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Spin-dependent nuclear level densities were calculated for selected nuclides. In each case the numbers
and spins of the levels were determined from a computer-generated list of all contributizg shell-model
configurations. To calculate the energies of the configurations, we assumed the model nucleus to be an
infinitely deep spherical well containing fermions that are noninteracting except for pairing forces, for
which the BCS theory was used. Comparisons of the calculated results with experimental level densities
for odd, even, and odd-mass nuclides show reasonable agreement for nuclides with A &50. The results of
calculative investigations of the ef'fects of shell closings, pairing, etc., and the persistence of these effects
to high excitation energies and angular momenta are reported and discussed. Comparisons of these results
with those obtained from the most commonly used algebraic formula show significant disagreements in
the curvature of the logarithmic energy dependence and in the spin distributions.

I. INTRODUCTION

"EASUREMENTS of the densities of nuclear
. levels provide information about the structure

of highly excited nuclei and are also necessary for
understanding and analyzing complex nuclear reac-
tions. Both for reconciliation of known level densities
with nuclear models and for reduction of the data
of nuclear reactions to information about level den-
sities, methods of calculation are needed that are
useful for a wide range of masses, energies, and an-
gular momenta. In the past, the methods tried have
involved algebraic expressions representing the con-
sequences of simple nuclear models. The most fre-
quently used of these belong to a family of formulas
the prototype of which, due to Bethe, ' is based on a
model of noninteracting fermions in the nuclear po-
tential well. Various modifications have been made to
take account of residual interactions and of the eGects
of grouping single-particle levels into the major shells.
One such formula" is given in Sec. III LEq. (10)j.

Drastic approximations of a purely mathematical
nature have had to be made to obtain the formulas,
and often their shortcomings for matching known data
are overcome by parameter adjustments. The direct-
ness of the confrontation of nuclear models with level-
density data suffers in consequence. Also, that the
existing prescriptions can be made to fit the data for
a wide range of mass numbers can not be taken as
support for their accuracy outside the narrow regions
of excitation energy (0—10 MeV) and angular mo-
mentum (0—55) to which most of the experimental

*This work was performed under the auspices of the U.S.
Atomic Energy Commission.

t This work was reported in part at the 155th N'ational Meeting
of the American Chemical Society, April, 1968, Abstract)No.
0-176.

' H. A. Bethe, Rev. Mod. Phys. 9, 69 (193'7).
'A. Gilbert and A. G. W. Cameron, Can, J.&Phys. 43, 1446

(1965).
3 T. Ericson, Advan. Phys. 9, 425 (1960).

knowledge of level densities is confined. '4' Improved
methods are required for exploring the structures of
highly excited nuclei through their level densities.

To effect the necessary improvements, i.e., to avoid
as much as possible purely mathematical approxima-
tions, we calculate the level densities numerically
using a large digital computer. That such calculations
could prove feasible was shown by Grover, ' whose
calculations were con6ned to limited regions of the
energy-angular momentum plane. Similar calculations
in highly restricted systems have been carried out by
several workers. ~ ' Rabinovitch and his co-workers
have performed calculations analogous to ours for
molecules. "

In the next section, we review what is sought in
a level-density calculation, in the light of which the
model usually used has been chosen. In Sec. III is
given a brief description of an algebraic approxima-
tion to the chosen model and a summary of the math-
ematical simplifications employed in obtaining it. Our
method of numerical evaluation is described in Sec.
IV, and Secs. V and VI contain comparisons of the
numerical calculations with experimental data and
with calculations using an algebraic expression.

II. MODEL

For the evaporation formulas presently employed,
one merely needs correct average densities with respect
to energy and angular momentum, and the correct
average trend of the yrast levels. These requirements
are modest enough to have encouraged the expecta-

4 U. Facchini and E. Saetta-Menichella, Energia Nucl. 15, 54
(1968).

~ J.L. Cook, H. Ferguson, and A. R. de L. Musgrove, Australian
J.'-, Phys. 20, 477 (1967).

s J. R. Grover, Phys. Rev. 15'7, 832 (1967).
r G. Kluge, Nucl. Phys. 51, 41 (1967).
s L. Motz and K. Feinberg, Phys. Rev. 54, 1055 (1938).
s C. L. Critch6eld and S. Oleksa, Phys. Rev. 82, 243 (1951).
'0 For exp, mple, G. Z. Whitten and B. S. Rabinovitch, J. Chem.

Phys. 38, 2466 (1963).
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tion that a simple calculable model should be able to
reconcile much of the data presently available. How-
ever, there are already data on hand that seem to
require a more detailed treatment —for example, the
apparent preferential evaporation of the same type of
particle as the incident particle, ' ' where it may be
important to take account of the structure of the
states involved. Therefore, the model selected should
be easily extended to include those more detailed
features of structure that it can be foreseen may be
needed soon.

The nuclear shell model appears very promising,
Each nucleon moves independently in the average
potential contributed by the other A —1 nucleons.
The depth, shape, and dimensions of the potential
well are fixed by appeal to experiments: ground state
spin, the energies and spins of the first few excited
states, etc.

With such a model, a large set of single-particle
eigenfunctions up to some reasonably high energy can
easily be calculated. By permutation of the A nu-
cleons among these eigenfunctions, with due obeisance
to the required antisymmetrization, one generates a
very large set of wave functions representing the
ground and many excited states of the model. The
energy Ep of a particular configuration P will be,
since we deal with noninteracting particles, simply
the sum of the eigenvalues e; of the occupied orbitals

and the excitation energy Gp is found by subtraction
of the ground-state energy E, :

One needs only to calculate the lowest-lying ten million

or so Gq values, sort them out by energy, take ac-
count of the magnetic degeneracies associated with

angular momentum, and express the result as a zeroth-
order level-density function.

In general there are nucleon-nucleon interactions
that are not included in the average field. They never-
theless affect the average level densities and therefore
must be taken into account. Perhaps the most im-

portant of these, and the only one included in our

model, is the pairing force. Some effects are also to
be expected from the quadrupole-quadrupole forces,
and the average 6eld itself might be expected to
change as a function of excitation energy and angular
momentum. Hopefully it will prove feasible to include
these and other complications in future work.

"B.L. Cohen, Phys. Rev. 92, 1245 (1955); B. L. Cohen and
E. Newman, ibid. 99, 718 (1955) .

"D. Bodansky, Ann. Rev. Nucl. Sci. 12, 79 (1962).
'3 N. Dudey, M. Fluss, B. Foreman, L. Kowalski, and J. M.

Miller, in I'roceedzngs of the International Conference on Nuclear
Physics, Gatlznberg, Tennessee, 1966, edited by R. L. Becker
(Academic Press Inc. , New York, 1967), p. 803; C. M. Stearns,
Ph. D. thesis, Columbia University, 1961 (unpublished).

To correct for pairing forces, we use a simple ver-
sion of standard pairing theory'4 that has already
proved useful for describing even-odd effects in the
ground and first few excited states of nuclei. By
pairing force (in this paper) is meant a strong inter-
action between two like nucleons in orbitals that are
the time reverse of each other. In the special case of
a spherical nucleus, this would be an attraction be-
tween a nucleon in the orbital with angular momen-
tum j, and projection ns, and an identical nucleon
in j; with projection —nz, . The two nucleons couple
to a resultant angular momentum of zero, at the same
time making an additional contribution to the nuclear
binding. The energy of the configuration P corrected
for pairing is the following:

Ep Q' e~+ Q——' 2e,pV,p' —8p'/G. (3)

Here G defines the pairing force parameter, the value
of which is found by appeal to experiment,

t=6 GV ~ (4)

and V;p' is calculated from

I( p )p)'+&—p'3"& '

hp and )p being obtained by solution of the pair of
equations

Z' 2l"p'= ~p (6)

2' I 1/E(e'p —) p)'+~p'j"'I =2/6 (&)

where gp is the number of paired nucleons included
in the range of summation. The superscript zero in-
dicates summation over orbitals containing unpaired
nucleons, and the prime summation is only over orbital
pairs in which there is not an unpaired nucleon.

To illustrate the qualitative effect of the above
pairing correction on the level density, we compare
the zeroth order and corrected level densities on a
total energy scale, as in Fig. 1(a), for an even-even
nucleus. The 2h is approximately the energy neces-
sary to break the first nucleon pair. At higher energies,
where many pairs are broken and the effects of pairing
diminish, the energy depression disappears and the
two curves approach one another. Two eGects operate
here; (1) the number of pairs per se decreases and
(2) the unpaired nucleons block states making them
unavailable for "scattered" pairs. Shifting the sketches
to make the ground states coincide then shows the
over-all effect, Fig. 1(b). The corrected level-density
function starts out shifted by roughly 2h, then rises
somewhat less steeply than the uncorrected function
until the effective energy shift approaches the entire
energy that was contributed by pairing in the ground-
state nucleus. The argument for odd mass and odd-
odd nuclei goes along similar lines.

"A. M. Lane, Nuclear Theory (W. A. Benjamin, Inc., Nevr
York, 1964).
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FIG. 1. The effect of pairing on the level densities of an even-
even nucleus; dotted line, without pairing, solid line, with pairing;
{a) with high-energy parts coinciding, showing the eGect of
pairing on the energies of the levels; (b) with ground states
coinciding, showing the eGect of pairing on the shape of the
level-density curve. (More realistically, the small level-density
parts of the curves should be represented as peaks instead of steps,
but we employ the latter for simplicity of the figure. )

"L.Euler, see Ref. 3."G. S. Hardy and S. Ramanujan, Proc. London Math. Soc.
17', 75 (1918).

III. ALGEBRAIC APPROXIMATION

For many years, approximate algebraic formulas
for the model have been used, so that in comparisons
of level-density theory with experiment it is not clear
whether it is the mathematical method or the model
that is being tested. We describe, briefly, what the
approximations are. Comparison with the numerical
solution of the model will then help to show what
the shortcomings of past analyses must have been.

The single-particle eigenvalues near the Fermi level
are assumed to be equally spaced, with a density of

g levels per MeV. A relatively simple approximate
solution of the all-con6gurations problem'~ ' described
above then becomes possible. The energy dependence
is found to be essentially the exponential of the square
root of the excitation energy:

to(E) =constE st expL2(aE)"'7. (8)

The constant a carries the nuclear-well information g
through a constant multiplying factor:

g= (6/s') a

A simple rule is picked for the distribution of the

single-particle wave-function j values —for example,
that their magnitudes are all the same at some average
value, or that the distribution of the magnitudes obeys
the simple Fermi-gas prediction. The vectors are as-
sumed to be large in number, to be pointing in random
directions, and to be coupled accordingly. Using these
assumptions, the central-limit theorem can be invoked
to obtain the distribution of projections"of angular
momentum on a space-6xed axis. The resulting dis-
tribution of levels with respect to angular momentum
is then gaussian in J with dispersion 0-,

co (8,J) = const X (8) ' exp L2+aE7 (2/+ 1)

X expL —(1+1/2)'/(2a') 7, (10)

except for a multiplying factor of 25+1. The o con-
nects to the nuclear-well information through the
mean-square projection of the angular momentum of
a single unpaired nucleon on some axis, (ett'), times
the average number of unpaired nucleons v.

0=Pm

Equation (10) is the famous Bethe formula, first
published in 1936' "

For a long time now, Eq. (10) has been used with
some simple changes to allow for pairing and shell
eGects. The pairing corrections have been introduced
through a subtractive constant 8 on the excitation
energy to allow for the energy of breaking the first
nucleon pair. The effect of removing the rest of the
pairing energy was therefore absorbed implicitly into
the value of a when the formula was fitted to ex-
periments. Lang" and Decowski et u/. " have applied
the BCS pairing theory to the problem, which re-
moves this objection, but;at the expense of new ex-
pressions that are not as easy to use as the Bethe
equation. Shells have been taken into account by ad
hoc adjustment of a, either empirically' or semi-
empirically'0 with reference to an assumed shell model.
Other methods of correction have also been sug-
gested. "—"

The dispersion 0' has been studied experimentally
beginning with the pioneering work of Huizenga and
Vandenbosch. '4 Hard knowledge of o' is still only in

"H. A. Bethe, Phys. Rev. 50, 332 (1936)."D.W. Lang, Nucl. Phys. 42, 353 (1963)."P. Decowski, %. Grochulski, A. Marcinkowski, K. Siwek,
and Z. Wilbelmi, Nucl. Phys. A110, 129 (1968).

0 T. D. Newton, Can. J. Phys. 34, 804 (1956).' I. Dostrovsky, Z. Fraenkel, and G. Friedlander, Phys. Rev.
116, 683 (1959)."P. B. Kahn and N. Rosenzweig, Phys. Letters 22, 308
(1966)."N. Rosenzweig, L. M. Bollinger, L. L. Lee, and J.P. SchiEer,
in I'roceedings of the Second United 1Vations International Con-
ference on Peocefnl Uses of Atomic Energy (United Nations,
Geneva, 1958).

24 J. R. Huizenga and R. Vandenbosch, Phys. Rev. 120, 1305
{1960);R. Vandenbosch and J. R. Huizenga, ibid. 120, 1313
(1960); see also subsequent work of J. Beneviste, G. Merkel,
and A. Mitchell, iMd. 141, 980 (1966); 174, 1357 (1968).



1306 M. HILLMAN AND J. R. GROVER
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a crude state, however, and most analyses use the
simple Fermi-gas value.

Yrast levels do not appear in Eq. (10), which pre-
dicts levels out to J= ~ at any energy. This means,
of course, that to be useful the equation must carry
with it a statement of its range of validity. This has
sometimes been ignored in analyses of data, with
misleading results. ~'

1. Calculation of Spin Distribution

Restriction to a spherically symmetric well greatly
simplifies and shortens the calculations, for the orbital
angular momentum j becomes"-a good quantum num-
ber, allowing us to define a subshell.

The number of levels of given total angular mo-

"J.R. Grover, Phys. Rev. 123, 267 (1961);12'7, 2142 (1962).

IV. NUMERICAL CALCULATIONS

A. Operation of Computer Progr~~

The computing method used for finding all of the
levels and their corresponding energies is similar to
the one previously used for finding the yrast levels. '
"Odometers" were used to scan the nuclear configura-
tions systematically and the energy and spin distribu-
tion of each configuration was calculated, giving the
number of levels of each spin for each energy.

A simple example is given in Fig. 2.
The ground-state configuration of the protons of a

nucleus with Z=5 is given in (A). The energy of the
ground-state configuration is 98.7 A '~'MeV, and a
single level of J=~3 occurs at this energy. An example
of an excited configuration is given in (B); the cor-
responding energy is 219.3 A 'l" MeV, and there are
66 levels at this energy with the spin distribution of
7(s), 12(s), 14(s), 13(s), 10(s), 6( s ), 3( s ), and
1(~).The excitation energy of the excited configura-
tion is the diGerence between its energy and that of
the ground state.

The number of times a particular spin occurs was
suDUned for all configurations within an energy in-
terval. Sets of spin distributions and corresponding
energies were calculated separately for protons and
neutrons and were then coupled. In coupling, the
energies were simply added, for no neutron-proton
interaction has been taken into account, and a final
set of energies and spin distributions was obtained.
To minimize the edge effects of binning, 500 energy
bins were used for each nucleon type but &50 for
the entire nucleus.

mentum J for a particular configuration of subshells
was calculated by finding the number of ways the
component j's can couple to J. For example, all pos-
sible vectorial additions of an unpaired nucleon in a j&
subshell coupled to an unpaired nucleon in a j2 subshell
gives one level each of spins

J ji—js J, f ji—js [+1,
ji+js—1, ji+js. A third unpaired nucleon couples in
the same w'ay to each of the spins already developed
by the first two particles, and so on. The restrictions
imposed by the Pauli exclusion principle, when we
must take account of two or more identical particles
in the same subshell, complicate the simplicity of the
above~'. picture. We used the method described by
Condon and Shortley" to solve this problem, and the
result is compiled into a table given in Appendix A.

Z. Calculation of Conf', guration Energies

The energies of the respective configurations were
obtained by the BCS method'~ as described by Seeger"
and Wahlborn. ' The requisite formulas are given in
Eqs. (3) to (7). The simple "blocking" method de-
veloped for one unpaired nucleon is easily extended,
as also shown in Eq. (3), to cases with more than
one unpaired nucleon, where all orbital pairs con-
taining unpaired nucleons are omitted from the BCS
calculation, and the corresponding single-particle en-
ergies are added to the BCS energy. When Eqs. (3),
(5), and (7) are combined(' we obtain

E= g (e—)t)+EN (or Z)
all i

where N (or Z) is the number of neutrons (or pro-
tons) in the nucleus, and the subscript P has been
suppressed. The solution of Eqs. (6) and (7) for &
and ) is slow because of the necessary iterations in-
volving Eq. (4) to obtain e These e.xtra iterations
were eliminated by means of some minor approxima-
tions giving

E= g (e,—X)+AN (or Z) —g'L(e, —X)'+A'j'»
811 i

+A/G —2Gg'V, ', (12b)

where A, X, and V arise from Eqs. (5) to (7) with
tildes deleted. Equations (12a) and (12b) were checked
numerically and the resulting difference was found to
be negligible.

Since configurations with much blocking usually
have high energies, it is generally assumed that, above
some transition energy, the superconductivity model

E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England,
1935), pp. 189—191."J.Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957).» P. A. Seeger, in Proceedings of the Third International Con
ference on Atomic SIasses (University of Manitoba Press, Winni-
peg, Canada, 1967), p. 85."S. Wahlborn, Nucl. Phys. 3'7, 554 (1962).
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TABLE I. Shell models used in calculations.

Seeger

Energy
(MeVXA'")

Protons
Number

in
shell

Energy
(MeVXA'")

Neutrons
Number

in
shell

Nilsson
Neutrons

Number
in

shell

or Protons ~~N
(MeVXA'")

Energy Nilsson-
(MeVXA'") Seeger

2

2
6
4
2
8
6

10
2
8
6

12

2
10
14
8
6
4
2

12
16
10
8
6

18
14
12

0.0
28.8
41.1
57.3
73.6
75.9
85.4

104.6
107.9
113.1
116.2
134.7
138.7
140.5
150.8
152.5
164.1
167.6
168.8
183.8
186.4
192.8
193.0
194.5
198.1
215.7
219.0
221. 1
221.4
226.9
228. 7

2

2
6
2
4
8

6
2

10
6
8
2

12

8
10
14

6
2

10
16
12
6
8
2
4

12
18

0.0
30.9
46. 7
62. 7
78.8
83.6
94.7

112.6
119.4
123.2
126.7
146.2
154.5
158.0
158.6
161.6
179.4
189.0
190.5
193.4
198.7
201.7
212.4
222.3
223.0
228.3
235.0
237.9
240. 8
245.3
253.9

2

2
6
2

8
4
6
2

10
6
8
2

12
8

10
14

6
2

10
12
16
6
8
2

0.0
39.0
45. 1
77.9
82.0
88.2

108.3
119.5
122.6
125.7
137.4
154.4
155.8
164.0
164.6
167.1
187.8
189.6
195.0
201.1
202. 1
207.3
219.4
221.6
226. 7
236.4
237.8
246.0
246. 6

0.0
8.1—1.6

15.2
3.2
4.6

13.6
6.9
3.2
2.5

10.7
8.2
1.3
6.0
6.0
5.5
9.4
0.6
4.5
7.7
3.4
5.6
7.0—0.7
3.7
8.1
2.8
8.1
5.8

does not apply. This is not completely correct since at
equally high energies, for configurations with little or
no blocking, Eqs. (5) to (7)(can be solved. The
breakdown of the model should/be described as con-
figuration dependent rather than energy dependent;
however, the high-energy cases with real solutions are
rare compared to the ones without real solutions. "
In our computations, when real solutions could not
be obtained, 6=0 was assigned.

The BCS prescription does not tell us what to do
about configurations involving promoted pairs. Each
BCS solution as obtained implies a unique probability
distribution of paired nucleons among the unblocked
orbitals and reQects only the configuration of the
unpaired nucleons. The excitation energy for con-
figurations that include promoted pairs was estimated
by adding to the BCS energy the difference in single-
particle energies of the particular configuration of
pairs and that configuration of pairs where the pairs
were all placed in the lowest available unblocked
orbitals. It is anticipated that the error inherent in
the above estimate is not very serious since we have

' H. J. Mang, J. K. Poggenburg, and J. O. Rasmussen, Nucl.
Phys. 64, 353 (1965). These authors found that the occurrence
of trivial solutions is due to approximations used to obtain the
SCS equations, and that, without these approximations (but
with others), real positive 6's can be obtained.

found that (for r'Br, for example) the fractional
number of levels with pair excitations increases to

0.4 at very high level densities, so that, on the
average, the fraction of excitation energy contributed
by pair excitations is small Pe.g. , see Figs. 15(a) and
15(b), given later). -;,

Since it is necessary to find'the BCS solution only
for different configurations of unpaired "nucleons, and
only unpaired nucleon configurations are required, "'for
the determination of the corresponding spin distribu-
tions, it proves convenient to use two interacting
odometers, one for excited-pair configurations and one
for unpaired-particle configurations.

B. Input Values

The single-particle model of Nilsson3' was used, the
ordering of single-particle levels and energies being
obtained from Seeger." Calculations were also made
using Nilsson's energies to see the effects arising from
differences in the ordering of the single-particle levels
and in the relative energies. The single-particle level
ordering and the corresponding energies and energy
comparison are given in Table I. The most significant

3'S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 29, 16 (1955).

3' We are indebted to Dr. Seeger for sending us his unpublished
single-particle energies.
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proximately 10/A to 12/A, although large deviations
were noted at low A. These values are smaller than
those usually used, of course, since G is dependent
on the number of orbitals used in the BCS calcula-
tion and we used many more than most workers do.

Perhaps it is useful at this point to summarize
briefly the most important features of the model and
approximations that we used. These are

(1) infinitely deep spherical well, with Seeger's
choice of single-particle eigenvalues,

(2) truncation of single-particle eigenvalues at 31
sub shells,

(3) zeroth-order approximation for promoted pairs,
(4) summation range of BCS equations taken over

entire assumed set of orbitals,
(5) use of the same value of G for both neutrons

and protons, and for all orbitals,
(6) omission of p-I forces.

16 32
ENERGY, MeV

I

48

Fxa. 3. Level density of "Fe; the jagged curve is the calculated
level density; the circles are the experimental points.

difference between Nilsson's and Seeger's levels is in
the spacing of levels, as shown by the wide range
of hK

Because of space and time limitations in the com-
puter, the calculations were arbitrarily limited to in-
clude 31 subshells, comprising 226 orbitals for the
protons and 214 for the neutrons. This limitation
consequently imposes a maximum energy for which
all of the levels could be determined (the energy for
which one nucleon is promoted to the highest in-
cluded orbital). Since many more high-energy levels
are contributed by complex configurations than by
configurations in which one nucleon is promoted to a
very high energy, no signihcant amount of informa-
tion is lost in calculations for energies not too far
above the assured maximum. Some of the calcula-
tions carried out for heavy nuclides were for energies
somewhat above the assured maximum.

Other workers have treated the choice of the number
of orbitals differently. For example, Seeger' used 30
orbitals straddling the Fermi level, Baranger" used
two major oscillator shells, and Grover used one
major shell. We chose to use the entire nucleus in
which we considered possible configurations. This
choice avoids the problems that arise in treating con-
figurations with orbitals outside the range of the BCS
calculations.

The parameter G is traditionally determined as
that value which gives the correct energy gap for the
mass surface. In this way we estimated G to be ap-

s3 M. Barauger aud K. Kumar, Nucl. Phys. A110, 529 (1968l.

55

A =10

5
IJJ

LLl

4
O

O

16 32
ENERGY, MeV

1

48

FxG. 4. Level density of "Mn; the jagged curve is the calculated
level density; the circles are the experimental points.

'4A. A. Katsanos, R. %'. Shaw, R. Vandenbosch, and D.
Chamberlin (unpublished) .

"A. A. Katsanos, Argonne National Laboratory Report No.
ANL-7289, 1967 (unpublished) ."J.R. Huizenga, H. K. Vonach, A. A. Katsanos, A. J. Gorski,
and C. J. Stephen (unpublished).

V. COMPARISON: NUMERICAL CALCULATIONS
WITH EXPERIMENT

Level densities are known" " for the nuclei "Fe
and "Mn for excitation energies from 0 to 23 MeV.
For no other nuclei are level densities known over
such a wide span of energies, at present. Comparisons
of calculations with the experimental results are given
in Figs. 3 and 4. A value of GA=10 was used for



SHELL-MODEL NUCLEAR LEVEL DEXSlTIES 1309

both in accordance with what is believed to be a
reasonable value in that region of masses. The agree-
ment with the "Mn data is satisfactory and that
with the "Fe data is very good. It should be noted
that the higher-energy experimental points were de-
termined using an assumed spin distribution which
we consider invalid (vide infra). Adjustments of the
experimental data should be made accordingly, but
would be too small to alter our conclusion significantly.

Level densities near neutron binding energies have
been measured"'' for many nuclei throughout the
chart of nuclides, and these data present a challenge
for any prescription for calculating level densities over
a wide range of masses and a modest range of spins.
However, rather than make direct comparisons for
some assumed value of G, we elected to find, for each
nucleus, the value of G necessary to cause the cal-
culated level density for the appropriate spins to pass
through the experimental level density. Ideally, as-
suming we start with a suitable set of single-particle
eigenfunctions, our calculation makes possible a method
for the determination of G that is independent of
the method that uses the properties of the ground
and lower excited states. The results for 192 nuclides
are plotted with respect to proton number in Fig.
5(a) and neutron number in Fig. 5(b). Aside from
wide scatter near closed shells, the values we find are
gratifyingly close to those we found previously from
the ground-state energy gap. We see immediately,
however, that GA is not constant in over-all trend,
though it does not vary strongly with Z or X. In the
calculations, G was assumed independent of nucleon
type; this, too, appears to be untrue. Since GA is an
increasing function with increasing Z or N, we may
set G~A ~, where I'"&1. We find GA"' to be ap-
proximately constant (Fig. 6). Moreover, with 7=—',
the dependence of G on the type of nucleon dis-
appears.

It is easy to see one reason why G should not be
strictly inversely proportional to the nuclear volume,
i.e., to A. Since the pairing force is of short range,
it operates effectively over a volume small compared
with that of the nucleus. This small volume should
be compared with the effective volume of the orbitals
involved, rather than with the volume of the nucleus
as a whole. The volumes of these orbitals will not,
in general, scale exactly as A ', because they contract
as they sink down in the potential. Another reason
for this apparent effect can be that it is a reQection
of the difference between the assumed model and real
nuclei, and thus to be at least to some extent, an
artifact.

In those areas where the values of G are most
scattered, are exceptionally low, or are exceptionally
high, the single-particle level spacing is large (i.e.,

3~ Brookhaven National Laboratory Report No. 3Z5 (U.S. Govern-
ment, 'i'Printing Ofhce, Washington, D,C., 1966), 2nd ed, , Suppl,
No. 2.

light nuclides and/or closed shells). In these cases the
sensitivity of the calculated level density to G is small.
Large errors are thus associated with G in those areas.
It remains to be seen if other prescriptions for the
single-particle levels give diQ'erent or improved results.
On the other hand, the lack of sensitivity is probably
associated with the large spacing of single-particle
eigenvalues and, in the case of very light nuclides
and at the closed shells, a breakdown of the BCS
treatment. Also, the neglected p, n forces are expected
to be most strongly felt in light nuclei.

A comparison that stresses another feature of nu-
clear level density —namely, its detailed dependence
on small changes in nucleon number —is given in
Table II, where we give experimental and calculated
values of the density of levels of spin —,

' near the neutron
binding energies of "Fe, "Fe, "Ni, and "Ni. These
are unusual because, although they are all odd-mass
nuclei and form three pairs that differ only by two
neutrons or two protons, their level densities show
striking variation. ' The energies at which the meas-
urements were made differ for each pair by 1.2 to
1.6 MeV. The Bethe formula would predict that the
level densities for these nuclei should look much alike,
that is, at the indicated energy differences the meas-
ured level densities should increase by factors of 3
to 6 in proceeding from the lower energies to the
higher. On the other hand, our calculation explains
the observed pattern quite naturally. This effect is
independent of the pairing parameter. It is of interest
to note that these results suggest that a dependence
on nucleon valency (i.e., number of nucleons or nu-
cleon holes away from the closed shell) seems to be
showing up at excitation energies of 8—10 MeV; a va-
lency of 3 for "Fe and "Ni and 5 for ' Fe and "Ni.
This is reminiscent of an effect described by Rosen-
zweig23 for cases involving individual subshells, spe-
cifically the g9~2 subshell. Our effect, however, involves
several subshells, as may be seen from Table I.

VI. COMPAMSON: NUMEMCAL WITH
ANALYTICAL CALCULATIONS

In this section we compare the results of the nu-
merical calculations with those obtained using the
algebraic formula already discussed. The analytical
prescription chosen was that of Gilbert and Cameron, '
primarily because of the large amount of recent data
used to fix its parameters. No comparison was made
with other formulas.

For the comparisons, the computed results for "Cd
and "'Ho were chosen because (a) their level den-
sities are known both at low energies and near the
neutron binding energies, (b) they are in areas where
there is not too much scatter in the GAfversus X
or P curve, and (c) one is an even-even nuclide near

\

'g We are indebted. to Professor J. R. Huizenga for suggesting
that we use this problem to test our calculations,
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a major closed shell, while the other is an odd-odd
nuclide far from a closed shell. To look for the main
effects of proximity to closed shells, these two nuclides
appear to be good candidates for comparison.

The best values of G were determined for both
nuclides and all results are for these values. It should
be noted that 63=14.5 for "Ho is a little higher
than for the neighboring nuclides. In Figs. 7 and 8
are given (a) the known experimental points, ''s (b)
the calculated level densities for two different values
of G, (c) the calculated level densities using Nilsson'ss'
energies and order of levels, and (d) the calculated
level densities according to the algebraic formula. The
(experimental neutron resonance points have been cor-

eeXttclear Data Sheets, complied by K. Way et at. (National
Academy of~Scjeq.cd—Ng. tjona]. Research Council, Washington,
D.C., 1965).

rected to total level densities according to the spin
distribution given by the numerical method. If cor-
rected for the spin distribution used by the algebraic
formula, then the corrected neutron resonance point
lies on that curve.

We find signi6cant differences using Seeger's energies
and Nilsson's energies, and a marked difference in
shape between the numerical and algebraic curves for
'"Cd, while the two curves for "'Ho are very similar.

In the low-energy part of the curve for "'Ho, blown
up on the right-hand side of Fig. 8 as an integral,
a large difference appears in the number of levels
near the ground state, depending on whether Seeger's
or Nilssons single-particle levels are used. This is
caused by the ordering of the single-particle levels
and is corollary to the Rosenzweig effect."

Greater insight to the comparison with the alge-
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braic formula can be obtained in Figs. 9(a) and
9(b) and 10(a) and 10(b) . In the 6rst pair of 6gures
the logsm of the level densities versus energy and spin
are plotted as contours. The yrast levels, which fall
naturally out of the calculations, are given by dashed

I I I I I I I I I
-

I I '.. I I

lines in the Ggures. In the second pair of figures,
contours of the 1ogsM of the ratios of the numerically
(totr) and algebraically (&oo) calculated spin-dependent
level densities are plotted. For "'Ho, all of the con-
tours are essentially energy independent, indicating,
as in Fig. 8, that the agreement is good for the energy
dependence. However, very large discrepancies appear
in the spin dependence. For "4Cd, mark. ed discrepan-
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TABLE II. EGect on level densities of adding pairs of nucleons.
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FIG. 6. Values of GA"8 that cause the calculated level densities
to 6t the experimental level densities at the neutron binding
energies; versus neutron number.
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Since both "'Ho and "4Cd ratios (Figs. 9 and 10)
depend strongly on spin, the spin-dependent part of
the level-density formula evidently contains inadmis-
sable approximations. One of these approximations is
the modified-gaussian form of the spin dependence as
described in Sec. III. Another is the assumed relation
of the parameter 0. to the "rigid-body moment of
inertia, " which also involves the simplifications de-
scribed in Sec. III.

It is instructive to see what behavior is required of
an assumed constant "moment of inertia" 8 /where
o'=85 '(E/a)"'j to cause Eq. (10) to agree with the
numerical solution. We therefore differentiate Eq. (10)
with respect to E and J to obtain

B ln(u/BE= 2E '+a"—'E "
+ LS'J(J+1)/4d$ a"'E "', (13)

B 1n(o/BJ= 2 (2/+ 1)-'—$5'aII'E 'I'(2J+ 1)/—2d j. (14)

IO

0 I 2
ENERGY, MeV

FIG. 7. Level densities of "4Cd.

cies occur for both energy and spin dependence. No
simple adjustment of the parameters u and 8 in the
algebraic formula can reproduce these. The energy-
dependent differences, therefore, apparently reQect the
proximity of the closed shell. Gilbert and Cameron'
reported difficulties in the analytic method near closed
shells.

Another effect attributable to the closed shell is a
wave superimposed on the level-density curve of '"Cd.
This wave also appears in Figs. 11—14 (to be dis-
cussed below) and in the total level-density curves of
indium and antimony nuclides, displaced by one-
quarter of a wave length, and in tellurium nuclides,
displaced by one-half of a wave length. These waves
arise from the closed 50-proton shell as follows. In
'"Cd a number of configurations can be obtained
without promotion of a proton above the 50-proton
shell. As soon as this promotion takes place, however,
a large number of additional configurations becomes
available immediately and with a very small increase
in energy, causing at this point a relatively steeply
rising level-density curve. The curve then returns to
a "normal" slope until the next proton is promoted.
The displacement of waves in the other nuclides is
consistent with the stage at which a proton must be
promoted above the closed shell, the wavelength being
consistent with the energy jump at the closed shell,
about 4 MeV. This phenomenon may be an artifact
of the model; it is an interesting area for future ex-
periIDents,

ENERGY, MeV
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Fxo. 8. Level densities of "'Ho.

0

These equations can be solved for 8 and u in terms
of the slopes with respect to E and J at all points
on the calculated level-density surface. Contour maps
for a and 8/d»IIq (ro ——1.2XA"' fm) for "'Cd are given
in Figs. 11 and 12 and for "'Ho in Figs. 13 and 14.

For both isotopes the parameters 8 and u show
de6nite spin dependence, suggesting more clearly that
the modified-gaussian representation of the spin de-
pendence is not a particularly reliable approximation
(see Appendix 8). Alternative forms have been sug-
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Fro. 9. Contours of level densities versus P. and J.The dashed curve traces the yrast levels; (a) "4CdI (b) '«Ho.

gested, 4~4' some of which include higher-order terms
ln J.

In the algebraic equation discussed above the pa-
rameter u is usually assumed to be independent of
energy, although some authors use an energy-depend-
ent a. The results of the numerical calculations favor
the energy-independent form, dependence on energy
showing up mainly in the waves already discussed.
For '"Cd, u is very high at low energies, corresponding
to the steep part of the first wave. This eGect does
not appear at all for "'Ho, and the waves are much
shallower.

The parameter 0. is considered to be energy de-
pendent with 0-'~E"'. Contours of 0- versus E and J
exhibit an energy dependence that essentially dis-

appears if one assumes this proportionality through
the parameter 8. The peculiar wiggles in the contour
maps (Figs. 12 and 14) are probably associated with
the energy-dependent waves and may be due to an
inadequate representation of cr with respect to a.

To test the usefulness of the subtraction constant 5

on excitation energy in formulas such as Eq. (10) to
account for the difference between even and odd nu-
cleon numbers, we calculated level densities up to 10'
levels per MeV for the quartet remote from closed
shells, ~'Se, 7 Se, ~'Br, and Br, using Seeger's eigen-
values and GO=10.9 (chosen to fit the measured
slow-neutron level densities for "Se). Where
gzto(E, J) =10e to 10' levels per MeV (in the neigh-
borhood of 7 MeV), the effective displacement between

I
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Fig. 10. Ratio of level densities calculated numerically to those calculated by algebraic formula; (a) "'Cd, (b) "'Ho.

' D. IV. Lang, in Proceedings of the Third Comferertce art Reactiorts bettoeert Cotttptex Ngclec (University of California Press,
Berkeley, 1963), p. 248.

"D.W. Lang, Nucl. Phys. 77, 545 (1966). '

"T.D. Thomas, Ann. Rev. Nucl. Sci. 18, 343 (1968).
4' J. Gilat (private communication and unpublished vrork).
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1

40

even-even ~'Se and odd-odd ~'Br is 2.3 MeV. The two
curves diverge gradually until at 10' to 10" levels
per MeV (in the neighborhood of 25 MeV) the dis-
placement is 3.5 MeV. Thus, for narrow energy regions
the assumption of a constant displacement is probably
useful, but over a wide energy region an important
correction would be needed.

However, although the odd-mass level densities fall
between the above two curves, they do not coincide
for their entire length; they coincide below about 10'
levels per MeV, but the curve for '"Sr is displaced
above the curve for "Se by energies varying from 0.5
to 1.'7 MeV. Thus, we see that effects due to specific
subshell positioning are as large as the divergence
mentioned in the previous paragraph, precluding any
all-embracing prescription. It should also be recalled
that it is in the region far from closed shells that
level densities are the most sensitive to the value of 6;
tolerance of only a small variability of 6 from nucleus
to neighboring nucleus would render it even more
difficult to make a general statement about the energy
dependence of the pairing correction B.

' One other result of the numerically computed level
densities that can be compared to previous approxi-
mations is the distribution of parities. Ericson' has
demonstrated that the number of levels of both pari-
ties should be nearly equal. We find that this is roughly
correct, but there are notable deviations (Table III).
These deviations are even greater (up to 30%) when
the spin-dependent level densities are compared. In

Fig. 15 are given Ericson s expected parity probabili-
ties for various numbers of unpaired particles. It is
clear from this figure that our results are not un-

expected. The single point used by Ericson for his
demonstration is shown by the circle.

It is also interesting to examine the average number
of unpaired particles that contribute to the level den-

sities at each 8 and J.This parameter arises in various
analyses of the spin distributions as well as in the
discussion of parity distribution above. Contours versus

energy and spin are shown in Figs. 16(a) and 16(b)
for '"Cd and "'Ho, respectively. The average number
of unpaired particles increases at constant energy with

increasing spin.

7H. CONCLUSION

We have attempted by exact calculations to find

what the model usually used for level densities pre-
dicts. We have compared these results with those
obtained from the traditional algebraic formulation to
reveal the shortcomings of the latter. The most sig-
nificant shortcomings are (a) incorrect logarithmic
curvature of the energy dependence of the total level

density, (b) omission of nonuniform features and an
energy-dependent wave, arising from the nuclear shell

structure, superimposed on the over-all level density,
and (c) incorrect spin distributions. The last is the
most serious of all, especially for use in analysis of
high-energy reactions. Alternative algebraic forms are
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being sought and will be described in subsequent
papers.

Note added in proof. While this paper was at the
compositor, an error was found in the computer pro-
gram. All of the calculations reported here were
repeated, but the differences found were too insignihcant
to warrant replacement of the 6gures, and no conclusions
were changed.
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APPENDIX A: MAYER-JENSEN TABLE OF
TOTAL SPIN

For identical nucleons in a subshell, only those
states are permitted for which the Pauli exclusion
principle is obeyed, so that we cannot use the simple
vectorial method described in Sec. IV A 1 for cal-
culating the distribution of levels with respect to spin.
For rapid calculations a useful method for handling
this problem is to look up the required spin distribu-
tions in a table, such as the one given by Mayer
and Jensen. '4

However, their table only gives distributions for
spins of subshells through j= &, which is not adequate

44M. G. Mayer and J. H. D. Jensen, Elementary Theory of
ÃNclear Shell Strgctere (John Wiley 8z Sons, Inc., New York,
1955).

for our purpose since we used subshells with spins up
to j'=~. The spin distributions for all con6gurations
for j&~~' were, therefore, computed by the modihca-
tion appropriate for j-j coupling of the method out-
lined in the text by Condon and Shortley. "The entire
table is reproduced here (Table IV). It should be
noted that only three errors were found in the Mayer-
Jensen hand-calculated table.

As in the Mayer-Jensen table, the table here gives
the number of times each spin J occurs for various
configurations ( j)", where j is the spin of the sub-
shell and k is the number of identical nucleons in the
subshell. The numbers are given only for those spins
that are appropriate according to the evenness or
oddness of k. Thus, for k odd, the columns from left
to right are for spins —,', —,', » etc., but for k even, the
same columns should be understood to be for spins
0, 1, 2, 3, ~ ~ ~ .

In the level-density calculations we required the
spin distribution for ( j)s', where k' is the number of
unpaired nucleons. This result is clearly given by the
difference of the spin distributions of (j)" and ( j)" ',
because simply adding a nucleon pair to configura-
tions ( j)s ' contributes no additional spins, and there-
fore the configurations (j)~' account for spins for
the configurations ( j)s which contain at least one pair.

APPENDIX 3: MODIFIED-GAUSSIAN
SPIN DEPENDENCE

Thomas4' has indicated that discrepancies exist be-
tween the simple assumed modi6ed-Gaussian spin
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TAnxx IV. Mayer-Jensen table.

3/2

5/2

Number of times each spin occurs

7/2

9/2

13/2

15/2

17/2

1
1
0
2
2
5
1
1
8
1

12
2
3

12
2

1
1
0
2
3
7
2
2

12
3
6

24
9
1
4,

29
10
0
7

35
15
1

3
6
0
1
8
1
4

10
1

0
0
1
2
0
4
1

12
3
2

18
6

10
29
9
1

29
10
0

5
6

7
11
1
7

11
1

1
1
1
1

7

6
11
2

11
23
6

13
26

16
34
10
1

0
0
1
2
2

0
8

11
2
9

17
3

17
27

6

13
27
6

11
8

10
8
1

1
1
2
1
6
5
1
9
9
1

17
19

21
23

25
30

7

11
9
1

13
15
2

24
22

21
23

13
6

11
7

22
16

2

25
19
2

31
25

12
4

13
7

17
11

29
18
2

26
19
2

12
5

23
13

1

28
14

1

35
20
2

10
2

12
2

19
8
0

29
14

29
14
1
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TAsx,z IV (,Coetteei~ed)

Number of times each spin occurs

17/2

21/2

10

3
19
10

8
40
23

8
60
36
6

12
83
54
11

88
55
10

1

1

0
3

3
11

7
1
3

26
17
3

1O
62
47
14

1
14

106
83
25

2
20

169
144
51

7
25

212
176
60
8

24
236
208

77
12

1

1

0

2

13

2
5

18
7
0

33
18

2
16
59
30

10
74
43

7

0
0
1
3

0
8
4

7
27
16
3
6

54
39
9
0

26
iii
80
22

2
22

159
126
39

53
220
167
55

7
32

227
182
61
8

3
8

19
7
1

16
41
18

2
24
60
28
4

32

43
7

1

1
2

6
11
5
1

10
26
14
2

23
65
40
9

39
111

70
17

1
58

179
125
37

76
220
153
44

81

181
58

7

3

6
14

10
17
5

14
33
12

1
31
57
23

2
30
74
33

43
85
36

13
27
13
2

21
56
31

6

53
112
66
16

1
61

166
106
28

2
100
226
143
39

85
235
158
44

1
3
1
3

10

2
13
17
5

26
37
14

38
57
21

2
51
80
33

56
83
33

2
0
8

11

16
25
10

1
37
63
33
6

62
109
58
ii
0

96
178
106
26

2
123
221
127
31

2
131
252
153
41

2
3
1
9

13

21
31
9
0

43
52
16

48
69
25

2

62
77
27

2

19
25
10

32
55
25
3

74
110
53
10

1
95

164
88
18

144
220
119
27

2
136
233
131
31

2

2
2
1
5

10

1
16
15
3

34
34

1
49
51
15

66
74
24

69
77
24

2

9
10
3

20
23

7
0

49
60
25

83
103
45

7

128
173
85
18

160
213
103
20

175
244
127
28

2

2
3
1

11
13

0
17
13

2

28
26
6

52
46
11
0

61
62
17

1

76
69
18

24
23

7
1

43
50
19
2

91
102
42
6

124
155
70
12
0

180
209
94
18

175
224
105
20

19
12
2

37
29

6

57
44
10

77
64
17

1

82
65
17

24
20

5

56
55
19
2

97
95
34

4

152
161
67
11

1
191
196
81
13
0

2i2
228
100
19

1

3
2

12
12

33
22
3

70
53
11
0

82
59
12
0

26
20

5

51
45
13

105
91
31
4

147
142
53

7

204
191

73
11
i

205
205
82
12
0
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TABLE IV (Continued)

Number of times each spin occurs

2i/2 10 7
3 1
4 8

36 35
29 26
10 7

0
13 9
9( 81
83 72
35 26

6 3
20 42

181 184
171 159
75 65
16 11
1 0

31 42
314 307
321 293
158 133
39 29
4 2

51 106
464 478
467 443
233 207
61 48

7 4

8
2

13
37
26

7
1

31
97
74
26
4

62
191
155
59
10

1
101
340
293
127
27

2
157
495
430
188
42

5
1

16
36
22
5

30
87
62
20

2
80

193
141
49

7

111
327
264
105
19

1
203
505
401
163
33

2

7

20
37
21

5

51
97
65
19
2

101
196
134
45
6

168
352
262
98
18

1
254
514
381
149
28

2

23
35
18
3

5
1

27
35
17
3

175 227
334 3S2
232 227
80 75
12 li
0 1

295 337
510 514
354 333
126 112
21 19

1

46 68
88 96
53 53

14
1 1

116 132
192 194
122 114
36 32

29
33
14
2

32
33
13

2

62 80
84 92
44 44
9 9
0 1

147 160
187 184
101 95
26 23

2 2

230 277
330 341
198 192
59 55

7 7

374 408
502 496
302 283
95 84
13 11
0

33
30
10

1

75
79
34

6

168
176
82
17

275
315
165
42
4

433
480
253
68
8

10 52 83
581 578
616 575
327 283
92 72
12

1
72 142

630 653
649 619
336 299
93 75
12
f

179
633
570
266
66

7

212
679
598
273
66

7

212
620
523
229
50
4

277
690
562
240

52

304
657
516
212
45

343
704
537
217
45
4

328
639
467
178
34

2

401 459
703 7o6
499 470
187 168
35 30

2 2

507
693
431
142
22

1

416 432
664 633
452 406
166 136
30 21

2 1

507 518
650 611
389
124 101
20 13

1 0

555 S92
686
402 363
126 1OS
19 14

0

dependence, a sample numerical expansion of the spin
distribution, and the more complete expansions car-
ried out by Grover' in his calculations of the yrast
levels. These, as well as the shortcomings described
in the main text arise because (1) the number of
unpaired particles is too small to permit use of the
central-limit theorem and. (2) the vector contribu-
tions by unpaired nucleons in the same subshell are
correlated, not random. We extended Thomas's de-
velopment to a more realistic sample by assignment
of a diferent spin to each nucleon instead of using
a constant spin of 4, by allowing for the possibility
of more than one unpaired nucleon to be in the same
subshell, and also by inclusion as an example the
numerical results for "'Ho.

Four diGerent configurations were taken with the
same number of unpaired nucleons and with the same
net average spin. If the spin distributions of the levels
derived from these configurations 'were all of the same

nucleus, they would all represent the same tempera-
ture of that nucleus. It is clear from Fig. 17(a) that
they do not represent'"the same "moment. ,of inertia"
of the nucleus as required by the usually-used rela-
tion between 0 and 8. Furthermore, as far as experi-
mental work is concerned, many diferent configura-
tions with different average spins (and temperatures)
fall at the same energy. If it is desirable to discuss 8
at all, then one should probably discuss an average
for a collection of nuclei.

Furthermore, Eq. (10) transforms simply to

1nL&e/(2 1+1)j=A —BJ(J+1), (15)

and, thus, at a given energy, a plot of ingle/(21+1) j
versus J(5+1) should give a straight line. The cur-
vatures obtained for the energies described''-'in Fig.
17(a) and for the calculations of "'Ho at 10.5-10.8
MeV IFig. 17(b)g show more clearly the extent of
the deviations from the modiied-Gaussian distribution.


