is the origin of the well-
known symmetry term in the nuclear optical potential.

These considerations show that it will be desirable
to choose an independent-particle Hamiltonian which
provides an adequate description of the single-neutron
states in *°Pb as well as single-neutron-hole states
in 27Pb. Similarly, it should provide a description of
the single-proton and single-proton-hole states in 2°Bi,
and 27T1, respectively. If one searches for a one-body
Saxon-Woods potential that provides the best descrip-
tion of the low-lying states in 2°Bi and 2Tl and a
similar potential for states in **Pb and *7Pb, one
finds that the effective proton potential is about 15
MeV deeper than the neutron potential.

It is, however, possible to obtain a good description
of the low-lying states in each of these four nuclei as
single-nucleon or single-hole states. The second choice
of Hy is well suited to our description. With this
choice, the residual interaction is only the interaction
between particles and holes defined relative to 205Pb.
The effective two-body residual interaction correspond-
ing to our choice of Hy must be consistent with the
difference between neutron and proton potentials em-
ployed in the definition of Hy. This consistency problem
has been discussed by Pinkston.* In the following we
will see that it leads to a constraint on the effective
two-body residual interaction.

We now turn to the effective one-body potential
for continuum eigenstates of **Bi with one proton in
continuum. The empirically known optical potential
that best describes the elastic scattering of protons
from ?%Pb is complex and energy-dependent. The
energy dependence and imaginary part of the optical
potential are expected to arise naturally if one diago-
nalizes the residual interaction on the continuum eigen-
states of Hy and complicated bound eigenstates of H,
lying in the vicinity of the excitation energy of the
compound system. Empirically, one finds that the
elastic scattering of protons from 2%Pb at energies
between 14 and 19 MeV is well described by an optical
potential whose real part has the same geometry as
the bound-state potentials discussed above and depth

given by
(1)

where depth of the proton potential V,, and the proton
energy E, are expressed in MeV. Extrapolation of this
well depth to small values of the proton energy E,
gives excellent agreement with the potential chosen for
the proton bound states.

We choose the single-particle potentials for protons
and neutrons to be different to accommodate the in-
teraction of the last nucleon with the excess neutrons.
This enables us to describe the low-lying states in
209Pb, 27Ph, 2¥Bi, and 27Tl as eigenstates of H,. The
real part of the optical potential that best describes

Vp=66.3—0.4E,,

% W. T. Pinkston, Nucl. Phys. 53, 643 (1964).
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the proton scattering is in very good agreement with
the potential chosen to describe the low-lying bound
states in 2°Bj and 27Tl Since we will not carry out
the diagonalization of the residual interaction with
respect to the continuum, our last-mentioned choice
of proton potential seems to be very desirable. The
parameters of the Saxon-Woods potentials employed
are listed in Table I.

Our choice of Hy has yet another merit in that the
continuum eigenstates of H, with one proton in the
continuum do not display single-particle resonances
in a large energy region around the energy of the
isobaric analog resonance. This is very important
because close to the energy of a sharp single-particle
resonance the amplitude of the continuum wave func-
tion becomes large in the nuclear interior. As a result,
the continuum-continuum interaction is enhanced, and

TaBLE I. Parameters of the Saxon-Woods potentials used to
calculate the wave functions of neutrons and protons in bound
states. The potential for the continuum eigenstates of proton has
depth given by Eq. (1) and the same geometry as the bound-
state potential.

Vo 7o a Vao.

(MeV) (€D (F) (MeV)
Neutrons 51 1.19 0.75 5.8
Protons 66 1.19 0.75 5.8

it may no longer be permissible to ignore it. It is
covenient to define

R
I(E)= [ Do () Trtdr, @)

where
Wz | Yam)=08(E—E'),

and R is of the order of the nuclear radius. The quan-
tity defined by Eq. (2) is a measure of the square
of the amplitude of continuum wave function Yhz
over the nucleus. In Figs. 1 and 2, 7(E) is plotted
for two partial waves of interest for our choice of Hy
and for an independent-particle Hamiltonian obtained
by equating the single-particle potentials for neutrons
and protons.2? We find similar qualitative behavior
for other partial waves. Continuum eigenstates of the
independent-particle Hamiltonian defined in the spirit
of Ref. 22 display well-pronounced single-particle reso-
nances in contrast to our choice. Technique discussed
by Weidenmiiller”? for handling these single-particle
resonances are useful only if they are sufficiently sharp,
which holds only for low energies and high angular
momenta.

Before concluding this section we mention that the
Lane model® has been discussed and extended®?# in

% A. M. Lane, Nucl. Phys. 35, 676 (1962).
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Fic. 1. Square of the amplitude of the pi/» continuum wave
function, integrated over the nuclear volume. The ordinate is a
measure of the continuum-continuum interaction involving two
continuum wave functions, with the proton in the gy, partial
wave in each case. The dotted curve is calculated for an H, with
V»="Vn. The solid line corresponds to our choice of potentials.

the framework of the shell-model theory of reactions.
The peculiar role of the residual interaction in split-
ting the proton single-particle resonance and pushing
away a fraction 27o/(2To0+1) of its strength is par-
ticularly transparent in these references. It is also
clear, however, that the choice of Hp implied in these
references can be improved by including in Hp all the

10
SQUARE OF THE AMPLITUDE OF
THE f5/2 PARTIAL WAVE
IOOE
E) [
(Mev)”
ldl: .:
Eoo
i
';l.
1
1
\
162L &
103 —1 I‘O ' L L . . L

- 30 40
E(MeV)

Fic. 2. Square of the amplitude of the fs2 continuum wave
function, integrated over the nuclear volume. In this case the
single-particle resonance displayed by the continuum wave
function of Hy with V,=7V, is much sharper than in the .
case. Also, for this partial wave, our choice of potentials con-
siderably reduces the continuum-continuum interaction,
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F1c. 3. Schematic representation of the 2-particle-1-hole bound
and continuum eigenstates of H,.

diagonal parts of the residual interaction, so that the
residual interaction V' consists entirely of the coupling
between the (pC) and (#A4) channels. This is, in
effect, the approach adopted in Ref. 15. Recently
Mekjian and MacDonald® and Tamura?® have pub-
lished theories of isobaric analog resonances which are
based on a choice of H, similar to the one adopted
here. Tamura critically discussed the various theories
of isobaric analog resonances in considerable detail.

III. SHELL-MODEL DESCRIPTION OF
ANALOG RESONANCES

The choice of one-body potentials made in the last
section defines our independent-particle Hamiltonian
H,. We consider the following bound configurations
{¢:} that are eigenstates of Hpy; a neutron in the 2gy
.orbit together with a neutron hole in one of the excess
‘neutron orbits and a proton in the corresponding pro-
ton orbit. The proton and the neutron-hole are coupled
to zero total angular momentum, and we have a prop-
erly antisymmetrized two-particle, one-hole state. There
is one such two-particle, one-hole state corresponding
to each excess neutron orbit occupied in #*¥Pb. In ad-
dition to these bound states, we consider the gy
single-proton state in 2°Bi. This state is unbound by
about 3.5 MeV. Being far below the Coulomb barrier
and having an orbital angular momentum of 4, it
gives rise to an extremely narrow single-particle reso-
nance with an estimated width of less than one-tenth
of an electron volt. In the following we treat this state
¢o in exactly the same way as the true bound states
{#:}, ignoring the fact that it is unbound. Thus ¢, is
assumed to be the bound single-particle 2gy» proton
state depicted in Fig. 3(a). We also introduce the set
of continuum configurations xoe, Xie, ** *, Xne- Each of
these is obtained from the corresponding bound con-
figuration by replacing the bound single-proton state
by a continuum solution with the same total angular
momentum. The energy of the proton in continuum
is denoted by e. A typical continuum configuration of
this type may be represented as shown in Fig. 3(b).
It will be convenient to introduce the following nota-

28 A. Mekjian and W. M. MacDonald, Nucl. Phys. Al21,
385 (1968). )

¥ T. Tamura, University of Texas technical report (unpub-
lished) ; and Phys. Rev. (to be published).
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tion for these 2p-1h wave functions:
X0e= l]o*(W); J0M0>y (3)
xie= | [J#*(0)J:(v) 1Jo(v) ; JoMo). 4)

The first one denotes a particle in the proton orbit 0,
whereas the second one denotes a particle in the
proton orbit ¢, a hole in the neutron orbit 7 coupled
to a total angular momentum 0 and a particle in the
neutron orbit 0. The asterisk is to remind us that a
continuum state of that angular momentum is implied.
The extremely narrow single-particle resonance dis-
played by the go/» proton-continuum eigenstates is now
to be excluded from xo., since it has already been
included among the bound states as ¢. The exclusion
of this resonance from the gy proton-continuum states
is straightforward, since it occurs far below the Cou-
lomb barrier and is extremely sharp. This may be
compared to the treatment of single-particle resonances
by Garside and MacDonald.?® Configurations similar
to {x:} have been used by a number of authors in
discussing isobaric analog resonances; they are men-
tioned here for comparison. For the following discus-
sion it is necessary to consider a larger set of con-
tinuum configurations. We introduce a set of 2-par-
ticle-1-hole configurations with the proton in a con-
tinuum state, with the energy ¢, and with a definite
state of total angular momentum; a neutron hole in
one of the excess neutron orbits; and a neutron in
one of the shell-model orbits beyond 3p,/. The angular
momentum of the proton is #of necessarily the same
as that of the neutron hole in this larger set. The
angular momenta of neutron and the neutron hole
are coupled to form the core spin 7, which is coupled
to the angular momentum of the proton in the con-
tinuum, to give the total angular momentum of the
2-particle-1-hole state. We denote these states by Y.
Here 8 is an index specifying the set of quantum
numbers of the core and the proton.

Yoe= | J#(m) [T () Ta(v) J1; JoMo). ©)

A typical configuration of this type is shown in Fig.
3(c). Similarly, we include in {¢s.} those configura-
tions that involve a proton—proton-hole excitation of
the core. One such configuration is depicted in Fig. 3(d).

Yge= ' ]i*(ﬂ") [jp(ﬂ')jq(ﬂ')jl JUM0>- (6)

We consider a total number of N such configurations
(8=1, +++, N). It is clear that those functions of the
set {Ys} that involve a neutron in the gy orbit and
a neutron hole in one of the excess neutron orbits,
together with a proton in the same angular-momentum
state as the neutron hole, differ only in angular-
momentum coupling from the functions of the set

{Xie}-
The Hamiltonian function of our system can now
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be written
H=Hy+7V, (7)

where Hy is the independent-particle Hamiltonian dis-
cussed in the last section. The configurations {¢:},
{xie}, and {Yg} are all eigenstates of H,. We seek
an expansion of the wave function of our system in
terms of the configurations {¢:}, {x:c}, and {¥pe}.

(0)=T 0|69+ T [ deaa©) g (8)
i B

Putting this expansion into the Schrodinger equation,
we get a system of coupled equations for the coeffi-
cients b; and ag(e):

(Ei—E)bit 2 (b:| V| 6:)b;

+ 3 [ @il V )o@ =0, )
2 Wge | V[ 63)bit (Egte—E)ag(e)
+ 3 [ ¢l V I odaw () =0, (10)
B

The set of eigenstates {y;s.} of Hy that involve a proton
in the continuum are not well suited to satisfy the
boundary conditions of the scattering process being
considered. Thus, for large values of the proton co-
ordinate, the functions {yg.} describe the motion of a
proton and a core configuration of 208 nucleons, which
is in general not an eigenstate of 28Pb. This is because
the residual interaction has not been diagonalized on
the particle-hole excitations of the 28Pb core.® A change
of basis functions {y;.} is required to accomplish this
diagonalization. We observe that the matrix elements
of the residual interaction between continuum eigen-
states of the Hy may be written

Woe | V| ¥prer)=08(e—€) (B Vo | ')+ (Wse | Va| digrer)-
(11)

The states | 8) are eigenstates of H, corresponding to
bound-particle-hole excitations of 2®Pb. The second
term on the right-hand side involves transitions of the
proton in continuum or its exchange with the bound
proton depicted in Fig. 3(d), whereas the first term
corresponds to the proton in continuum remaining in
the same state. Returning to Eq. (10), we get

2 se | V| 63)bi+ (Egte—E)ag(e)
+ %3 B Venl B )ag (e)

+ 3 [ W Val dydas () =0. (12

30 C. Bloch, in Many-Body Description of Nuclear Structure and
Rea’Ictions, edited by C. Bloch (Academic Press Inc., New York,
1967).
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We introduce continuum functions {{s.} that are ob-
tained through an orthogonal transformation over the
set {Yp} and write

Y= ;iucm, (13)
which implies
ag(e) = 2 ar(€) Can. (14)
x
The coefficients @ (e) are required to satisfy the
equation

(Es—Er) Cpnt %} B Ve | B )Con=0.  (15)

In terms of the new basis for the continuum we get

(Ei—E)bi+ 2 (¢ | V| 6i)b;

+3 [ a1V idvom @) =0, (16)
2 (e | V| 600+ (Erxte—E)an(e)

> / dé re | Va | PueYin (€)=0.  (17)
PV

We observe that if we make another change of basis
such that the Hamiltonian H, is diagonalized on the
new basis {¢,} for the bound configurations, then

(Ei—Ep)dut 2 (6:] V| ¢5)diu=0, (18)

where

Fu= 2. duths, (19)
with dj,, similar to the Cg, making up an orthogonal
matrix. In terms of the sets {¢,} and {{r.}, we finally
obtain

(EamE)bit [ @@V dn@ =0, (20)
> el V| )bt (Bak-e— E)in(e)

+3 / 4 re | Va | e Yine (€)=0.  (21)

The isobaric analog of the gy2 ground state of 2%Ph
is observed at a proton energy of approximately 15
MeV. At this energy the cross sections for direct in-
elastic scattering are quite small in general. We con-
clude from this that the matrix elements of the inter-
action Vy; between different continua are small in
general. The direct inelastic scattering to the 3~ state
at 2.6 MeV is, however, quite appreciable. This is due
to the collective nature of that state. In the present
analysis we wish to study the inelastic decay of the
analog resonance into those channels in which the
direct inelastic scattering is very small. If one now
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TaBLE II. The eigenvalues E; and the expansion coefficients d,; of the eigenfunctions of Eq. (18) in terms of the bound eigenstates
¢; depicted in Fig. 3(a). The function ¢; is simply a proton in the ‘“bound” gy state in 2°Bi (see Sec. ITT). The function denoted by
¢1 has a neutron in the 2gy2 state and a neutron hole and a proton in the corresponding 3pys; states. Similarly the function ¢, has a
neutron in the 2gy; state and a neutron hole and proton in the corresponding 2fs. states and so on. Finally, ¢ has a proton and a

neutron hole in the corresponding 1/, states.

E; dos di; ds ds; dys ds; dei
15.030 -+0.1262 +0.2077 +0.3712 +0.3059 -+0.5290 +0.4213 -+0.5023
6.567 +0.0508 +0.3708 +0.2061 -+0.6174 —0.4446 +0.2385 —0.4262
4.568 —0.1232 +0.2194 —0.5124 -+0.5505 +0.2174 —0.5323 -+0.2012
3.058 +0.9297 —0.0035 +0.1216 —0.0017 —0.0086 —0.3469 —0.0210
3.297 —0.3115 —0.0776 +0.7221 +0.0668 +0.1442 —0.5769 —0.1318
3.744 —0.0593 +0.1114 +0.1446 —0.0495 —0.6656 —0.1355 +0.7067
3.547 —0.0373 +0.8676 —0.0008 —0.4640 +0.1068 —0.1038 —0.0915

neglects the coupling between different continua, re-
alizes that with our choice of independent-particle
Hamiltonian the continuum corresponding to the elas-
tic channel has been diagonalized in the spirit of the
optical model, and that each of the continua cor-
responding to the inelastic channels is also approxi-
mately diagonalized, then it seems reasonable to neglect
the last term of Eq. (21). We are then left with

(B—E)b+ % / 4 (B, | V | oY (€) =0, (22)
> @ | V| $u)but (Eate—E)an(e)=0. (23)

IV. DIAGONALIZATION OF V ON THE BOUND
CONFIGURATIONS {¢;}

To proceed further, we present the results of the
diagonalization of an effective two-body residual inter-

APPROXIMATE EIGENFUNCTION OF ANALOG SPIN

16k RESULTING FROM SHELL-MODEL DIAGONALIZATION d
I5F 1= {z|w,)=0.999 o
14t -
EA
E(Mev)
s ]
| @) —————(a|w,»=-0.003
6r 4
5 |
|b) —————— {b|w,»=-0.003
a4t Es lex c|w,)=+0.028
Ei |dN—————"4d|W,)=-0.004 1

JR—— )
3r :—\E\O'E 2
£ Ey

|ey—————<e|W,)=-0.042
1£Y W, y=+0.01

2

F1c. 4. Eigenenergies of the 2-particle-1-hole eigenstates of
H, depicted in Fig. 3(a), and the result of the diagonalization of
the residual two-body interaction on that set of states [Eq.
(18)]. The new eigenenergies emerging from this shell-model
calculation are shown together with the projections of the cor-
responding eigenstates on the analog spin eigenstate | W ), de-
fined by Eq. (26).

action on the set of bound 2-particle-1-hole configura-
tions. This amounts to the solution of the eigenvalue
equation (18). As always, the particles and holes refer
to the 2%Pb core. The zero-order energies are obtained
from the experimentally observed separation energies
of the corresponding low-lying single-particle states of
29Ph, 27Ph, and *Bi. (These zero-order energies are
given in Table III.) The effective two-body inter-
action was chosen to be of the form

V(1,2)=0(r, 1)
X[ VsePse+ VrePre+ VrioPro+ VsoPsol, (24)

V(ry, 1) =exp(— | n—r: [7/6%). (25)
The projection operators Pgsg, Prg, Pro, and Pso have
the usual meaning. Parameters of the two-body inter-
action chosen for this calculation were

Vse=—35.0 MeV, Vig=—52.5 MeV,

VTO: 50 MCV, Vso = 330 MCV,

and B=1.85 F. These values were obtained as the
result of an attempt to find an optimum description
of the low-lying states of 2®Pb in terms of 1-particle—
1-hole states. Indeed, these values are quite similar to
those given by Carter, Pinkston, and True?® The
matrix elements of this two-body interaction were
calculated using wave functions of appropriate bound
states of the single-particle potentials given above.
Figure 4 shows the energies of the almost degenerate,
unperturbed levels and the eigenvalues emerging from
the shell-model calculation. Table IT gives the expan-
sion coefficients d,; of the eigenvectors of Eq. (18) in
terms of the states ¢,.

All reasonable choices of the two-body interaction
display the same general features in their effect on
the eigenvalue spectrum. One of the eigenvalues Es
is isolated and pushed up quite considerably, whereas
the others are somewhat spread, but still lie close to
the original unperturbed set of levels. Qualitatively

3 7. C. Carter, W. T. Pinkston, and W. W. True, Phys. Rev.
120, 504 (1960).
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this general behavior is expected and has been dis-
cussed by Pinkston.?* We found that the singlet-odd
component of the two-body interaction is not well
determined by requiring that the above effective two-
body interaction give an adequate description of the
low-lying states of 22Pb. We therefore have adjusted
its strength so that the largest eigenvalue Ez lies
approximately at the energy at which the go/2 isobaric
analog resonance is observed in 2%Bi. It is hoped that
the calculations® done with the effective interaction
derived from the true two-body interaction would
automatically predict the eigenstate | £) at an energy
close to that of the isobaric analog resonance. Indeed,
the constraint put on the effective two-body inter-
action, by requiring that the state | Z) appear at a
definite energy close to that of the observed isobaric
analog resonance, is necessary for internal consistency
of our description. This is clear if one recalls that the
state | Z) is expected to be separated from the ground
state of 2°Pb essentially by an amount Q,., where
Qpn is the Q value for the “charge-exchange reaction”
29Ph (p, ) 2°BiA

We now consider briefly the nature of the state
| Z). It is convenient to define, for this purpose, the
state | W) as

| W)= (N—Z+1)72(| o)+ 55: [ 62)). (26)

Here N—Z is the neutron excess of 2Pb and 7=
(2j41)Y2, This state is, by construction, an eigen-
state of “analog spin.” # In Fig. 4, the projections

2T, T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).
3#W. M. MacDonald, Isobaric Spin in Nuclear Physics
(Academic Press Inc., New York, 1966).

of this state on the eigenvectors of the shell-model
calculations are given. The first row in Table IT gives
the expansion coefficients of this state in terms of the
configurations {¢;}. The state | Z) is rather close to
being an eigenstate of analog spin. To investigate the
isospin of the state | Z) we define a state | £):

| &)= (N=Z+1)72( qo)+ X3 £:), (27

where | o) and {|{:)} are obtained from |¢o) and
{| #:)}, respectively, by replacing the wave function
of the extra proton by the wave function of a neutron
in the corresponding orbit. Thus | £) may be considered
as the isobaric analog of the excess neutron configura-
tion in 2Pb. The projection of | Z) on | £) is four 1
to be

(Z ] £)=0.99s. (28)
The large overlap between | Z) and | £) is due to the
large overlap between the corresponding neutron and
proton single-particle wave functions. This is demon-
strated for the 3py» orbit in Fig. 5. It should be
pointed out that | £) is not an eigenstate of the total
isospin operator T2, since the wave functions for neu-
trons and protons occupying the single-particle states
up to V=282 are not identical. The overlaps between
the corresponding neutron and proton orbits for the
single-particle states below the 1k, are, however,
larger than 999,. We remind ourselves that the radius
parameter 7, and the diffuseness have been chosen
equal for neutrons and protons in the present case.
The isospin purity of the state | Z) would depend
somewhat upon the choice of geometry; in particular,
the optimum would be achieved if the radius param-
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eter 7o for the potential proton were chosen slightly
larger than that for the neutrons potential. We con-
clude that the state | ) is quite close to being an
eigenstate of isospin; however, owing to uncertainties
associated with the choice of single-particle potentials,
it is not possible to investigate accurately the mag-
nitude of the isospin admixture in | Z).

(B B)brt 3 f e (3| V | drve Yare (¢) =0,
(Bxte—E)arn(e)+ e | V | $2)bz=0,
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V. DISCUSSION OF CONTINUUM
SOLUTIONS AND S MATRIX
The state | Z) is well isolated, so that in a limited
energy region around the eigenvalue Ex we may ne-
glect the coupling of other eigenvectors of Eq. (18)
to the various continua.* Equations (22) and (23)
then reduce to

(29)

A=1, .-+, N. (30)

In the terminology of the shell-model theory of reactions, these equations describe the coupling of a single bound
configuration | ) to the continua {¢».}. The equations can be explicitly solved,® and one obtains

VZE(M)JM

T =Fs™® (" p/d
EM=bzMX ¢z+§ GE—‘E“—G

The function ¥, z_g, corresponds to the target nucleus
being in one of its excited states (excitation energy E,)
and the proton in continuum with the energy E—E,.
We have here and throughout used the abbreviations

Vi®= (2| V]dre), V®O=(dz|V|¥r-5) (32)
Also note that
Ey=Esz+As,
VEEO‘)VEe
=3 A= P / de, (33
As= Z > Z E—F—e € (33)
and
(34)

I'=2r Y Vs®OV®.
)

The above solution (31) satisfies the boundary con-
dition that the only ingoing waves are in channel X.
There is one such solution for every continuum A.
The functions ¥ are normalized so that

Pre | '7/)\';'>= b (e—e)
e (k/n) 2 sin[kr—3ni+-an ()] (36)

From the asymptotic form of g™ one can now read
off the S matrix:

Sh=exp [(8+6,)] («m

(35)
and?3®

(D™ 12(Tyw) 1

i ) )

where

(I‘z("))”2= (2,”) 1/2V2()\)_ (38)

3 This is expected to be a very good approximation for a heavy
nucleus like *Bi because although the states | W) are strongly
coupled to a number of continua {{,.}, the effect of that coupling
may be ignored in the neighborhood of the eigenvalue Ez which
is about 9 MeV away from the eigenvalue of the closest | W.)
state (Fig. 4). In the case of lighter nuclei with small neutron
excess this approximation may not be as good.

% U. Fano, Phys. Rev. 124, 1866 (1961).

36 Actually Yae is 2 Slater determinant; Eq. (37) gives the
asymptotic form of that function in the determinant that has
nonvanishing amplitude asymptotically. For simplicity we imagine
a screened Coulomb field.

—ir 3, Vs, 55, +

E Eo"l— 211‘

u o VW™ (31)

7 E'AE')‘)

Notice that the partial-width amplitude (T'z™)2 is
defined by Eq. (38) and is not necessarily positive.
We have a Breit-Wigner resonance and a unitary S
matrix. If we choose

bs™M =V s®/(E— Eyt+-3iT), (39)
then
WpW—s(ky/mE\) V2 sin (kxr— 3ml+-6))
Ly ( k, )1/2 (Tx®)1i2(Tgw)1r2
» \1E, E—Eyt+-3iT'
Xexpli(kyr—3rh+8,)7], (40)

and the ingoing parts of ¥z® coincide with those of
¥re taken at e=E—F).

We now wish to discuss the isospin of the solution
Y™, It is convenient to start with the one-channel
case, which can be obtained from Eq. (31) by spe-
cializing to one continuum Je. Then

V“ VEE‘//E E EO ~ )
V= (¢E+P [ = Jn
(41)
or
Vp= (E—Eo‘f‘%ir)—l
I:VE¢E+P/d VZeVZe ( ‘pe) Vz"— (E Eo)lﬁEjl
E—e VE:

(42)

To proceed further, we assume that the energy de-
pendence of (Je/Vze)Vz may be ignored over the
energy region which contributes significantly to the
integral. Numerical calculations show  that this is a
good approximation if the proton coordinates in the
continuum function . are restricted to the nuclear
dimensions. We obtain

V= (E— Eo+3i0) " Vids+ Asfr+ (E— Eo) ¥} , (43)
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or, since Eo=Es+As,
Vp= (E—Ect+3T) " Vepz+ (E—Ez)¥x}. (44)

For energies in the neighborhood of Es and over the
nuclear region, the product Ve is only a few percent
of ¢z, so that over an energy region of several times
the width T' the first term dominates. At the energy
E=Es and over the nuclear region, the continuum
solution becomes proportional to the bound configura-
tion ¢z. In particular, it becomes as good an eigen-
state of isospin as ¢z. This is the origin of the well-
known asymmetry factor discussed originally by
Robson.¥

Making similar approximations in the multichannel
case, we get

VM= (E—Ey+3T)1
X{Vzds+ 2 (As®W—3iTs®)
M

X -t (E—Eo+-3T) ¥ p-g\}.  (45)

Clearly, the unique situation encountered in the single-
channel case no longer prevails. The continuum solu-
tion now contains contributions from all open channels,
and the amplitude in only one of these channels dis-
plays a zero. In the intermediate case, where the
elastic channel dominates but other channels are also
open, we expected to recover some features of the
single-channel case.

To summarize, we have taken the coupling of the
state ¢z to the various continua {¢».} exactly into
account. This coupling leads to the resonance behavior
of each of the continua. The solution can be written
explicitly in terms of the continua {{».}, the state ¢,
and the matrix elements of the residual interaction
between ¢z and {¢»}. The strongly energy-dependent
coefficients of this linear combination are given ex-
plicitly.

VI. T< STATES AND NEUTRON CONTINUA

In heavy nuclei, the isobaric analog resonances are
observed at high excitation energies of the compound
system. At these energies the density of compound-
nuclear levels of 7< isospin is rather high. These
states {®;}, k=1, -+, L by virtue of the high ex-
citation energy, are expected to involve much more
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complicated shell-model configurations than those con-
tained in the state | Z). However, if the residual
two-body interaction were diagonalized on a suffi-
ciently large space of shell-model configurations, these
complicated states would be expected to result from
the calculation in a way similar to the state | Z).
Each of the states {®,} generally will be coupled to
each of the appropriate continuum states through the
residual interaction. In addition to the functions de-
fined by Egs. (31) and (39), we now consider a
number of functions {¥g®}, A=N+1, -+, M, each
of which involves a neutron in the continuum, and
the residual nucleus in one of the states that may be
populated by a (p, #) reaction on the target nucleus
under consideration. We have a total number M of
functions, the first N of which describe a proton in
continuum, and the rest of which describe a neutron
in continuum. The states {®;} will be coupled to the
various continua through the residual interaction. This
coupling would, for example, cause these states to
decay into one of the neutron continua after they
have been populated through one of the continua
(U™}, A=1, -+, N.

In contrast to the states {®:}, the state | =) will
be coupled only very weakly to the neutron continua.
This is because ideally the wave functions that de-
scribe the neutron continua have isospin one unit less
than the isospin of the state | Z). A very weak cou-
pling is expected, due to isospin admixtures in the
low-lying states of the residual nucleus populated by
the (p, n) reaction or to the isospin impurity of the
state | Z). In the following, we shall ignore the cou-
pling of the state | ) to the neutron continua. The
residual interaction is assumed already to be diago-
nalized on the neutron continua. In addition, we as-
sume that the matrix elements of the residual inter-
action between different neutron continua are negligible.
In addition, we assume that the matrix elements of
the residual interaction between different neutron con-
tinua are negligible. This implies that the direct in-
elastic scattering of neutrons from the residual nucleus
of the (p, #) reaction is negligible. In the framework
of the above assumptions, it is now possible to solve
the Lippman-Schwinger equation for the solution W'z™
of the total Hamiltonian on the space of functions
{‘I’EO‘)} and {‘I)k,}i

| wp®)=|¥™)+ Zde" (EP—E' ) | Up®){@p® | H| :)(P | WD)
k.p

+ 3 [0 (B-a) | 8] H @) | w3®). (@6)

After a somewhat lengthy calculation given in Appendix A, one finally obtains the energy averages of the S-matrix
elements if one invokes the statistical assumptions regarding the matrix elements involving the states {®}.
Indeed, this is just the approach of Ref. 22 as far as the effects arising from the T< states are concerned. We find,

#D. Robson, Phys. Rev. 137, B535 (1965).
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however, that the approximations made there can be improved upon, and one obtains results different from those
reported by Weidenmiiller.”? For the energy average of the S-matrix elements, we find

Sa= CXPD o+ 5#)]

1—Y,+2i(As®/Ts®)Y, . . . (Ts®)u2 (fzw)l/z)
— 1 (pu— — - —t) (47
X(a)\u 1+ Y“+2i (AE(“)/I‘E("))Y‘L eXp[ 1’(¢# XI-‘)] 7 eXp[ 1’(¢)\+¢I‘)] E__S_i_%_iG ( )
where Ref. 22 lies in the circumstance that ¥ is typically
(TxM)12= (TxM)12 | gy [ (48)  of the order of 109 or less. This has the consequence
and that the factor multiplying the partial widths turns
be cl ity. For h ’ lei and isob
. out to be close to unity. For heavy nuclei and isobaric
an=14+Ta+2i(A:0/T2%) I analog resonances of low angular momenta, ¥ may be
= | 1472+ 2i(As™W/Ts®) ¥y | exp(ign). (49) as large as 25%. In such cases the results of Ref, 22
Also, would deviate quite significantly from ours.
§=Eot X AsON 2+ N\ [14+4(AsV/Ts™)?]} [an|?  VII. NUMERICAL RESULTS AND DISCUSSION
y
(50) Differential cross sections for the inelastic scattering
and of protons to a number of final states in 2%Pb show
_ A, 51) & strong energy-dependence characteristic of a Breit-
Ey=Ext ; * (51) Wigner resonance.®® At the gy» resonance the ratio
Finally of the resonance scattering to the direct inelastic scat-
?

G=2w(Vs*)ay/d+ > Ts®
A
+ X IO [1+4(AxW/Tx™)2]  (52)
)

and
€xp ('I:X)‘) = [1— Y)‘—f— Zi(Az(”/ 1’2(*)) Y)‘]
X l 1— Y)‘+ 24,'(A20‘)/I‘20‘)) Y)‘ ['"1. (53)

The quantities Es, As, and T's™ were defined in Sec.
V. Finally, the quantities 2m(Vs*)av/d and Y, are
defined in Eq. (A31). The most prominent difference
between our results and those derived by Weiden-
miiller?? is in the “effective partial-width amplitudes”
(T'z™)12 and the corresponding quantities of his paper.
We find that, due to the presence of T< states, the
background phase shifts 8, have not only acquired a
complex part in characterized by

1— V3 4-2i(AsW/TsW) Ty
14+ Va+2i(As®/Ts™) Ny |

but that the real parts have also been modified. This
result is comforting, since one does expect both the
real and the imaginary parts of the optical-model
phase shifts to be influenced by the coupling to the
continuum of the complicated states {®;}.

The total width G may be written as the sum of
the internal spreading width 27(Vs*)../d plus the
summed partial widths Ts® and the spreading width
due to external mixing. Our expression for the ex-
ternal spreading width is again different from that
derived in Ref. 22. In the limiting case 2A;W/T'sW<1
our expressions would agree with those of Ref. 22.
However, in general we find that 2A;®/T's®~1. The
reason for the success of the expressions derived in

(54)

exp(—2m) =

tering background is as high as 40 for some states.?
In many cases the cross sections also display sym-
metry about 90°. This indicates that in the descrip-
tion of inelastic scattering to these states it may be
a good approximation to neglect the continuum-
continuum interaction discussed at the end of Sec. V.
To calculate the cross sections one needs to evaluate
the partial-width amplitudes Tyj,zs,/? defined by Eq.
(B1). As explained in Appendix B, we shall restrict
outselves to continuum functions involving only a
neutron-neutron-hole excitation. In this case from
(B1) and (B7) we obtain

Tynret?= (I)/ Jo) CrsLypre?,
where we have defined

Typretlt= (—1)TBH0(1/Jg) (2m) 2 Sdis

(55)

X o{lTe*(m)e() o | Zap | [7:(m)T () JoYar (36)

Equation (55) gives the factorization of the partial-
width amplitude into the coefficient Cyg, which per-
tains to the structure of states of the target nucleus,
and the quantity I'y,s,!/2, which may itself be regarded
as a decay-width amplitude. The latter is dependent
only upon the structure of the state ¢z We shall
refer to I'ygr, as the partial width for pure configura-
tion because it describes the decay of the state @s
into a continuum which involves the core in a pure
particle-hole configuration. Figure 6 shows these partial
widths for the partial waves of interest as a function
of the energy of the proton in continuum. These partial
widths were calculated using the two-body force pa-

#W. R. Wharton, P. von Brentano, W. K. Dawson, and

Patrick Richard, Phys. Rev. 176, 1424 (1968).
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rameters and eigenstates of H, discussed in Secs. ITI
and IV, respectively. The details are given in Ap-
pendix B. Similarly, Fig. 7 shows the sum of the
nuclear and Coulomb phase shifts for the partial waves
of interest.

The coefficients Cyg were obtained from a Tamm-
Dancoff calculation in which the two-body residual
interaction of Sec. IV was diagonalized on the 1-par-
ticle-1-hole eigenstate of H,. The shell-model orbits
and the corresponding zero-order energies are given in
Table IIT.

Matrix elements of the two-body interaction were
evaluated using the single-particle wave functions cal-
culated for the Saxon-Woods potentials for neutrons
and protons given in Sec. II. Both the diagonal and
off-diagonal matrix elements of the residual two-body
Coulomb interaction were treated exactly. The eigen-
energies given in Table ITI were obtained from Rost.®
The eigenenergies of the pije, fs2, and pae neutron
orbits have been adjusted slightly to improve the
agreement between the observed center of gravities
of the (gos2, pri™), (gor2, fors™), and (gope, payz™) multi-
plets and the calculated center of gravities of these
multiplets. States observed by Richard et al.®® are
compared with our calculation in Fig. 8. Finally, in
Fig. 9 we compare our calculated cross sections with
the experimental results obtained by Richard et al.
The following resonance parameter® of the go» reso-
nance in 2°Bi were employed in the calculation of the

25 PARTIAL WIDTHS FOR PURE CONFIGURATIONS

. 20f

9.5 l(‘).O IOI.5 1.0 1.5 120
ENERGY (MeV)

Fi1c. 6. Partial widths for pure configurations defined by Eq.
(55) are shown for the three partial waves of interest as a function
of the energy of the proton in continuum.

3 E. Rost, Phys. Letters 26B, 184 (1968).
4 S. Darmodjo, S. A. A. Zaidi, D. G. Martin, P. Dyer, and
S. Ali (to be published).
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PHASE SHIFTS FOR THE PROTON PARTIAL
WAVES OF INTEREST
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Fic. 7. The sum of the nuclear and Coulomb phase shifts
81;+0; are shown as a function of the energy of the proton in
the continuum.

inelastic cross sections:

resonance energy 14.98 MeV,
elastic proton width 25  keV,
total width 260  keV.

Comparison of the cross sections given in Ref. 23
with the corresponding values in Ref. 9 showed some
discrepancies that are probably within the limits of
experimental uncertainties of the experiments. The
over-all agreement between the two experimental re-
sults is considerably improved if all the cross sections
in Ref. 23 are multiplied by 0.8. The data shown in
Fig. 9 are obtained in this way.

Comparisons of the calculated cross sections with
experimental data revealed that the calculated angular
distributions were much more sensitive to the nuclear
structure of the excited states of 28Pb (through the
coefficients Cys) than to the details of the reaction
mechanism. This is encouraging for studies of nuclear
structure through analog resonances; however, the
same circumstance makes it difficult to test the de-
scription of the reaction mechanism. Fortunately, there
exist a number of states in 28Pb that appear to be
rather pure neutron—neutron-hole excitations. For such
states the calculated inelastic scattering cross sections
provide a test case for the description of the reaction
mechanism. The 4~ state at 3.451 MeV, the 6~ state
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TasLE III. Single-particle states and their eigenenergies used in the description of the low-lying

states of 28Pb as superpositions of particle-hole excitations.

185

Proton particle Neutron hole Neutron particle Proton hole
Eigen- Eigen- Eigen- Eigen-
energy energy energy energy

State (MeV) State  (MeV) State (MeV) State (MeV)
3?1/2 —0.10 3?1/2 7.22 2g9/2 —3.940 3512 8.03
3pssa —0.66 512 7.86 121170 —3.170 2d3/» 8.38
2f5/2 —0.96 3?3/2 8.10 3dss2 —2.380 2dss2 9.70
2f1/2 —2.90 2f7[2 971 451/2 —1.910
1hyye —3.80 1hyse 10.84 2g11 —1.470

3dszi2 —1.420

at 3.948 MeV, and the 6~ state at 4.463 MeV are
predicted to be essentially pure (go2, 127, (gop, 751272,
and (g2, p3/271) neutron—neutron-hole configurations,
respectively. This result remains unchanged for all
reasonable values of nuclear-force parameters and
changes of the zero-order energies of these configura-
tions. The agreement between theory and experiment
for these states shows that our description of the
reaction mechanism is basically correct.

The corrections arising from the “sea of T'< states”
surrounding the state ¢z were estimated to be small
and were ignored. This is because the inelastically
scattered protons have energies of the order of 11 MeV.
The Y occurring in Eqgs. (47)—(54) are 109, or less.
As a result, the partial widths are not modified by
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Fic. 8. Results of the Tamm-Dancoff calculation for the low-
lying states of 25Pb. Also shown are the states populated by the
inelastic decay of the gy analog resonance in 29Bi. Spin assign-
ments of the observed levels are on the basis of the correspondence
between observed and calculated cross sections shown in Fig. 9.
The dotted lines for the 2~-and 7~ states are only meant to indicate
the possible candidates for these spin values among the observed
levels. These two assignments are uncertain. .

more than a few percent. In view of the simple shell-
model description of the low-lying states of 2%Pb
reported here, we do not expect the coefficients Cyg
to provide an accurate description of the low-lying
natural-parity states. However, the higher-lying states,
particularly those of unnatural parity, are expected
to be described correctly by our approach. Comparison
of our calculations with experimental results allows
us to assign spins and to identify dominant configura-
tions of the excited states in 2®Pb. This knowledge
will be useful in more sophisticated calculations for
the excited states of 28Pb.

We have shown that the microscopic description of
analog resonances developed here predicts results in
fair agreement with the experiment. The basic ideas
underlying this description are simple, and the cal-
culation can easily be performed for other nuclei.
Indeed, our choice of independent-particle Hamiltonian
H, which has the merit of greatly simplifying the
residual interaction is a very natural one from the
physical point of view. One aspect of this description
that has generally been ignored in the literature is
the coupling of the state ¢z to continua involving
proton—proton-hole excitations of the target nucleus.
In general, we expect the analog spin state s to
decay both into continua involving neutron-neutron-
hole excitations of the target and continua involving
proton—proton-hole excitations of the target. The rel-
ative importance of the two decay modes will be de-
termined by the structure of the final state of the
target nucleus. Thus the amplitude for the decay of
an analog state ¢z into a low-lying collective state of
the target nucleus may be a superposition of a number
of amplitudes corresponding to each of the two decay
modes. In this sense our microscopic description is
capable of explaining the decay of analog resonances
into low-lying collective states as well as simple par-
ticle-hole states of the target nucleus. It is clear,
however, that for the description of collective states
the simple particle-hole excitations considered here
would not suffice. We planned to repeat these cal-
culations in conjunction with improved shell-model
calculations and to include approximately the effects
arising from the continuum-continuum interaction ne-
glected here,
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APPENDIX A: DETAILS OF CALCULATION
LEADING TO AVERAGE S-MATRIX ELEMENTS

The Lippman-Schwinger (LS) equation (46) for the
solution Wg® of the complete Hamiltonian H is
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written in terms of the sets of continuum solutions
{¥g®}] and bound eigenstates {®}. It is more con-
venient, however, to replace the set {¥z™} by a set
of functions {Fg*?} such that the matrix elements
(®; | H| Fg") become real (the merits of this re-
placement will become evident in the following). This
is accomplished by the unitary transformation

Fg®=3" U)‘MCI';E(u), (A1)
»
where .
W' =exp(16,) ¥g'W. (A2)
The transformation matrix is
U= [1+67\1(6—iﬂ_ 1) 10w eXP(_ian) ) (A3)
where
Oy= (Tx®/T) 12,
€= (E—'Eo—%ir)/l E—E(H—%ir [, I'=T's. (A4)

The rest of the matrix elements Oy, are arbitrary so
long as O is an orthogonal matrix. Finally, 8, is the
phase shift displayed by the function , defined in
Eq. (36). Similarly, we replace the function 'z™ by

FrM= Z U)‘,,‘FE("‘). (AS)
n

The LS equation satisfied by Fg» expressed in terms
of the sets {Fg™} and {®;} is identical in form to
Eq. (46). It has the merit, however, that the matrix
elements (&, | H | Fg™) occurring in it are real. This
is easily solved* using techniques discussed in Ref. 20.
The S-matrix elements can then be obtained by trans-
forming back to the functions W™ and ¥5®. One
obtains _

Sau= S+ 27D /D, (A6)

Here S), is given by (37) and D=det(Dsy). The
matrix Dy is defined by

& |H|FPV)(FN|H|P;
D’Lk = (E—‘Ei)éik— E/ ( i I I > ( l ) de.
N E®)—¢

(A7)

The quantity D™ is the determinant of a matrix
obtained by adding a row and column to Dj:

Dy, (P | H | ‘AI"EU‘)>
Dy,=det] N . (A8)
(®: | H [ ¥g®) 0

Using the explicit expression for the solutions ¥z®
given by Egs. (31) and (39) and the definition (A1)
of the functions Fg®, it is straightforward to calculate

4Tn Ref. 20 the S-matrix elements are derived formally for a
given Lippman-Schwinger equation by assuming an expansion
of the solution on a limited number of bound and continuum
configurations. In deriving this result one assumes that a matrix
similar to the one defined by Eq. (A7) can be diagonalized by a
complex orthogonal transformation. This is always possible if
Dy is symmetric. This, on the other hand, requires that the
matrix elements (®;| H| F®) and (F,™| H| &) occurring
in (A7) be real.
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the matrix elements (®; | H | Fg™). One finds that
(i | H| FgW)= (1—6u) X O V:®
®

+ou (3T /7) 12 | E— Ey+54T [
V@V i
X <V,-z+ ZP[de 2

E—e

+ E—Izr (E—Ey) X Vi(")VE(")) . (A9)

We have used the abbreviations
Vi =(®; | H l Ju.E'—-En> and V= <<I>,~ [H | ‘Zae>;
(A10)

with similar expressions for Vz® and Vs, Finally,
we have written

Viz=(®: | H | §2). (A11)

The matrix elements Vs describe the mixing of the
state ¢z into the numerous background states {®}.
It must be realized that the states {®;} and the state
¢z are obtained by separately diagonalizing the re-
sidual interaction on suitably chosen sets of eigen-
states of H,.

In the spirit of approximations discussed in Sec. V,
we can make good approximations to the principal-
value integral occurring in Eq. (A9). That is,

VEE(”) Vie(a) VEe(V) VEe(ﬂ) Vie(a)
E—e E—e V@'*
V@ ( Vze(”)) 2 V,'(“)
~_i p f de = —— Ay, (AL2
V@ E—e V@ z ( )

With the approximation for the principal-value inte-
gral one obtains

f(e)de

EB_¢?

Di= (E— E;)b5— / (A13)

where we have written

f(e) = Z Vie® Vi) — (27,-/]_") Z Vs Vi ® V5OV, @
u op

+(T/2r) | e— Eot34T |2{4} (£}
and introduced the abbreviation
Vi
Vs
+(2n/T) (= Eo) 3 ViV, (A15)

(A14)

The integral involving the second and third terms in
the definition of f(e) can be evaluated by contour
integration if one notices that the matrix elements
Vie® and Vz® do not have singularities in a large
energy region around the energy of interest E~Eg.
This is evidenced by Figs. 1 and 2, in which the
square of the continuum wave function integrated
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over the nucleus is plotted as a function of energy.
The continuum wave functions do not display any
single-particle resonances, and we expect that VW
and Vz® continued to complex energies would not
have singularities in a sufficiently large part of the
complex energy plane such that | E—e|>>T may be
satisfied along a path in the e plane that does not
enclose singularities of Vi® and Vz®. Then we have

Z/(‘I%IHIF(”)(F(WH!%)

EP—¢
Vi V;“(“)
- E _/ E®—¢
+(E—E) 1 (Viz+ 3 QOV @V @)

X (Vizt 2 QUV@V3@), (Al6)

where we have defined for brevity

Q= —ix[142i(As@/T5@)] and E=E—1}

(A17)

The first term on the right-hand side of (A16) may
be written
Vi Vi ®
EP—e &

Vil Ve ®
E—e

—im ), Vi®¥V,®, (A18)
B

If one deletes the principal-value integral and retains
only the imaginary part, then one obtains an ex-
pression for Dy which finally leads to energy-average
S-matrix elements similar in form to those reported
in Ref. 22. Numerical calculations indicate, however,
that the real part of the integral is generally as large
as the imaginary part. It is thus not permissible to
delete the first term and retain the second one. We
approximate this principal-value integral in a way
similar to that done above and obtain

¥ (@i | H|FY) (FD | H | )
A E®)—¢

= QWYwy, w4 (E—F)1
®

de

X (Vi2+ E 'V’,(v) VE(J)Q(U)) (sz+ Z Vi@ Vz(“’)ﬂ(‘”)) .

(A19)
Using the definitions

aW=(QW)BVW,  p=1,+--, N, i=1, -, L
(A20)
ad= (E—E)"12(Vis+ D ViOV0Q®), =1, -+, L

(A21)
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we finally get
5 M (D |H|F®)(FN|H| ‘I’k> ﬂzl: aWaw,

& EP—e =

(A22)

In writing the above expression we have included the
terms involving neutron continua (u=N+1, «--, M).
These can be evaluated in the same manner as we
treated the expression (A12). In the following we
make statistical assumptions regarding the matrix
elements involving the states {®;}. These assumptions
lead to great simplifications in the expression for the
energy-average JS-matrix elements. For this purpose
it is necessary to write the determinants D and DM
in a different form,

D=det[6;(E—E:)— X a:iMa;™]
x

= I_LI (E—E,) det(M)‘p), )\=07

=1

o M,i=1,--+,L

(A23)
where
M= 0r— D (Z(tag:) ’
Nu=0,1,o M, i=1,--- L. (A24)
The statistical assumptions are?
VOV 2 5 (V) (A29)
(ViNViz)ar =0, (A26)
(VizVis)ay Z{(V5)?)av (A27)

The angular brackets imply average with respect to
level index i. Performing the energy average, we obtain

L a -(#)a,‘.(”)

—~——Q(")Y6,,, ,v=1 ¢+, N (A28
ZE—E; nOu Ky v ( )
- a®a® E—B)-12(QW)s1 Vw7,
—_— - Q. M,
> L 2 (5B
p=1,---,N (A29)
and
L q,0q,® i _
H e L BBy S (V00T
i=1 E—Et m™ o
(A30)
where we have introduced the quantities
W= (x*/d)(V*)ay and Y,= (7/d) {((V¥)?)av.
(A31)

The average energy interval between the states ®; is
denoted by d. The determinant D involves the matrix
elements

(®: | H | ¥Yg®)=Z,®

— exp(i8,) [(E—E)2VsWa,0+ V], (A32)
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It is convenient to rewrite D™ in a form similar to (A23):

D= H (E-Eﬁ) det(QM) (A33)
Mo, ~X ZWa;® [ (E—E;)
QM= _ ’ U:p’>\7#=17"':M; 7:=1,"',L. (A34)
=22 2:Ya [ (E—E:) 0

One can again invoke the statistical assumptions (A25) and (A27) and obtain

3 [Z:9a:®/(E—E:) 12— (i/7) exp(id,) (E—E) 2V 0 X {(E—E)7[W+ X (Vx029)2V, HQ@T,},  (A3S)

X L2020 (B B T (i/m) expli(b 00 ] (Vo (B=E) 730750
X (QONAQWY,) + (E—E)2V O VW[4 3 (V@00@)2Y, 1}, (A36)
and

> [4NZ:0/ (E— Eq) 12— (i/m) exp(i8,) Ya(@W) Lot (E—E) QN V:0V30]. (A37)

In terms of the following quantities the energy averages of the determinants D and D™ take on a very simple
form and are easily evaluated:

L Z.MF . w

Ayp=— 2 , Nu=1,2,- N A38

A pau E—-E,‘ ( )
L g @FZ.m

Aa)\=—i§l—le—i, Ad=1,2,.o N (A39)
L 7:Mgq,0®

Am:—gl _E A=1,2,.-« N (A40)
L q,0q,®

ag=1— ,

" o1 E—F;
ai(a)ai(ﬂ)b

Aos= g s a,B=1,2,+++ N A41

9= 0as 2. B (A41)

and

L .@)q.0)

Q= — 3 E 0 a=1,2,+--,N. (A42)

=1 E— Ea ’

The energy-average S-matrix elements now become

& . Aa Aa Ayo— o Qo Azx Qaa 4 a Qo A Qaa
O o g (AM— o Derlen (20— e et/ Gee) (Ao~ D Geo e/ )) (A43)
a [ Qoo— Za amOGOa/ (1299
Straightforward calculation now yields
(T'M) 12gy\~1(T'yW)12g,,~1 >
She= +6 1-2Y,0,,7)6 A44
EXPD( At #)] <( 1) Or— E E+ (i/x) [W+Zw(VE(w)Q(w))2ywaw—-1] ( )
where APPENDIX B: CALCULATION OF PARTIAL

Goo=1+ Vot 2i(As@/T5s@) V,,. (A45) WIDTHS AND CROSS SECTIONS

Finally, one can bring (A44) into the form given by In this appendix we give in some detail the basic
Eq. (47)-(53) of Sec. VL. relationships between the partial-width amplitudes
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(Ps™)12 and the matrix elements of two-body inter-
actions. From Eq. (38) we have

(TsW)Y2 _ Tyerge'®
(2m)vz (2m) v

The index A stands for quantum numbers needed to
specify the continuum state ¥x,z_z,. This consists in
the specification of the energy E,, the spin I, and
some additional quantum numbers pertaining to the
residual nucleus. In addition, A specifies the state of
motion of the proton, which includes the energy and
total angular momentum of the proton, Js(w). Finally,
HZ)\,E—E)‘ will be understood to imply the angular-mo-

mentum coupling
Jo(m) +h=Jo.

The angular momenta are coupled in the order they
appear in the equation, and J, stands for the total
angular momentum of the system. We now relate the
matrix element in Eq. (B1) to matrix elements in-
volving the shell-model configurations considered in
Sec. III:

re-ry | V| $2)= X Cradiz(¥pn-r, | V| 90). (B3)

= @hem|V|dz). (B1)

(B2)

We recall that {Cys} are the coefficients of expansion
of the final states of the residual nucleus in terms of
1-particle-1-hole excitations. The coefficients {d;s} give
the amplitudes of the various 2-particle-1-hole con-
figurations that make up the state ¢z [see Eq. (19)].
Numerical calculations show that for the gy isobaric
analog resonance in 2¥Bi the coefficients are very close
to the following ones expected for an ideal analog
state: .
diz= (N—-Z+ 1)—1/21],'.

Here and in the following we use the abbreviation
7:=(2j;+1)"2, The numbers N and Z pertain to the
target nucleus. However, it is not necessary to spe-
cialize to this ideal case. Making the angular mo-
mentum coupling more explicit, we write

<‘I’6:E—Ex ] 14 [ ¢i>=a<Jﬁ*(7r) [jl(V)]n(V)]Ix
XToMo | V | [i(m)Ji(») Wo(v) JoMo)a  (BS)

In this expression JoM, stands for the spin of the
isobaric analog resonance. The notation chosen is such
that, for example, J,(v) denotes that the shell model
state J, is occupied by a neutron. A bar denotes that
the state is occupied by a vacancy or hole. Finally,
Jg¥*(w) implies that the particle is in the continuum
with the total angular momentum Jz and a fixed
energy E—F,. From now on we will delete the index
A and understand that the continuum functions are
to be taken at the energy E—E,.

We are dealing with matrix elements of the residual
interaction between 2-particle-1-hole configurations
depicted in Fig. 3. The two-body interaction gives
nonvanishing matrix elements between configurations

(B4)
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making up the state ¢z and the 2-particle-1-hole con-
figurations involving a proton in the continuum and
the core in either a proton—proton-hole or neutron—
neutron-hole configuration. We shall, however, restrict
the discussion to those continuum functions that in-
volve a neutron-particle-neutron-hole excitation of the
target nucleus. This is because the simple shell model
calculation for the bound states of 2®Pb considered
in Sec. VII predicts small amplitudes for proton-
particle-proton-hole excitation in the low-lying states
of 28Ph. Our description of the excited states of 2%Pb
does not apply to low-lying collective levels like the
3~ state. The following three distinct contributions
remain:

V="ILipt+IintInp (B6)
The first term is the neutron-hole-proton-particle in-
teraction. The second gives the neutron-hole-neutron-
particle interaction, and finally the third term is the
neutron-particle-proton-particle interaction. We con-
sider now the first contribution:

a<J8*(7T) [jl(V)fn(V)]I]oMo l Iip l
X [Ji(w)J:(») JoJo(#) JoMo)a

If we restrict our discussion to spin-0 target nuclei,
the nonvanishing contributions arise only for J,=Jy
and Jg=J;, in which case, by changing the coupling
scheme on the left, we obtain

oI (ML) Tu () JeJoMo | Inp | [To(m)J i(2) Jo
X To(v) JoMo)a= (—1)1+8+70(1/ JoJs)
Xa{[Js*(m) () Jo | Tp | [Ts(m) T3 (2) JoYadsidns.  (BT)

The term involving the neutron—-neutron-hole I3, does
not contribute if the bound single-proton wave func-
tions are orthogonal to the wave functions describing
the proton in continuum state. This is strictly true
if both the continuum and bound-state functions are
eigenstates of the same Hamiltonian. Similarly, for
the contribution of the neutron-proton interaction
we obtain

T T 10T @) 1Mo | Inp | [Ts(m)T i (v) JoTo(#)ToMo)a
Ji Ja I]

= (=)W T (I ) I'T 1
v Js Jo I’

X TH (@) Tn@) I | Lnp | Ji(m)To(r) I Y31 (B8)
The configuration on the right-hand side of the matrix
element is in each case a typical component of the
isobaric analog state ¢z and the one on the left-hand
side is one of the continuum configurations {ys}. It is
interesting to note that the contribution considered in
(B8) would lead to the decay of the isobaric analog
state into a proton continuum such that the angular
momentum of the neutron hole in the final nucleus
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is different from that of the emitted proton. This
possibility has generally been ignored in discussing
the decay of isobaric analog resonances into particle-
hole states of the residual nucleus, without much

¥ (w)Je(0)TM | Izp | Js(x)Ja(v) TM)

A A A Jl ]2 J
=— 2 [V WS JsJs
J?

Js Js T
where [J]=2J+1 and
V(L S)=(—1)1%[(—1>LEA—<—1>SBJ§

7

+ = (=)D

We have defined the Slater integrals

Re(tls| )= [[ ) () s, ) (s )i

and used the multipole expansion

V(n—n|)= ;fk(rly r2)Ci(1) - Ci(2). (B12)

The two-body interaction was taken as
V=0(|rn—r:|) (A+BP@4-CPNO++DPP®),
(B13)

The usual spin and space exchange operators are de-
noted by P and P®. Radial wave functions occurring
in (B11) are radial parts of the eigenstates of H,,
which includes spin-orbit interaction. Finally, we give
the expression for the differential cross section derived
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justification. Numerical calculations show, however,
that this contribution is generally much smaller than

the one given by (B7). The matrix element occurring
in (B7) is easily evaluated. We have in general

S35 Sa S s1 8¢ S

Ly V(L,S), (BY)

Js Jo T’ Jo T T

(s || Ce |l &) (B2 || Co || 1) R (Ul | Boks)

(I 1) Cull te) (a || Ci || ) R (lela | 1211)] . (B10)

(B11)

from expression (37) for the S matrix:
(do/dQ) (0—I) = (—1)T (RT,/2T2) (2Jo+1) (cos?B)

2Jo—1

X > Pr(cosd)Z (loloTo; 3L)
L=0

X 25 (—1)72 cos(85,—875) Trizso 2T rarsol?
JiJ2

X Z(WJidaTo; LYW (JiJoJoJo; IL).  (B14)

It is important to realize that the quantity I's,rs,/?
is defined by Eq. (B1) and is not necessarily positive.
The elastic partial width and total width of the reso-
nance are denoted by T, and T, respectively. Also,
spin and parity of the resonance are Jq and (—1)%,
respectively. Finally, tan8= (E— Eg) /3T and Eg is the
resonance energy. '



