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An explicit method for calculating the scattering matrix from a given structure-model Hamiltonian
is presented. The special technique adopted uses nonorthogonal eigenfunctions of the basic model Hamil-
tonian to represent the scattering wave functions in the interaction region. Application of this approach
is mode to neutron scattering by 12C. The weak-coupling particle-rotator model has been used for the
positive-parity states of 13C. The results obtained agree closely with the experimental total neutron cross
section, both the background and resonant behavior being well reproduced by the theory.

I. INTRODUCTION

N the paper by Lane and Robson, ' it was demon-
.. strated that a number of existing reaction theories
could be derived from a common starting point. The
purpose of this work is to present a method of cal-
culating reaction properties which appears to be prac-
tical and which relates directly to nuclear-structure
models. The methods used follow the Lane-Robson
viewpoint. 2

The theory to be discussed is of the E-matrix type,
but, as indicated, it uses nuclear-structure considera-
tions. A standard E.-matrix reaction calculation which
uses a model of the nucleus is possible in principle.
However, such a calculation is not very practical be-
cause of the artificial boundary conditions imposed
on the basis functions at the nuclear surface. ' lt would
be very useful if basis functions appropriate to a
structure calculation could be used in a reaction
calculation.

Tobocman et a/. 4 have given several prescriptions
for using nuclear-structure states to calculate scat-
tering cross sections in an R-matrix-type theory. The
basic difficulty in the process is that of dealing with
nonorthogonal functions, since the states which are
used are not orthogonal in the radial coordinate over
distances of the order of the nuclear radius.

The method described herein for relating structure
states and scattering cross sections is conceptually
the same as Tobocman's approach, but employs tech-
niques used effectively by Lane and Robson. "The
derivations and some applications were first presented
by Adams. ' Tests of the method have been made on
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simple exactly soluble cases' and the following con-
clusions have been reached.

(a) The R matrix defined and used below converges
rapidly to the exact E. matrix. Typically, four to six
radial functions are needed to give essentially perfect
agreement between the approximate cross section and
the exact.

(b) Resonances and potential scattering are treated
quite satisfactorily by the method.

(c) The scattering function within the nucleus is
quite accurately represented by a few radial func-
tions; moreover, the approximate function is very
reliable at the matching radius and goes smoothly
through the matching radius.

(d) The method works as well for higher partial
waves as for s waves, and there are no apparent
complications caused by the Coulomb force.

The object of this paper is to present the results
of an application of the method to a physical case—
that of neutron scattering by "C. The derivation of
the basic equations is given in Sec. II. The model of
the "C system which is to be used is discussed in
Sec. III. The details of the calculation of the total
neutron cross section of "C and the results are pre-
sented in Sec. IV.

II. THEORETICAL FORMULATION OF
THE PROBLEM

In the following, only those systems will be of
interest which conserve the total angular momentum J,
the third component of the total angular momen-
tum M, and the parity x. Hence, the states which
are defined below —the basis states, scattering states,
and surface functions —will have a definite J, M, and m,

even though these additional labels will usually be
dropped. The desired elements of the collision matrix
are obtained for each J and m- separately.

For dehniteness, the procedure is presented for elastic
and inelastic scattering of neutrons:

A+ n~B*—+A+ n
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The set of basis states l C;, i= 1, 2, . . . , E} refer to
the bound configurations which are to be used in
describing the compound system B. This set might
be part of a complete discrete set of states which are
orthogonal over all space. The functions tt, are channel
or surface functions in the sense of Lane and Thomas'
and are orthogonal with respect to integration over
the intrinsic coordinates and relative angles:

The main quantity of interest is the scattering-
wave function f, which has the asymptotic form (for
a given I, 3f, and tr)

Z (IA.~-+s- 0"4")
c~

for separation distances between rt and A (or N' and
A~, etc.) greater than the range of the nuclear force.
The functions I, and 0, are unit-Aux ingoing and out-
going radial functions. Also included in the sum are
the channels which are closed for energy reasons. In
this case, the functions (r.o,) are negative-energy
neutron functions which become essentially decaying
exponentials at large distances. The matching radius
r=a is taken to be that separation distance for which
the above asymptotic form holds.

In the interior region where r(a holds, the scat-
tering function is to be expressed in terms of the set
lC,}.One can start with the assumption that

f=f.= Q c C'.

and proceed carefully to evaluate the coefficients c,.''
Here, however, an alternative method' is followed.
The equation which P satis6es is

The integration in this matrix element and in the
operator (C, I

is carried out over the full range of the
angular and internal coordinates (represented by pa-
rentheses) and over the radial variable slightly beyond
the distance r=a:

(n I
X

I P) = lim
&~0 p

r'dr (n I
X

I P).

ys„,(ro„) b„(I,b„,+s—„,o„)5, . (8)

A set of equations for the unknown elements 5„
of the collision matrix can be obtained by taking
r=u and using the asymptotic form of iP in Eq. (1).
Projecting the result onto the surface function p,
gives

I,&„.+s,;O. = P (q4 I
4';) A ',;(c'; I z(b) I P). (9)

Putting the results of Eq. (8) into Eq. (9) gives

I,b„+S„O;=P 8, ; I (rI,)'b„"+S„-(ro,-)'
dl f

—b...(I,b„-+s„-o,-)5, (1o)
where

In this way the delta function in the operator Z(b)
is fully contained within the integration region.

With this representation for the inverse operator
occurring in Eq. (4), P is given approximately by

0= 2 c'.~ "t(c't I ~(b) I4). (7)

The matrix element appearing on the right-hand side
can be expanded as

(C't I ~(b) 14)= (&'~/2~) Z (C't I 4.)L'(rI.)'~-

(II—z) g =o, Z„„,= (ya/2~) g (@,. I c,)2-',;(c, I y.-), (11)
~t 2

in which all radial functions are evaluated at r=a.
It should be noted that the parameters b, can be

chosen in different ways. Lane and Robson' have
shown that specific choices of these parameters can
lead to different theories of the 8-matrix type which
occur in the literature. Also, the matrix E..." is dif-
ferent for different choices of the b, . In any case, the
above set of equations is to be solved simultaneously
for the quantities S„.The number of equations is
the same as the number of open and closed channels
being considered.

The bound-state problem is done analogously and
offers an example of the Qexibility in the choice of
the parameters 6,. The approach used below follows
that of Tobocman and Nagarajan4 quite closely.

The bound-state eigenfunction f has the asump-
totic form

which, following Lane and Robson, ' is modified to
become

LH+~ (b) —&54'= ~(b) 4'. (2)

The operator Z (b) is defined as

52 fdb(r-~)
I

—r-b"
I (4" I (3)

c& 2mu &dr
' j

where the constants b, will be chosen later. From
Eq. (2), P is obtained formally by operating with

LH+z(b) —E5 '.
O=EH+~(b) &5 '~(b)O-(4)

There is good reason to believe' that the operator
I H+Z(b) —E5 ' can be best represented over the
region between r=0 and r=a in terms of the set
(C„i=1,2, . . ., X} as

I H+z(b) —z5- = g I c,)a-',;(c; I, (s)
+12

where A ' is the inverse of the matrix A whose
ments are

4-Z&A
cle- d

for r&u, where u, is the appropriately normalized

(6) negative-energy radial function corresponding to the



NEUTRON-CARBON SCATTERING 128i

surface function p, . For bound states, it is convenient
to choose the parameters b, to be

c'2+n

b, = I (ru, ) '/u, ],=..

%ith this choice of b„one obtains the result

(C. I ~(f) I o&

(12)
g, , (barnstot 4

2"

E(MSV) 2

= ys,~2m) g (c„I y,) I (r~,) —l,&,], .=0. I+3-5+
2 2 2

cia

5+ 3+3+
2 2 2 2

For the situation r&a, the bound-state eigenfunc-
tion is expressed as a linear combination of the basis
functions C„:

Fro. 1. Neutron cross section on "C and the '3C spectrum.
The energy scale applies to both parts of the figure. The results
contained here are used to motivate the model used in the cal-
culation.

Using this expansion together with Eq. (2) satisfied

by f, and also the result in Eq. (13), gives

(C. I
&+&(f) —&

I 4 &= Z ~-&c'-
I
II+&(l ) &

I
c'-&—

= (c.l~(l) l~&=0

In order for this equation to be satisfied with nonzero
coefficients, c„ the determinant of the matrix A must
vanish. Hence, the equation which determines the
eigenvalue E=E, corresponding to the eigenfunction
f=f, is

det(A) =0.

This method of getting eigenvalues was applied to
neutrons in a cutoff harmonic-oscillator well by Adams. '
He also solved for the expansion coefficients c„and the
logarithmic derivative of the eigenfunction f. The
eigenvalues were found to be reliably given by using
only three or four basis functions. The logarithmic
derivative of f was found to approach the correct
logarithmic derivative at the matching radius as the
number of basis functions increased.

Note that the above results are unaffected by a
unitary transformation of the basis functions. The
R-matrix elements E... and the determinant condi-
tion for bound states are unchanged by such a trans-
formation.

III. APPLICATION TO NEUTRONS ON 'C

The method described above has been applied to
the calculation of the total neutron cross section of
"C at energies up to 8=5 MeV in the c.m. system.

The model to be used in the calculation can best
be discussed in connection with Fig. 1. In the top
part of the Ggure, the total neutron cross section is
shown up to 8=5 MeV. Below this curve and on
the same scale, the energy levels of "C are shown.
It is clear that the structure in the region shown is
dominated by positive-parity states. Also, the back-
ground is undoubtedly s wave for the most part and

therefore of positive parity. Note also the two po-
sitive-parity states at negative energies. It will be
assumed that positive-parity states alone are sufficient
to describe the cross section. This ignores the negative-
parity states near the region of interest and the p-wave
contribution to the background which comes in slowly
with increasing energy.

The model of the positive-parity states of "C is
the familiar one of a neutron weakly coupled to a
deformed axially symmetric "C core.~ ' The basis
functions used for describing this bound system —and
also used for the scattering system below —are con-
structed from the eigenfunctions of

a,=II(»C)+II.,
Here II(»C) is the kinetic-energy operator of a rigid
rotator which has eigenfunctions Sg, D~, '0 for an
axially symmetric rotator and eigenvalues proportional
to Is(Is+1). It is assumed for convenience that only
the 0+ and 2+ states of "C are important and that
these two states are at 0.0 and 4.43 MeV, respectively.

The operator B,~ is meant to be the energy operator
of a single neutron in a spherically symmetric har-
monic-oscillator potential. This operator is taken to
have the form

H,,= T,,+tsmu'r'+Cl(l+1)+Dl s+Vs (15).
The third and fourth terms here are familiar and
serve as a simple way of removing degeneracies be-
tween different values of l and j=~~. The last term
is essentially a mell-depth parameter which will be
fixed by requiring that the bound states have the
correct binding energies —all energies are measured
from the»C+e separation energy as indicated in
Flg. 1.

The eigenfunctions of II,~ are

(16)

~ D. Kurath and. R. D. Lawson, Nucl. Phys. 23, 5 (1961).' P. J. A. Buttle, Phys. Rev. 160, 719 (1967).
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where e and / are allowed to have the values

/=0, 2, 4, . . . ,

m=2, 3, 4, . . . for /=0,

v=1, 2, 3, . . . for /&0.

Then e= 1, /=0 function is eliminated as an approxi-
mate attempt to allow for the exclusion principle.
The odd-/ values are eliminated in accordance with
the assumption of allowing for positive-parity states
only. In the calculation to be described below, / values
through /=4 were used and for each / value, up to
six radial functions w'ere used.
The eigenfunctions of Ho are obtained by vector

coupling the rotator and single-particle functions, i.e.,
J&&I g p)Ip&3 U' j J (17)

It is convenient to separate the radial function E„,~

from the single-particle spin-angle coordinates and the
core coordinates and to relabel the basis states as
follows (dropping the labels J and M):

4,= p,R„.
For example, the following channels exist within

the model for J =-',+ states (Io is the core spin, l and j
are the single-particle orbital and total angular rno-

menta):
Ip=0, /=0,

8: Io ——2, /=2, j=-„
C: Io——2, /=2, j=-,'.

Channel A is open at all energies, while channels 8
and C are closed for energies less 4.43 MeV. The basis
functions can be written and labeled as

4', (z= 1, 4 7 ~ ~ ~ ) = /OLD'3'&l&' l&*$ "'R„o

(v=2, 3, 4, . . .)

4,(i=2, 5, 8, ) =1V,LD'&8&g&'**&*$ I'R.,

and, prolate; the coupling interaction is

»r =
I P I

~~'"J'~'(&&', @'). (18)

The primes indicate that the angles are measured in
the body system. The deformation parameter P is
negative and presumed small.

If the "C system were taken to be a completely
bound system at all energies, the eigenvalues and
eigenfunctions would be found by computing the
matrix elements (using the set 4,) of

H("C) =Ho+Hr = H(&2C) +Hsp+Hr (19)

H(reaction) =H("C) for r&a

=H("C)+T,~ for r) a. (20)

The radius r=a beyond which the nuclear interaction
between the "C core and the neutron vanishes is a
parameter of this reaction model, but it clearly has
a fairly definite physical meaning and its numerical
value is known approximately from other studies such
as optical-model analyses.

In order to use directly the results of Sec. II, the
states 4, and P, of this section are identified with
the basis vectors and surface functions of Sec. II.
The quantities in parentheses in Eq. (11) are the
radial harmonic-oscillator function at r= a:

and diagonalizing the resulting matrix. The "C system
is not bound for all energies, however, and this fact
should be accounted for.

To include the fact that the neutron channel is
open at energies greater than zero, it must be re-
cognized that the force binding the neutron to the
"C core is of finite range, and a reaction Harniltonian
must be accordingly constructed. Since this study is
meant more to emphasize a particular calculational
method for reactions than to be a serious study of
the structure of "C, the following simple assumption
is made for the reaction Hamiltonian:

(6=1, 2, 3, . . .) (4 I
@")=R.*( ). (21)

e, (1=3 6 9 ~ ~ ~ ) =X2[D'8'JJ&' &&*'j '"R„~2

(n = 1, 2, 3, . . .).
The quantities in front of the radial functions are
the vector-coupled core and single-particle functions.
These are the channel or surface functions @, with c
corresponding to the A, 8, and C channels above.

For J=2 and ~, there are five and six surface func-
tions, respectively, and / has the values 0, 2, and 4.

As indicated above, the interaction which couples
the rotational states of the "C core and the single-
neutron states is taken to be that due to the de-
formed part of the harmonic-oscillator well. The de-
formation is assumed to be weak, axially symmetric

One might be tempted to diagonalize H("C) over
all space and use the new basis states instead of the
4; used here. However, as noted at the end of Sec. II,
the results which are of interest here are unchanged
by such a transformation.

The set of boundary parameters b, are chosen to
be zero in determining the scattering matrix;

b, =o.

This choice of values for b, corresponds to the choice
of boundary condition (r+)'=0 sometimes used to
dehne the basis functions in the signer-Eisenbud
A-matrix theory.
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The matrix elements 2;, can be written out as

The quantities in angular brackets occurring here
are simply evaluated:

(23a)

X r'dr E„r'8;;, (23b)

choices of the radius r=a.) Then, a search is made
for the value of Vo for which the determinant of A
vanishes. Because of the different angular momenta
involved, the two determinations of Vo from the two
states are independent. Not surprisingly, it was neces-
sary to adjust the radius r=a somewhat in order to
get the two values to agree. It should be noted that
any changes in the other parameters such as C and D
of Eq. (15) make a redetermination of Vo necessary.
Also, it should be noted that changes in the radius
r=u constitute changes in the reaction model and do
not represent a dependence of the reaction theory on
this radius. As indicated in the Introduction, ex-
perience with simple models shows that changing the
matching radius while holding the model fixed only
weakly affects the rate of convergence.

Standard techniques can be used to evaluate the
angle matrix element occurring in Eq. (23b). The
radial integrals are done numerically. Only a finite
number E of basis states 4; will be used in practice.
The matrix A, whose elements are given above, is
real, symmetric, and of order E. Standard matrix-
inversion techniques are used to obtain A '. Once A '
is obtained, E, ;. is calculated from Eq. (11), and
the elements of the collision matrix are found by
appropriately solving the set of equations in Eq. (10).
The quantity of interest here is the total neutron
cross section, which involves only certain diagonal
elements S,. For the special case of "C+e, the maxi-
mum number of channels of a given angular momen-
tum and parity is six. In this work, the necessary
diagonal elements of the collision matrix were found
by using Cramer's rule, the determinants being at
most 6&(6 in size.

The problem of alignment of the H("C) energy
scale and the H (reaction) energy scale is still to be
faced. Saying the same thing in another way, the
parameter Vo in the single-particle Hamiltonian in
Eq. (15) must be determined.

One alternative is to let the joining radius r=a go
to infinity and then to diagonalize the matrix of
H("C). The value of Vo could then be found which
aligns an appropriate one of the eigenvalues thus ob-
tained with a corresponding negative-energy state in
the observed spectrum of "C.However, this approach
uses a diferent model for the bound states from the
model used for the scattering states.

A more consistent approach is to follow the pro-
cedure for bound states given in Sec. II and equate
a bound state obtained by this method with the
known physical state to obtain a value for Vo. The
procedure used here is to assume first that both the
~+ state of "C at —1.86 MeV and the ~+ state at
—1.10 MeV are adequately described by the model.
The boundary-condition parameters b, are then cal-
culated from Eq. (12) using the experimental binding
energies. (These parameters are different for different

IV. CALCULATIONS AND RESULTS

Initial values of the parameters used in the scat-
tering-cross-section calculation were obtained by struc-
ture considerations of "C.

The structure calculation which was most closely
followed is the weak-coupling calculation for mass-13
nuclei done by Kurath and Lawson. ~ Their calcula-
tion was repeated for orientation purposes and as a
check on the matrix elements involved. As in their
work, the-eigenvalues of the uncoupled Hamiltonian Ho
Land therefore the values of C and D in Eq. (15)j
were fixed by requiring that the splitting between the
1d5~2 and the 1d3~2 levels is 5.0 MeV, and between the
2s&~. and 1d5~2 levels is 0.30 MeV. Actually, these
authors were less explicit than the model described in
Sec. III in the radial dependence occurring in Hz and
in the form of the radial single-particle functions.
They simply replaced all radial integrals by a constant.

The model described in Sec. III uses an explicit r'
dependence in Hl and includes a number of harmonic-
oscillator radial functions. As expected, a repeat of
the Kurath-Lawson work with these changes makes
little difference in the lower eigenvalues when the
coupling strength P is small in magnitude.

A value of Re=15 MeV has been used in this cal-
culation. This value is considered to be a reasonable
compromise between the usual prescription of Lr
41/A'I'~17 MeV and a value of about 8 MeV, which
corresponds to the value of the harmonic-oscillator
parameter given by Kurath and Lawson.

The deformation parameter P can be obtained from
the optimum value of the coupling parameter given
by Kurath and Lawson and the above value of Sco.
The value

I P I=0.15 is obtained in this way.
To complete the determination of the parameters,

the bound ~+ and &+ states are required to have the
observed negative energies, and Eq. (14) was required
to be approximately satisfied for each case. In this
way it was determined that the matching radius r=
a=5.7 F and the well depth Vo ———53 MeV.
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TABLE I. Values of the parameters used in the calculation of the
total neutron cross section.

+5/2

C D Vp
(MeV) (MeV) (MeV)

Set 1
Set 2

0.38
0.28

—2.0—2.5
—53—49

5.7 0.15
5.0 0.45

Calculation of the cross section can now be carried
out with no further uedetermined parameters. The order
of the approximation depends on the number of basis
functions being used. From Eq. (17) and the dis-
cussion following it, it is established that the number
of basis functions depends on the number of surface
functions or channels, which is fixed for each J value,
and on the number of radial functions being used
with each channel. It is convenient to keep the number
E„of radial functions the same for each channel and
for each J value and to use this number as a measure
of the order of approximation. The angular momen-
tum states used were J=—',, —'„and —', (and, as indicated
above, only positive parities were considered). With
the "C model discussed earlier, only l=0) 2) and 4
partial waves are involved.

For each angular momentum, the matrix A, whose
elements are given by Eqs. (22) and (23), is com-
puted and numerically inverted. The R-matrix ele-
ments 2;;. are then obtained from Eqs. (11) and
(21), and the desired elements of the collision matrix
are obtained from the set of equations in Eq. (10).

An approximation to the total neutron cross section
is given by

2
~~ot

E (MeV)

4

Fxa. 3. Neutron cross section on "C. Same as in Fig. 2 except
that the second set of parameters in Table I is used.

4.0-

3.0-

2.0-

I.O-

0 = (Ir/hp') $2XRe(1—Spp+&) +4XRe(1—Spp~+)

+6&&Re(1—Spp~) g,
0 .4 l,2

, i

E (MeV) ~8 3.6 4.4 5.0

where Soo + is the collision-matrix element correspond-
ing to the target and residual nuclei being in the

Fxc. 4. Partial cross sections. The sum of the three curves add
up to the lower curve of Fig. 3.

4-

+ 5/2
Nr =4 radial functions
Nr =2 II II

Nr =6 II

2.0-
OI

D

I.O

I I 2.0 2.5 XO 5.5
E(MeV)

4.0 4.5

Fxo. 2. Neutron cross section on ~C. The upper curve and
scale show the experimental total neutron cross section. The
lower curve and scale show the results obtained by calculation
using the erst set of parameters in Table I.

FxG. 5. Convergence of calculated cross section, The position
and widths of the resonances change some when N„ is increased
from 2 to 4, but change very little when N„ is increased from 4
to 6.
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ground state. For example, for the J=-, case discussed
earlier, the A channel there is the channel here la-
beled O. Also, ko is the wave number of the incident
neutrons, and the notation Re means that the real
part of the quantity in parentheses is to be taken.

The results of a calculation of 0 using the first set
of parameters summarized in Table I is shown in

Fig. 2 along with the experimentally determined total
neutron cross section. The two curves have been drawn
separately with separate scales for clarity. The cal-
culation has X,=4 radial functions per channel (i.e.,
there are 3&&4 basis functions for J=-'„5)(4 basis
functions for J'= ss, and 6&&4 basis functions for J= s).
The over-all calculated results are qualitatively cor-
rect. However, there is an unseen —',+ resonance pre-
dicted at about E=4 MeV, and the widths are much
too small. Calculations done allowing E„ to increase
show that the results given in Fig. 2 are essentially
the converged cross section. (An example is shown
below. )

In order to increase the widths of calculated reso-
nances, the deformation parameter was increased in

magnitude. This change made necessary some ad-
justments of the other parameters in order to preserve
the observed ordering and spacing of the resonances
and maintain the positions of the bound states. While
no extensive parameter search was attempted, the
second set of parameters given in Table I was found
to give the results shown in Fig. 3. Here again, the
results are essentially the converged results obtained
using E„=4 radial functions per channel. The im-
provement is very noticeable, and the results are quite
acceptable both in magnitude and structure, con-
sidering the crudeness of the reaction model. The fact
that the calculated background becomes somewhat
low at higher energies is probably due to the neglect
of the p-wave contribution to the cross section.

The contributions of each angular momentum to
the total cross section are shown in Fig. 4. As in
Fig. 3, E„=4 radial functions per channel were used.

The process of convergence is shown for the J=~
cross section in Fig. 5. It is clear that even for E„=2
radial functions, the results are quite reasonable and
that going beyond S„=4 to 1V„=6 has very little
eGect on the results.

V. CONCLVSIONS

It should perhaps be repeated that the calculation
just described is meant to serve as an introduction
to and an application of a particular method of cal-
culating properties of a reaction. It is quite conceiv-
able that improvements in the model would lead to
improved results. Particularly, the restriction to po-
sitive-parity states is a rather unsatisfactory one, as
is also the truncation of target states to just the 0+
and 2+ states.

The main conclusion which can be drawn is that it
is possible to start with a physical structure model
and use the basis functions appropriate to that model
and proceed in a straightforward way to obtain in-
tegrated cross sections. Since the elements of the
collision matrix are obtained, there appears to be no
reason why differential cross sections, polarizations,
etc., could not also be obtained.

The results of this more physical test case are con-
sistent with the simpler cases referred to in the In-
troduction, in that a relatively small number of radial
functions are sufficient to insure that convergence has
taken place.

Finally, it should be emphasized that the present
calculations do not require the introduction of an
optical potential or the inclusion of distant levels. '
This appears to be an advantageous feature of using
nonorthogonal basis functions.

Lovas' has done a somewhat similar calculation to
the one just discussed. He also calculated the total
neutron cross section of "C, but he used both a dif-
ferent structure model and a diferent reaction theory.
Hence comparisons between the two sets of results
are not very meaningful.
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