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Self-consistent Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) calculations have been per-
formed for the even Ti, Cr, and Fe isotopes. The residual two-body interaction is assumed to be a central
potential with a Yukawa radial dependence and an exchange mixture which has been adjusted to fit the
low-lying shell-model states of OIp and Fg". It is found that the HF minima occur for prolate shapes, and
hence the HFB calculations are done only for prolate deformations. The HFB calculation yields normal
solutions for N =Z nuclei and spherical shapes for Z &N =28 nuclei. The effect of pairing on the ground-state
properties is also studied. The value of the mass quadrupole moment for the HFB solution is smaller than
that for the HF solutiens for all the nuclei under consideration. A spherical BCS calculation has been per-
formed to estimate the effect of deformation on pairing energy in the HFB calculation. We construct the
excited states for the Z&N =28 nuclei from the spherical BCS ground-state solutions in the random-phase
approximation. This gives the values for the 0+-+2+ energy separation and the It (E2) rates which are in
good agreement with experiment.

I. INTRODUCTION

t 1HE Hartree-Fock (HF) and the spherical BCS
approximations in the study of nuclear shapes are

quite well known. It is also known that in the HF
approach the 6eld-producing part of the interaction
is treated self-consistently, but the pairing part is
neglected. On the other hand, the usual spherical
BCS approach completely ignores the possibility of
the self-consistent field being deformed, although it
takes proper account of the pairing effect through
the Bogoliubov-Valatin transformation. In order to
treat the pairing part and the 6eld-producing part of
the nuclear interaction on the same footing, a very
general formalism has been developed in the recent
years. ' This is known as the Hartree-Fock-Bogoliubov
(HFB) approximation. In this procedure, the HF
equations are generalized by introducing the general
Bogoliubov transformation, and the HFB equations
thus obtained, when solved self-consistently, are ex-
pected to give more realistic shapes for the nuclei.

In the present work, even-even (X—Z&0) nuclei
in the range 22&Z&26 are considered, and the real-
istic shapes for these nuclei are determined with the
HFB approximation. The nuclear interaction, which
is responsible for the HF field and the pairing cor-
relation in the HFB solution, is taken to be a central
two-body interaction, with a suitable exchange mix-
ture. HF and spherical BCS calculations are also per-
formed for these nuclei with the same interaction,
and the numerical results obtained from these cal-
culations are compared with the HFB results. In the
HFB and spherical BCS calculations, the pairing cor-
relation is considered only between identical nucleons.

The following assumptions about the HF and HFB
intrinsic wave functions are made:

(a) There exists an axis of symmetry.
(b) Because in this study only even-even nuclei

for which X=0 are considered, the assumption of
time-reversal invariance is valid.

(c) Parity is a good quantum number. [Reflection
symmetry about the X-Y plane follows from (a)
and (c)J.

(d) Invariance under rotation of sr about the V
axis. LThis with (c) implies reflection symmetry in
the X-Z plane. ]

(e) Mixing of orbitals is restricted to a single major
shell (2p-if).

Furthermore, the existence of a spherical core com-
pletely Glling all the shell-model orbitals up to 2s-id
major shell is assumed. As usual, the effect of this
core is simulated by taking the single-particle ener-
gies of Ca»4' for the single-particle term in the many-
body Hamiltonian. As regards the radial part of the
wave function, it is taken to be that of a harmonic
oscillator, the size parameter b= (5/neo)'" which has
been 6xed to yield the average root-mean-square
charge radius in the p fshell. W-ithin a major shell,
the variation of b with atomic mass number is very
small, and. hence an average value (2.05&&10 "cm)
is taken.

The effective two-body nuclear interaction which
has been used here is of the following form:

V (y) = V '(e 'e/y/P),

where Vaz is the strength of the interaction in a

quantum state characterised by spin and isospin mul-
tiplicities S and T, respectively. These strengths have
been determined from a two-particle shell-model fit
to the spectra of 0~0'8 and F9', and it is assumed
here that the potential thus obtained is a good one
for doing self-consistent calculations in the 2p 1f-
shell. ' It should be mentioned here that a two-particle
shell-model calculation done with this interaction for
Ca»4' gives quite good agreement with the experi-

' M. Baranger, Phys. Rev. 122, 992 (1961).
2 Harish Chandra, Doctoral thesis submitted to Calcutta

University, 1969 (unpublished) .
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mental value for the energy separation between the
0+ and the first 2+ level. However, it gives only quali-
tative agreement for the T=O energy levels of Sc2~".
The strengths corresponding to different states are
given below:

Vuo = —46.9 MeV) Vga' ———34.4 MeV,

e„,(,———4.5 MeV, &„,(,———2.5 MeV.

In Sec. II of this paper, the self-consistent for-
malism is described briefly. Section III is mainly
devoted to the discussion of the self-consistent results.
In Sec. IV are presented the results obtained from
a random-phase-approximation (RPA) calculation for
even-Z&E =28 nuclei with spherical BCS shape,
and Sec. V contains the conclusions.

Vkko =+19.4 MeV, Vno =+40.9 MeV.

The range of the interaction, P, is taken to be
equal to the Compton wavelength of the pion. In this
calculation, we neglect the Coulomb interaction be-
tween protons. For this reason the single-particle
shell-model energy spectra for protons and neutrons
in the 2p-1f shell are assumed to be the same. From the
single-particle energy spectrum for Ca»4' we have

If'(, =—6.5 MeV, ef,~,=0.0 MeV,

which states that the single-particle orbitals
I X) which

make up the determinantal wave function CHp are
those that diagonalize the HF Hamiltonian h. These
orbitals are expanded in some known representation,
which, in our case, is the single-particle shell-model
states of the 2p 1f -shell; and the expansion coeffi-
cients are treated as variational parameters. The
single-particle wave function incorporating the as-
sumptions given in the previous section is written as

I Xrlr, &= g C; " *
Ijrlr, ), (5)

where the summation is over shell-model states of
the 2p-1f shell. The expansion coefficients C; "'* are
normalized, and they satisfy the following condition:

Q g. ATTER VTT. (6)

The HF matrix is set up in the jar, representation
in terms of arbitrary expansion coeScients, and the
iteration procedure is continued till a self-consistent
solution with the desired accuracy is obtained.

B.HFB Procedure

HFB equations, used in our calculations, are ob-
tained as a result of following quasiparticle trans-
formation:

II. SELF-CONSISTENT FORMALISM

A. HF Procedure and

AimTT g (Njm +jmT, +sejm &jmT, ) (7a)

Detailed accounts of the HF theory are available
in many published works, ' and hence we shall be very
brief here. To start with, we write the many-body
Hamiltonian in the second-quantized language as

&= 2 (~ I
~

I P&~.'e+:2(~P I
v-~

I ~~)~.'~~'~k~7,
aP aPyb

(2)

where e is the single-particle energy term. The matrix
elements of the interaction V(r) are taken between
the antisymmetric two-particle states.

The HF method consists of 6nding the single de-
terminantal trial wave-function CHF by minimizing
the expectation value (CHF I H

I C»)/(C» I CHF),

AT'mT, = g (Njm &jmT, +sejm ~T'mTT ) ~ (7b)

The ground state of the system is approximated by
the vacuum for the quasiparticle operators, and hence

Since this transformation is a canonical one, the quasi-
particle operators (At, A), like the particle operators
(ut, a), obey the fermion anticommutation relations.
This leads to the following orthogonality relations
satisfied by the expansion coefficients I and v:

(N. TTTN. kTT+F. TTTF. kTT) —$,k (ga)

c»!e I c»)/(c» I c») I =0. (3 AT~T. I C'»s) =0. (9)
This amounts to solving the equation

hl z)=8,
I x),

where

(~l &IP)=(~I~I&&+ 2 (~~l v~!0», (4)

Since the quasiparticle transformations given by (7)
do not conserve the number of particles, the HFB
wave function will not normally correspond to any
particular nuclear system. In view of this, Eq. (2) is
modiied to

(10)

where p„and p~ are the chemical potentials, whose' l. Kelson, Phys. Rev. 132, 2189 (1963);G. E. Brown, Urliged
ieory of ~NcEeur ~oge$ en/ porces t'North-Hol]and publishing values are Axed so that the exPectation values of the

Co., Amsterdam, 1967), p. 11. number operators K„and K„between the ground-
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state wavefunction O'Hpg becomes equal to the desired
number of neutrons and protons, respectively.

The HFB equations are obtained by the method
of linearization, which proceeds by evaluating the
commutator of K with e~t, i.e.,

Pe, g, t7 —(.&—")g&t+, g (nP I v'I»)g. tgptg, .
ap$

Here it should be understood that the chemical po-
tential p is to be subscripted with the value of 7. for
state P.

Now, using Wick's theorem, 4 we can write

g~tgptgi= (g~tgpt)gg+(gptgi)g~t

—(g tag)gpt+N(g. tgptgi), (12)

and this becomes linear in et and u when we neglect
the normal product appearing as the last term in (12).
This corresponds to the neglect of the residual inter-
action between the quasiparticles. The expectation
values of the particle operators are taken with respect
to the quasiparticle vacuum hence, we have

L&, g"'7= (~~—~)g"'+ Z (W I
v" I»)(gp'gp)g-'

apb

+-, Z(-~I V. I»)(.t"t), (»)
apb

which in terms of F and 6 can be written as

f~z gjmrz 7 (~j Pr ) gjmrz + g hajj' gj'mr,

+ Q 6;;"'*g,'„-„, (14)

where I and 6 are defined as

Since p and y are real and symmetric, F and 6 are
also real and symmetric.

Taking the Hermitian conjugate of (14) and using
the symmetry properties of F and 0, one gets, after
replacing m with rn, the following expression:

$~z gjmr, 7=(&j pr, )gjmr, + Qrij *gj'mr,
jl

zg., t (14)

rzp. , irz — P .. mTzp. irz Q",mrzg. iTz
im j'm = ~ jj' jm ~ fj' jm

(19b)

where E; "' is the energy required to create the quasi-
particle state A. ..t I CnFs), and

P,mr, (&., ")g,+p, ,m (20)

The HFB equations given by (19) define the excita-
tion energy matrix 8' as

(r
a=I (21)

and the quasiparticle energy eigenvalues are obtained
by diagonalizing the energy matrix 8'.

From the structure of 8' it is obvious that if

Writing the operator equation

P&z Aimr, 7=~im Aimr,

and expressing (18) in terms of (14), and then equat-
ing the coefficients of annihilation and creation oper-
ators separately, one gets the following HFB equations:

rzl. , irz ~ f,mrzN. irz+ ~ Q-,mrz&. irz (19s),~m —~ „,m jj' jm

r" 'z=N' (jmr„j&m&r, 'I V" Ij' mr„j 2m&r, ')

and
X; i*' (15a)

is an eigenvector corresponding to energy eigenvalue
+E, then

(jmr„j'mr, I V& I j&m&r„j,m&r, )
Jlg2im1 (-'I

)
)(X. . mlrz (15b)

p and p are, respectively, the density and pairing
matrices, deined as

u'y "'=(@Hps
I g' ', gp"', I

c'HFs)
and

xrr' *=(@HF~
I grmrz gi'mr, I ~'~F&) (16b)

is also an eigenvector with energy eigenvalue —E.
(16a) Thus, the real orthogonal matrix U that will diago-

nalize 8' is of the following form:

Expressing (gi, g) in terms of (A t, A) and using (9),
we have

/~ z ~ ~~Z Cfzcy~. 4Tz ~

Pi~' jm ~g'm where the matrix

(22)

"~ .. OLTz — ~ ey ~ 4Tz"g. A'z (17)

4 S. s. Schweber, gn Introguction to ge)otivistic Qnautlm Ilia is obtained by arranging the different positive-energy
Theory (Row, Peterson and Co., Evanston, Ill. , 1961), p. 435. eigenvectors along the column. The quasiparticle trans-



185 NUCLEAR SHAPES 1323

TABLE I. Comparison of ground-state energy (in MeV) obtained from HF, HFB, and spherical BCS
calculations for Ti, Cr, and Fe isotopes.

ISptppe EHFoblate EHF prolate EHFB EBGS QSptppe EHFoblate EHFyrolate EBGH

Ti2244

Ti2446

Tige~

Ti 50

Cr2448

C12P

—32.58 —34.35 —34 ~ 35 —32,61

—82.08 —82.21

—70.19 —72.53

—82.76 —82.77

—72.53 —70.34
—89.38 —91.01 —91.05 —90.17

—49.42 —50.99 —51.14 —49.98
—65.70 —66.70 —67.07 —66.72

r '2

«30"

Fe2p

Fe 54

Fe30'6

FC3258

—108.25 —108.45 —109.34 —109.34
—122.66 —124.75 —124.76 —124.09
—112.26 —114.30 —114.30 —113.10
—134.33 —134.59 —135.37 —135.37
—150.50 —152.27 —152.42 —152.08
—167.27 —167.48 —168.39 —167.98

formation in terms of U is given as

(23)

where the bar over the annihilation operators signifies
the time-reversed state, and U is the transpose of
U, i.e., (u e)

A comparison of the HF energy for the prolate
and oblate shapes is made in Table I. One can see
that the HF energy for the prolate shape is smaller
than that for the oblate shape (the prolate shape is
more strongly bound) for all the even-even nuclei
considered here. This shows that the ground-state
structure favors prolate deformation.

In view of the above results of the HF approxima-
tion for the nuclear shape, the HFB calculations have
been performed only for prolate shapes.

The matrices p and x can be expressed in terms of
I and@as

(25)

Like the HF equations, the HFS equations are also
nonlinear. So a self consistent solution is to be ob-
tained by an iterative process. To carry out the cal-
culation we choose the matrices I and e for an ar-
bitrary deformation, and from them set up the p
and x matrices. The energy matrix is expressed in
terms of the p and x matrices, and is diagonalized
to obtain the new u and e. The new energy matrix
is set up in terms of p and x obtained from this set
of I and v. This process of iteration is continued till
self-consistency with the desired accuracy is obtained.
The I and e in each iteration are subjected to the
constraint that the expectation values of the number
operators for protons and neutrons are always fixed.

III. DISCUSSION OF SELF-CONSISTENT
RESULTS

A. Nuclear Shaye

The ground-state properties, viz. , the quadrupole
moment and the ground-state energy, can be easily
determined once the self-consistent solution for the
stable nuclear shape is obtained. The preference for
the prolate shape over the oblate one or vice versa
can be established by performing self-consistent cal-
culations for these shapes and comparing their energy
minima. The one corresponding to the smaller of the
two may be accepted as the most stable ground-
state shape.

)
m')= QC; ') jm), (26)

where the superscript i on ns stands for the number
of Primes. The unPrimed states (s, ss, ss, and s) are
those which have maximum probability amplitude for
j=-,' (i.e., for a state

~
nz), Cj=7/s~ &C,y7~s '). Simi-

larly states with one prime (1'/2, 3'/2) are those for
which the j=-,' amplitude is maximum. The state 1"/2
has maximum amplitude for j=

~ and for other states
(1"'/2, 3"/2, 5'/2) the j=ss amplitude is maximum.

Deformed single-quasiparticle states obtained from
the HFB calculations are also labelled by diGerent
number of primes in a similar way. The only diGerezct:

B. Structure of HF and HFB Syectra

The single-particle HF and the single-quasiparticle
HFB energy spectra are shown in Figs. 1—3. The
diagrams in the parts labelled (a) correspond to pro-
ton states and those in (b) correspond to proton
states. Single-particle and single-quasiparticle states
are designated by the projection quantum number m.
Since our basis consists of 1fv~s, ifs~s, 2Psp, and 2Pr~s
states, the deformed states will be ten in number,
provided we do not count as separate ones the de-
generate time-reversed states for each type of nu-
cleons. Among these states, four will correspond to
no=-,', three to m=2, two to m=» and one to m= —,'.
In the diagrams, energy levels corresponding to dif-
ferent orthogonal states with same projection quan-
tum number are labelled by diGerent number of
primes. In attaching these primes the following con-
vention is followed. We write the single-particle wave
function as
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FIG. 1. (a) Self-consistent HF and HFB spectra for neutron states of even Ti isotopes. (b) Self-consistent HF and HFB spectra for
proton states of even Ti isotopes.

is that in this case, the component according to whose
magnitude states with same projection quantum num-
ber are labelled is I; ' for the states plotted below
the Fermi level, and u; ' for the states plotted above
it. Since we wish to compare the HF single-particle

spectra with the HFB quasiparticle spectra, the HFB
spectra are plotted in such a way that the quasi-
particle energy levels with occupation probability
&50% are below the Fermi level (as determined by
the chemical potential), and those occupation prob-
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FIG. 2. (a) Self-consistent HF and HFB spectra for neutron states of even Cr isotopes. (b) Self-consistent HP and HFB spectra for
proton state of even Cr isotopes.

ability (50% are above it. An exception to this
convention is the quasiparticle spectrum for the pro-
ton states of Cr~8". Here the lowest states have an
occupation probability of 49%, and if these states

were plotted above the Fermi level, then the ordering
of the states m= ~, —,', ~, and —,', which are very nearly
degenerate, would be reversed (i.e., instead of -'„—,'
would occupy the lowest position). To avoid this
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Fxo. 3. (a) Self-consistent HF and HFB spectra for neutron states of even Fe isotopes. (b) Self-consistent HF and HFB spectra for
proton states of even Fe isotopes.
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reversal, these quasiparticle levels have been plotted
below the Fermi level. It is to be noted that the
energy of the quasiparticles is measured from the Fermi
level, shown by a broken line in each spectrum, and
the values of the energy are always taken as positive,
whether the energy levels are below the Fermi level
or above it.

The quasiparticle spectra shown in Figs. 1—3 can
be divided into the following groups:

(a) N =Z nuclei: The HFB spectra for these nuclei
do not differ from the HF spectra, i.e., the HFB
calculations for these nuclei yield normal solutions.

(b) Z&N=28: The effect of pairing is very strong
for these nuclei. The HF spectra for these nuclei
correspond to deformed shapes and the HFB cal-
culation gives spherical shapes, i.e., the pairing part
of the residual interaction is strong enough to make
them spherical.

(c) Z(NW28: Though the HFB spectra for these
nuclei are significantly diGerent from the HF spectra,
they correspond to deformed shapes. An exception
in this group is Crao" for which we get an almost
normal solution.

It is evident from these diagrams that unlike the
well-known HF spectra for the even-even (N=Z)
nuclei in the first half of the 2s-Id shell, those for
the 2p-lf-shell even-even (N=Z) nuclei do not have
large gaps between the last occupied and 6rst un-
occupied states. However, the fact that the HFB
calculations for these nuclei yields normal solutions
shows that even the comparatively small energy gap
in the HF spectra is quite sufhcient to guarantee
stability of the HF solutions against pairing correla-
tion. In case of even-Z(X=28 nuclei, pairing cor-
relation is present only between proton pairs. For
some nuclei in group C (Cr,o", Feao") pairing is present
only amongst protons whereas in some other nuclei
(Ti24', Ti26") it is effective only between neutrons.
There are few cases (Cr26", Fe~25~) where pairing is
effective between neutrons as well as protons. In
Cr30" there is no pairing at all amongst neutrons and
even amongst protons there is only very little pairing
and its effects on the spectrum is not significant.
It does modify slightly the values of mass quadrupole
moments. It should be mentioned here that in those
cases where pairing is present only between one kind
of nucleons but absent in the other kind, the HFB
spectra for the latter ones are quite diferent from
their respective HF spectra. This change in the HFB
spectra is easily understood in terms of the single-
particle for these nucleons which gets modified due to
the presence of pairing in the other kind of nucleons.

C. Energy Minima for Self-Consistent Shapes

The energy minima corresponding to HF, HFB,
and spherical BCS solutions are calculated from the

and

EHFB (4HFB ) + ) @HFB) EHFB +EHFB y (

where

"'=2 Q &,"(e),+ Q 2"."(I'~).. (28b)

EnFs "'= P 2" '*(&x)~.. (28c)

Similarly

Esos = (4'sos
~

H
~
4Bos) =EBos +EBCB (29a)

where

EscsHi"=2 Q (j+i~)e;v', '+ Q (j+2) I' ~e, ' (29b)

alid
Esos&"'= Q ( j+-,') 6;"I;„w;„. (29c)

8(» r, ) appearing in (37) is the single-particle HF
energy and the summation is over all the occupied
HF states. The symbol T, stands for the trace of
the matrix appearing in the brackets following it.
I', 6, p, and z of Eq. (28) are defined in Sec. II.
I, v and I', 6 of Eq. (29) are defined in the Appendix.
EHFg, ZBc8, EHpg "', and Egga " give the HF
and pairing contribution to the energy minima for
the HFB and the spherical BCS solutions. These
terms are calculated with a view to estimating the
effect of deformation and pairing on the self con-
sistent energy minima. The numerical values of EH+
(hereafter by EHF we mean EHF&""~), EHFs, and
E&zs are displayed in Table I. From these it is evi-
dent that the energy minimum corresponding to HFB
shape is always lower than the HF rninimurn for all
such cases where pairing is effective. This implies
that, when pairing is effective, there is a de6nite gain
in the binding energy of the nuclear system. However,
the effective change in the binding energy due to
pairing is not large and hence the average binding
energy per particle of the system can very well be
estimated by simple HF calculation. A comparison
of the EHpg with Ea~s reveals that the self-consistent
HFB minimum is lower than the spherical BCS energy
minimum for all the even-even nuclei, except those
with neutron number 28, for which E»& is equal to
Eg~a. The effect of pairing on EHpg can be studied
by comparing E» with EH» . The values of EHF&
are given in Table II and we find that in the presence
of pairing the contribution to the binding energy from

following formulas:

EHF = (&Hz l & ) %m& = Z 8(» ~.)
k=1/r g

+ Z 2'."(e).. (27)
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TABLE II. Pairing and HF contribution to the ground-state energy (in MeV) calculated from
HFB and SCS methods for Ti, Cr, and Fe isotopes.

Isotope

Ti22'4

Ti2446

T46"

T4s~

Cr244s

C re'0

HF

—34.35

—49.98
—65.35

—80.92

—72.53

—90.02

EBesHF

—28. 72

—45.30
—62.49

—80.93

—64.97

—85.33

—0.00

—1.16

—1.72

—1.84

—0.00

—1.03

—3.89
—4.68

—4.23

—1.84

—5.37

—4.84

+~B QBCSP Isotope

Cr2s»

«3O54

Fe26"

Fe2s54

Fe3o"

Fe325s

~BCSHF

—106.78 —106.78

—124.68 —119.44

—114.30 —108.83

—133.30 —133.30
—150.98 —147.87

—165.14 —163.33

—2.56

—0 ~ 08

—0.00

—2.07

—1.44

—3.25

—2.56

—4.65

—4.27

—2.07

—4.21

—4.65

Q~Bpair QB&Spair

HF field reduces. However, this decrease is more than
compensated by the pairing contribution. In Table II,
we have also displayed the HF contribution to the
energy minimum (Enos"p) for the spherical BCS
:solution and it is seen that this quantity is con-
,siderably smaller than EHpBH~, except when HFB
yields spherical shape. A comparison of EHp~I' " with
EB~S&"' given in Table II shows that for the de-
formed cases the magnitude of the former one is
always smaller and is zero for E=Z nuclei. The
reason for the large pairing energy in case of spherical
IlCS approximation is the (2j+1)-fold degeneracy of
the partially occupied single-particle shell-model states.

D. Quadrupole Moment

The neutron and proton mass quadrupole moments
ha.ve been separately evaluated by calculating the
expectation value of

Q= (f6~/5)'I'r'l, "(0, ~),
for the HF and HFB wave functions and they are
given in Table III.

A comparison of (Q)np and (Q)Hpn shows that these
a,re identical for E=Z nuclei which again demon-
strates the absence of pairing in these cases. For
~Cr„', as it is expected, the value of (Q)npn is only
slightly smaller than (Q)np.

For nuclei with Z&E=28, the mass quadrupole
Inoment for the HFB shape is very small as com-

pared to the HF value. A comparison of the HFB
and HF spectra for these nuclei shows that the HFB
solutions favor spherical shapes. This is further sup-
ported by the numbers displayed in Table II. The
very small value of the quadrupole moment obtained
for the HFB shape is due to the computational in-
accuracy in the calculations.

For Z&S&28 nuclei, the presence of pairing always
decreases (Q)npn as compared to the HF value.

IV. RPA RESULTS

In Sec. III, we have seen that the HFB approxi-
mation yields spherical shapes for even-Z&E =28
nuclei. Hence, excited states for these nuclei can be
described in terms of the residual interaction between
the quasiparticles of spherical BCS approximation.
The first 2+ excited states for these nuclei can be
studied in the RPA. ' The RPA equations for a system
of neutrons and protons are given in the Appendix
of this paper.

The excitation energy for the first 2+ states and
reduced transition probability B(L2) between the
ground state and the first excited state for these
nuclei are given in Table IV, together with the cor-
responding experimental values. On comparison of
these numbers we find that there is good agreement
for the excitation energy of the first 2+ state and
for the J3(E2, 0+—+2+) rate agreement is excellent for
an effective charge of 0.5e or 0.6e for neutrons.

TABLE III. Comparison of mass quadrupole moment evaluated from HF and HFS calculations for Ti, Cr,
and Fe isotopes. Values are given in units oi b' ( =4.2 X 10 26 cm').

Isotope (Q-P)HF (Q+)HF (Q~)HFB (Q+)HFB Isotope (Q+)HF (Q+)HF (Q+)HFB (Q&)HFB

Ti 44

144

Ti264s

'T4s~

«244s

iCr26R

9.97

9.79

8.57

6.91

13.87

12.26

9.97

13.74

11.94

4.02

13.87

12.04

9.97

9.65

8.67

0.08

13.88

11.56

9.97

11.81

9.40

0.07

13.88

11.46

Cr2s"

Cr3p'4

Fe265~

Fe3 56

Fe 5s

9.69

13.60

10.42

8.09

12.57

13.06

3.98

12.38

10.42

2.83

11.89

15.03

0.30

13.55

10.44

0.21

11.58

12.86

0.21

12.36

10.44

0.15

11.40

10.17

s M. Bngaraer, Phys. Rev. 120, 957 (1960).
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TABLE IV. First 2+ excitation energies (in MeV) and 8 (E2, 0+~2+) values in units of 10 + e' cin' for even —Z (X=28 nuclei.

Isotope (~2) theoret (~2) exIst

B(E2, 0+—+

) theoret

1.07
0.5

0.6 1.6

3.87

4.61
(3.2+0.8)

Cr28" 1.02 1.43
0.5

0.6

1.5

1.6

5.53

6.54
(6.7+0.7)

Fe2854 1.25 1.41
0.5

0.6 1.6

4.92

5.80
(S.1+0.5)

V. CONCLUSIONS

The main motivation of this paper has been to
make a comparison between the HF and HFB self-
consistent solutions for the even Ti, Cr, and Fe iso-
topes. HFB calculation for all these nuclei was per-
formed only with prolate deformations. From the
results we have presented here, it is seen that for
V=Z nuclei HFB yields normal solutions. For nuclei
with Z&%=28, the pairing effect is very strong and,
as a consequence, the deformed HF shape becomes
spherical in the HFB approximation. In all other
cases pairing is not so strong and HFB yields de-
formed shapes. A comparison of the spherical BCS
minimum with the corresponding HFB energy mini-
rnum shows that the BCS solution is unfavorable for
all the cases except for the even Z&X=28 nuclei.

The eGect of pairing on the binding energy and
mass quadrupole moment has been estimated. It is
found that the over-all binding energy for the HFB
shape is larger than the HF value for all the nuclei
where pairing is effective. It is also found that, in
the presence of pairing the HF contribution to the
binding energy for the HFB shape is small as com-
pared to the binding energy for the HF shape. But
the pairing contribution to it is more than sufhcient
to compensate for this decrease. The presence of
pairing always decreases the mass quadrupole mo-
ment as compared to the HF value.

RPA results for the spherical nuclei, performed
with the effective interaction described in Sec. I, are
in good agreement with experimental results.
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APPENDIX: RPA EQUATIONS FOR A SYSTEM OF
EVEN NUMBER OF NEUTRONS

AND PROTONS

~a la~a &a~ayt C =N,a —v,a-t, (A2a)

where cz is obtained from n by changing m to —m,
and then multiplying it by a phase factor of (—1)'
The coeKcients u, and v satisfy following condition:

I '+v '=1. (A2b)

The BCS vacuum corresponding to the quasiparticle
operator is given by

I C„s)=II (N.+v.~.'a-. t)
I 0), (A3)

$a

so that
C- I CBGB) (A4)

and the transformed Hamiltonian takes the following
form, after the coeKcients of the term containing two
quasiparticle creation and annihilation operators have
been set equal to zero:

~—Xo+~8.+ Iniety

A. BCS Equations

The modified Hamiltonian given by Eq. (10) is

K= g (e~ p) rs~—tG~+s p (rrp ) V~
~

'78)G~trsptrssG&
a aPy8

(A1)

We shall adopt the following convention for the
symbols:

The Greek letters cr, P, y, 8 denote the set of quan-
tum numbers jm7.„while the letters a, b, c, d denote
all the other quantum numbers except the projection
quantum number.

Pairing correlation in the BCS wave function is
introduced by performing the following Bogoliubov-
Valatin transformation on this Hamiltonian.
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where terms which can be arranged in the following way:

IIi t II04+II13+%2+II21+II40 (A14a)
&= (@sos I

~ I C'sos)

X»——QEC tC.

(A6)
and

(A7)
where

II04=II40 =4 g vavbuaud(r8 I VA I 42P)
aPyBThe last term in the Eq. (A5) is the residual inter-

action between the quasiparticles and is given by XC CpC4C„(A14b)

II12 ——II21 ———,
' Q (u.udu. vb(yb I

Vg I np)
aPy5

+v.vbvdu, (y42 I v& I Pb)) c tcpcoc„(A14c)

&-t=-: Z (~P I V~ I vb)&(a-'ap'aoa. ), (AS)

II22 ', Q t
——(u—.ubu. ud+v. vbv. vp) 2(425-I Vg

I yp)
aPv&

where the symbol E, as usual, stands for the normal
product. The quasiparticle energy E appearing in
Eq. (A/) is given by

E —
I (o. ~ ayr )2yg 2jl/2 (A9a)

where

r.=L1/(2j.+1)3Z Z (2J+1)G(ababJ)» (A9b)

(u-.vbu. v,+ v.ubv. u, ) (~b
I V, I &P))

XC tCptC4C„(A14d)

where u and v appearing in (A14) are obtained by
solving the BCS equations self-consistently.

~.=2 Z L(2jb+1)/(2j.+1)j'"

XG(aabb J=0 T=1)ubvb. (A9c)

L3'.»+&*.4, Q~MT"'3
I +0)=~a"QzMr"'

I +0&

=toe"
I +mr"), (A15)

G(abcdJ)

B.Equations of Motion for RPA

Denoting by co+" the energy of the eth excited
state

I @&MT") relative to the ground state, the equa-
G(abcdJ) and G(abcdJT) are related through the
Clebsch-Gordan coefficients in the following way:

r'g 8

T 2

G(abed JT),

(A10a)

where

QJMT
ja&jy, Tg +1

Lx& bpgt(abJM T=1 T,)

—Y(,b)"t2', (abJM T=1 T,)j (A16a)
and G(abed JT) is related to the antisymmetric coupled
matrix element. Q~MT"

I +0)=0, (A16b)

G(abcdJT) =N(ab)Ã(cd) (abJT I V~ I cdJT), (A10b)

where
(A10c)1V(ab) =(1+8j . )'/2.

The values of p are fixed in such a way that the
expectation values of the number operator for the
BCS ground-state wave function always gives the
desired number of neutrons and protons. The number
of neutrons and protons in terms of e are

%0 is the correlated ground-state wave function (i.e.,
ground state contains quasiparticle pairs) of the even-
even system. 8~ and C are the quasiparticle pair
creation and annihilation operators, respectively, and
they are defined as

Rt(abJM T= 1 T,)

( 1)~'+~~'—et(—baJM T=1 T,)

X„=Q (2j,+1)v,'.

If we define a quantity e as

(A11)

and

ja
=V(b)&- Z C tCpt (A17a)

m, my M

pa=pja jtr, +ra, a (A12) (t(abJM T=1 T.)

then the expression for u and v in terms of e and
E, can be written as

u.'= 2(1+../Z. )-. v. =-;(1—p./Z. ).
The Eqs. (A9), (A11), and (A13) are the BCS
equations.

The residual interaction term, when written ex-
plicitly in terms of quasiparticles, is made up to 16

=(—1)™Lst(abJ—M T=1 T,)jt. (A17b)

The magnitude of T, is always unity. Quasiparticle
pair operators with T, =O will correspond to neutron-
proton quasiparticle pair representing an odd-odd
system and hence these are excluded in Our basic set
of states.

In order to solve the equation of motion for the
operator (A16a), one calculates the commutator of
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K»+H~s with Ct and (t, retaining only those terms
which are linear in Qt and C. Clearly, the contribu-
tions from V~3 and B3~ are neglected in this approxi-
Ination. The commutator for gt is evaluated with
the help of Eqs. (A7), (A14b), (A14d), and (A17a)
and its value is given below:

'[Ãgg+Ht 0, (Xt(mnJM T= 1 T,)j
I A&ma&&ao~gt(abJM T=1 Ta )

+8& „&& to8(abJ3II T=1 T )j. (A18)

The commutator of 8(mnJ3E T=1 T,) is obtained
by taking the Hermitian conjugate of (A18) and then
reversing the sign, changing M to —M and multi-
plying the result by the phase factor (—1)~ M. The
coeKcient matrix for all the operators St and 8, form
the RPA matrix R given as

(A19)

where A and 8 are real and symmetric. The matrix
elements of A and 8 are

A(mn)(ab) = (Fan++a) Bmabnb

+pN(ab)N(mn)5 't(u uou u„+o,oo1 o„)

X G(abmnJ T=1)5T,T,.
+ (u.osu o„+v,uso u„)F(abmnJ T=1)
—(o.uou 0„+u.oso„u ) ( 1)'"+&' ~—
XF(abnmJ T=1)g,

&t„„)(.» =LN(ab) N(mn) 7-'

X I: (uauoomsn+ oa'4umun)

X G(abmnJ T= 1)BT,T, ~

—(u,~u„o„+o.uso u„) (—1)™+~nJ

X F(abnmJ T=1)
+ (u,moo u„+v usu o„)F(abmnJ T=1)g,

(A20b)

where Ii and 6 are related through the U coe%cients'~
in the following way

F(abmnJ T=1)
= —Q (—1)~~+~~+™+~nL(2J'+1)/(2J+1) j1ts

J/

XU(j aj oj njm; JJ') G(anmbJ') (A21)
and

F(abmnJ T=1) =F(mnabJ T=1)
= (—1)"+'0+'"+'"F(banmJ T= 1) .

(A22)

The amplitudes X and Y of Eq. (A16a) are obtained

6 P. Stelson and L. Grodzins, Nucl. Data 1, 21 (1965).
1H. A. Jahn, Proc. Roy. Soc. (London) A205, 192 (1951).

from the following matrix equations:

(A23)

and they are so normalized that

(+0 I QJMT 1 QJMT=1 I +0&

= &+0 I I QJMT 1", QzMT=1"'j I +0&=1, (A24)

which gives

Z L(x(~)")'—(Y(.o)")'j=1 (A25)
ja&ift &z

(This normalization condition is obtained by making
the approximation that the average number of quasi-
particles in the ground-state wavefunction is small
and thus be neglected. ')

C. Transition Probability

The strength of electric quadrupole transition be-
tween the first excited state and the ground state is
measured by'

&(&2, 0+~2+) = Q I &+0 I
3)t(~2 tt) I +0+M& I'

Mp

(A26)
where

5R(E2, tt) = g e,.&a I r'Y„'(B, q) I P&a tatt. (A27)

Expressing (A27) in terms of quasiparticles and keep-
ing only the relevant terms, we get

D)i(», t ) = 2 e.I &j. II
«sY'

ll jo&
Ja&if &S(2'e)

X L(2j,+1)/5j1t'(u, os+a ub) LN(ab) ) '

X I 8'(ab2tt)+ ( —1)M(t(ab2 —tt) ]I, (A28)
where

(ga II r Y Ilgo&= (2jo+1/4+) ( 1)

Ja Jb
R, (r) Ro(r) r'dr. (A29)

1 1
2 2 0

R, and Rq are the oscillator radial wave functions.
Substituting (A28) in (A26) and using the result

&+0 I
@"(ab»)+( —1)"@(ab2—tt) I +0+M&

= (—1)aBM „(X.o+ Y.o), (A30)

we get for B(F2, 0+~2+), the following expression:

a(Z2, 0+ 2+) =
I g„+g„l, (A31)

where

g„=e„Z (2j.+1)'t'&j. I I

r' Y'
I I j» (u»+e.»)

ia& jest

X LN(ab) 3 '(X( 0)+Y( 0)) (A32)

and e„ is the effective nucleon charge.
0 K. Alder et ol., Rev. Mod. Phys. 28, 432 (1956).


