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The sums of Pie,.
L and P{e,} are obtained by cyclic

permutation of the components of k and x. We obtain
therefore
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These are the required sums necessary in solving

Eqs. (3) and (29).
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Theory of Electron-Phonon Interaction and Defect-Center Optical Spectra*
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An electron-lattice interaction potential is derived and applied to the calculation of defect-center optical-
spectra line shapes. Results have been limited to a model in which the electron-lattice interaction involves
band-mode phonons; local modes and eigenvector-in-band resonance effects have been neglected. Spectral
line shapes are analyzed in terms of a per-mode Huang-Rhys factor S;.S; is given by the defect-center wave
functions and the electron-lattice interaction potential. Calculations are presented for the two extreme cases:
broad-band spectra, in which many phonons are excited, and spectra with detailed attendant phonon struc-
ture, in which only a few phonons are excited. The former computations are the half-width and effective
lattice frequency of the NaCl and KCl F-center absorption and luminescence spectra, which agree reasonably
well with experiments. The latter calculations are a measure of one-phonon contributions to line shapes of
centers in NaCl, KCl, and LiF. For this, only part of S;, the per-mode lattice factor L;, was evaluated. Com-
parison of frequency distributions formed from L; to attendant phonon spectra of various P-aggregate centers
showed agreement as to position of major features in the spectra.

I. INTRODUCTION

S EVERAL papers have reported optical spectra from
defect centers in ionic crystals which display zero-

phonon and detailed attendant phonon structure. '

Figure 1, an example redrawn from Pierce, '" shows the

Lip R2-center absorption spectrum. The lowest-energy
spike, at 3.175 eV, is a zero-phonon transition line where
the lattice vibrations have not been excited. The band
to the high-energy side of this line involves the excita-

*This paper is based on the thesis of JTR submitted to IIT
in partial ful6llment of the requirement for the Ph.D. degree in
Physics.

f Present address: University of Reading, Reading, England.' Some papers reporting spectra with detailed attendant phonon
structure are: F-aggregate centers in alkali haiides: (a) D. B.
Fitchen, R. H. Silsbee, T. A. Fulton, and E. L. Wolf, Phys. Rev.
Letters ll, 275 (1963); (b) C. B. Pierce, Phys. Rev. 135, A83
(1964); (c) C. B. Pierce, tNd. 148, 79'7 (1966); (d) D. B. Fitchen,
H. R. Fetterman, and C. B. Pierce, Solid State Commun, 4,
205 (1966). F-aggregate centers in MgO: (e) R. A. Shatas and
G. A. Tanton, BulL Am. Phys. Soc. 8, 541 (1963); (f) R. D. King
and B. Henderson, Proc. Phys. Soc. (London) 89, 153 (1966).
Impurity centers in ionic crystals: (g) G. F. Imbusch, W. M. Yen,
A. I.. Schawlow, G. E. Devlin, and J. P. Remeika, Phys. Rev.
136, A481 (1964); (h) D. W. Langer and H. J. Richter, ibid. 146,
554 (1966).
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FIG. 1. Absorption spectrum of the R2 center
in LiF (from Ref. 1(b)g.
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tion of lattice phonons accompanying the absorption of
an optical photon. The positions of the additional spikes
in this spectrum, relative to the zero-phonon line, are
given approximately by n&((0.031 eV), where n= 1, 2,
3, and 4, corresponding to the creation of one, two,
three, and four phonons. These spikes occur because
phonons of about 0.031 eV are much more likely to be
excited than those giving rise to the general background;
i.e., the phonon sideband of a spectrum can be viewed
as being a weighted distribution of the lattice vibration
states that takes into account, the probability of one-
or many-phonon modes being excited by a transition of
the center.

A rigorous calculation of spectral line shapes presents
some formidable problems, since it is required to know
the imperfect crystal-lattice vibrational states and the
interaction between the lattice and the different defect-
center electron states. However, experimental results
for several centers indicate that a reasonably good de-
scription of the major features of their spectra may be
calculated from a simplified model. Attendant phonon
structure in spectra from different centers in the same
crystal are often strikingly similar (e.g. , compare the R2
and 3P LiF centers shown in Figs. 1 and 8 respectively),
and the phonon frequencies associated with spikes in
the spectra correspond to relatively large values of the
host crystal's density of vibration states. This suggests
that a starting point of a calculation of the attendant
phonon structure might be to consider the interaction
between an electron and the normal vibration modes
of the host crystal. But the electron-crystal interac-
tion must take into account the details of the lattice
vibrations.

Several simplified approaches used in the past have
been unsuccessful. One of these assumes that the elec-
tron-phonon interactions occur via the long-wavelength
approximation to the longitudinal optical modes t see
Huang and Rhys" Pekar'b and Born and Huang'
(p. 82)j.This assumes that all interacting lattice modes
can be described by a single frequency. The concept
holds for free electrons, as indicated from mobility
measurements in alkali halides (see Markham, 4 p. 72),
but it does not apply to point imperfections as estab-
lished for the case of the F center (Ref. 4, Chap, X) and
centers which have resolved fine structure. Further-
more, resolved structure shows that if the frequencies
are weighted according to a Debye distribution, one ob-
tains unsatisfactory results. Also, the host-crystal fre-
quency distribution cannot be used directly since this

' F-center calculations which use a Frohlich (Ref. 5) electron-
lattice interaction are: (a) K. Huang and A. Rhys, Proc. Phys.
Soc. (London) A204, 406 (1950); (b) S. I. Pekar, Unterslchungern
Aber die Flectronen Theori der Kristalle (Akademie-Verlag, Berlin,
1954) (English transl. : Research in Electron Theory of Crystals,
M. S. S. E. C. tr. 5575).

'M. Born and K. Huang, Dynamical Theory of Crysta/Lattices
(Clarendon Press, Oxford, 1954).

J. J. Markham, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1966), Suppl. 8.

will generally have peaks that are not present in the
resolved structure.

In this paper we derive an electron-lattice scalar in-
teraction potential that takes into account the actual
details of the host-crysta] lattice vibrations. The deriva-
tion follows Born-Huang's developement of the micro-
scopic theory of optical dispersion for a medium of
vibrating ions (Ref. 3, p. 328). The resulting interaction
potential, derived in Sec. II, is linear in the lattice nor-
mal coordinates. The coeKcient of a normal coordinate
(a function of the electron position) determines the
strength of the mode's interaction; collectively, the
coefficients lead to predictions of spectral line shapes.
This interaction potential does have some similarities
with the "Frohlich' interaction picture. "By this phrase
we mean the long-wavelength limit of the microscopic
theory of Ref. 3 (hereafter referred to as BH). One of
the best presentations of Frohlich's idea is found in part
I of BH, p. 82. This presentation is useful in the develop-
ment of basic concepts, but can lead to erroneous results
if not modified when actual calculations are carried
through.

Section III discusses the eigenstates of the trapped
electron-crystal system. By means of the Born-Oppen-
heimer technique, the imperfect lattice Hamiltonian is
written in terms of the perfect crystal Hamiltonian, the
electron-crystal potential terms, and the trapped elec-
tron wave functions. Section IV deals with the problem
of calculating an optical-spectrum line shape from the
system eigenstates. The case of a highly structured
attendant phonon spectrum with a prominant zero-
phonon line, in which only a few phonons are excited
per optical transition, can be considered in a direct
fashion: i.e., an expression is derived for the spectrum
intensity in a small energy interval. For this direct cal-
culation, we introduce the per-mode Huang-Rhys factor
S;. S; is determined by the imperfection electron wave
functions and the electron-lattice interaction potential.
For the case of a broad-band spectrum, in which many
phonons are excited by an optical transition, the direct
line-shape analysis is not feasible with a general band-
mode model. For this case some results of the method
of moments are quoted. It is interesting to note that
S; remains a fundamental quantity describing the
spectrum.

Section V presents specific calculations of many-
phonon broad-band spectra and few-phonon spectra
with detailed structure, both problems requiring estima-
tion of the S;. The former calculations consist of the
temperature-dependent half-widths and effective lattice
frequencies of the NaCl and KCl F-center absorption
and luminescence spectra, computed from available
wave functions and lattice vibration data. The latter
calculations are limited to one-phonon contributions to
the attendant phonon spectra. Since reliable wave func-
tions for the discrete phonon centers are not known, we

5 H. Frohlich, Advan. Phys. 3, 325 (1954).
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introduce and calculate a measure of 5;, the per-mode
lattice factor L;, which requires only lattice vibration
data. Although phonon selection evidenced in an at-
tendant phonon spectrum is expected to show depend-
ence on the wave functions, the L; alone, which do take
some account of the electron-phonon interaction, can
predict basic features of a spectrum. The calculations
are compared to experimental spectra of various Ii-
aggregate centers in NaCl, KCl, and I.iF. Reasonable
agreement is obtained between calculations and experi-
ments for both the broad-band and highly structured
spectra.

The theory and calculations presented here, dealing
with basic features of phonon sidebands of ionic-crystal
defect-center optical spectra, is of limited scope. Many
relevant problems have not been considered. Also, some
crude approximations, reviewed in Sec. VI, have been
employed. Nevertheless, we feel that a basic under-
standing of the problems has been achieved. This re-
sults primarily from replacing concepts in part I of BH
by more rigorous ones, so beautifully developed by
Born in part II of BH.

II. TRAPPED ELECTRON-IONIC
CRYSTAL POTENTIAL

The total potential function for a solid with an im-

perfection that has trapped one or more electrons can
be written V~——Vz+Vr, where Vi is the potential
function for a perfect crystal and V& is the potential,
due to the presence of the imperfection, that must be
added to obtain the true total potential. Vq will alter
the normal modes of the perfect crystal deriving from
Vp and account for the trapped electron-lattice interac-
tion. The object here is to derive an electron-lattice
interaction potential, which comprises an important
part of Vz, under the special assumption that the major
interaction is with normal modes which are primarily
determined by the long-range lattice order. This inter-
action potential will be written in terms of the lattice
vibration parameters. The perfect-crystal potential is
first briefly described to define the notation and to in-
troduce the required vibration parameters.

Forms of the Perfect-Crystal Normal Modes

BH develop the normal coordinates several times;
their first development is in Sec. 15. This theory is com-
pletely general and has to be used in nonsymmetric
structures such as molecules and point imperfections in
solids. For our calculations the development in Secs.
24 and 38 is more useful since it utilizes the symmetry of
the perfect lattice. Here we start with the development
in Sec. 15 and end up with the normal modes described
in Secs. 24 and 38.

Consider a portion of a crystal containing nS ions,
where n is the number of ions in a cell and Ã is the
number of cells. Let u (E) be the nth (n= x, y, s) com-

ponent of displacement of the Eth ion. Then, in the
harmonic approximation, the potential function for this
macrocell portion, apart from a constant, is given by the
bilinear form

n, N 3 3

42=-,' P Q Q Q e (E)4 (X,X')u .(X'). (2.1)
K a K' 0,"

Generalized coordinates Q(j) (j=1, , 3nN) can be
found as linear combinations of the displacements
n (X):

Q(j) = Z e-(X;j)(v'~ x)~-( E)
gN z

(2 2)

c' = z Q*(j)-'~'(j)Q(j). (2.3)

In principle, one could introduce the real normal co-
ordinates q, of BH, Sec. 15, here, but instead we intro-
duce the complex ones of BH, Sec. 38. The co's are the
angular vibration frequencies. They are the 3' solu-
tions of the secular determinant.

~
(MrrcVrr ) 'I'C .(X X—') —(u'8~~ 5rrrr

~

=0. (2.4)

The usual procedure of calculating a representative
spectrum of ~(j) values employs periodic boundary
conditions to a cubic macrocell of E=L' unit cells and
uses the translational symmetry of the crystal to reduce
the dimension of the problem of Eq. (2.4) from 3nN to
3n. X distinct wave vectors y are introduced which are
specified in reciprocal space by a triple index of integers

hg, h2, and h~.

y(h) = (1/L) {h,b,+h,b,+h3bg), (2.5)

where the b; are reciprocal-lattice vectors defined in
relation to the primary unit lattice vectors a;:

b; a, =b;;. (2.6)

The E values of y are confined to the first Brillouin
zone which, for NaCl structure, is chosen such that the
integers h; are restricted by

——,
' &h;/L & -,',

——;& ah, /Lw h,/L+ h,/L & —;.

(2.7a)

(2.7b)

The secular determinant Eq. (2.4) now factorizes such
that for each y there are 3n frequencies and normal co-
ordinates &u(y, y) and Q(y, y) (y= 1, , 3n). Similarly,
the ion index X becomes the pair of indices l (1= 1,

, N) and h (k=1, , n), which designate a unit
lattice cell and an ion within a cell respectively. m (X)
and Mrr are written as n (l,h) and Nl, . The coordinate

(3Err is the mass of the Eth ion), such that 42 takes on
a diagonal form:

SnN
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transformation coefficients e (E; j) become'

(2 8)

For NaC1 structure we may choose the eigenvectors
as real and such that they transform as y:

e(k; —y, p) = —e(k; y,p). (2.10)

where x(l,k) is the position of the kth ion in the 1th lat-
tice cell and the coeflicients e (k; y, y), called eigenvector
components, are associated with the determination of
the normal frequencies.

The inverse of the transformation Eq. (2.2) reads

sn e (k; y,p)
N-(t, k) =- 2 Z s""*"" Q(y V) (29)

+1V r v QMi

V' K~~=4zp (2.16)

Scalar Electron-Lattice Interaction Potential

In general, an electromagnetic interaction may be
described by a vector potential and a scalar potential.
The primary electron-phonon interaction occurs through
the scalar potential since the Inotions of the electrons
and ions are small compared to the velocity of light. We
derive below a scalar electron-lattice interaction poten-
tial. The potential is resolved into a Fourier series whose
maximum wavelength equals that of the phonon. We
only keep this component to obtain the interactions.

Consider first the microscopic fields of a point-ion
lattice undergoing harmonic vibrations. Following BH,
Sec. 44, we use the microscopic Maxwell equation

The reality of Eq. (2.9), taken together with the con-
vention Eq. (2.10), implies that

Q*(y v) = —Q(—y, v). (2.11)

and the equation of continuity

g. Jl 1 = —p

El l = —4ir Jll.

(2.17)

(2.18)

It follows that

qi( —y, v) = —qi(y, v),

q (—y, V)=qs(y, V)

(2.13a)

(2.13b)

In expressing ion displacements in terms of the real
normal coordinates, Eqs. (2.13) and (2.10) may be
used. One restricts the summation over y to —,'E points
in reciprocal space that lie on one side of a plane passing
through the origin of the Brillouin zone. Thus

—;iv sn e(k; y,~)
u(l, k) = P P Lqi(y, y) cos2sry x(t,k)

QE r v QMi,

—q&(y, y) sin2wy x(t,k)]. (2.14)

Similarly, the potential function becomes

It is convenient to introduce real normal coordinates
qi(y, 7) and qs(y, y) defined by

Q(y, y) = (1/v2) Lqi(y, y)+iqs(y, y)]. (2.12)

J=P P esb$x —x(l,k)]u(l, k), (2.19)

where ei, is the ionic charge. From Eqs. (2.18) and (2.19)
we obtain

Ell = —4n. Q g esbfx —x(l,k)]nil(l, k)+e, (2.20)

where ull(l, k) is the longitudinal part of u(l, k) and the
constant of integration ~ is the microscopic field for the
ions fixed in their equilibrium positions, which we can
delete from our calculations.

Vsing Eq. (2.9), Eq. (2.20) becomes

Ell and Jl' are the longitudinal (lamellar, irrotational)
parts of the microscopic electric Geld and current den-

sity, respectively. We have used the fact' that any
vector v may be written as the sum of its longitudinal
part vll and its transverse (solenoidal, rotational) part
v', where V')&v~I—=0 and V' v'—=0. The microscopic cur-
rent density may be expressed as follows':

-';N 3n 2 SnN

where j is a collective mdex for (y,&,) ). We take Eq.
(2.18) as our perfect crystal potential Vt . The quantities
co'(y, y) and e (k; y, y) have been calculated by a number
of workers for several crystals of interest from various
models of the quadratic coupling coefficients C .(E,E').
We consider the frequencies and eigenvectors as known
quantities.

&&Q(y, y) exp(27riy fx(l, k) —x]) e' 'r *. (2.21)

t

ell(k; y,y) is the component of e parallel to y. The ex-

pression in large curly brackets is a periodic function of
the lattice and therefore representable by a Fourier

C'2=a 2 Z 2 ~'(y, v)q"(v, v)=l 2 ~'(i)q'(j), (21~) 4z ell(k; y,y)
J V Ell =P Q — P P esbLx —x(l,k)7

v +IV t +Ms

e The e(k; y,y) are the eigenvectors of Ref. 2, Sec. 24; the eigen-
vectors of Sec. 38 differ by the phase factor expL2viy x(k) j, where
x(k) is the position of the kth ion in the zeroth cell.

7 Some of the lattice vibration calculations are: (a) E.W. Keller-
mann, Phil. Trans. Roy. Soc. London A238, 513 (1940); (b) A. M.
Karo and J. R. Hardy, Phys. Rev. 129, 2074 (1963); (c) S. S.
Jaswal (private communication).

' J. G. Co%n, Vector Arcatysss (John Wiley 8r Sons, Inc. , New
York, 1911),2nd ed. , p. 155.

~ See Eq. (44.20) of Ref. 3. The small displacements u(l, k) have
been omitted from the 8 functions, v hich has the effect of centering
each ion's current;-density contribution at the ion's equilibrium
position.
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series:
{ ) =Q E~~(h y,y) expL2miw(h) x]t (2.22)

where the expansion wave vectors w(h) reflect the trans-
lational symmetry of the lattice; i.e., w(h) are the
reciprocal-lattice vectors

The complex normal coordinates may be replaced by
the real normal coordinates by using Eq. (2.12), and the
summation over y can be restricted to one-half the
Brillouin zone by using the conditions imposed by Eqs.
(2.10) and (2.13):

w(h) = bib i+ hgb2+hiibii,

hg, h2, ha=0, &1, +2, ~ ~ ~ . (2.23)

ZZ Z Ze~
y y it=12 it

The Fourier coeKcients are readily evaluated (BH, p.
215):

E~~(h; y,y)
&(cos2xy. x,

&( —sin2my x X=2

&a ero cel1

dr — Q Q eili't'x —x(l,k))
I

where

e (k y v) = L(y/ I y I ) e(k; y,y) j(y/I y I ) (2 28)

e~~(k; y,y)
X Q(y,y) expL2~iy (x(l,k) —x)

3f
We introduce the macroscopic scalar electric poten-

tial V, consistent with the Coulomb gauge, such that

—VV=.l~. (2.29)
—2~iw(h) xj A solution for V may be readily found from inspection:

47r e~~(k; y,y)
Z e~ Q(y, V)

1V & Mi,

XexpL —2~iw(h) x(k)]. (2.24)

Here v is the volume of a unit cell and is given by 2ro',
where ro is the distance between nearest neighbors.

From Eqs. (2.21), (2.22), and (2.24) it follows that the
microscopic 6eld may be written

E"= — P P Q(y, y)g exp{2miLy+w. (h)j x)
Q y p a

e~~(k yy)
— expI —2~iw(h) x(k)j. (2.25)

3fI,

For every Q(y, y) there is a macroscopic field associated
with h= 0 and some detailed structure within every cell
when. w(h)WO. Our technique does not give the field
within the cell since we consider the ions to be point
charges. This ion can be displaced and polarized; hence,
this does not correspond to the "point-ion model" de-
veloped by Gourary and Adrian. Furthermore, in most
calculations of the wave functions one obtains the en-
velope wave functions and ignores the variations of the
potential within the cells. Hence, one requires only the
field corresponding to 5=0. We therefore consider only
this term and write (see also BH, p. 332)

in- c~~(k; y,y)2 2 Z ~ Q(y,v)
1V r» Ni,

Xexp(2siy x). (2.26)

EZRA"
'lie++ r y i=i, 2

f y ) e(k;y, v)
Vi(y, v) (2 3o)

&Iyli v'm~ —lyl

)&sin2xy x,

)&cos2~y x, X=2.

The electron-lattice interaction potential is the eIec-
tron's charge times V.

We can show that a similarity exists between this
interaction potential and that of Frohlich' (also see BH,
Sec. 8, and Refs. 2a and 2b). Frohlich has considered
a phenomenological Hamiltonian written in terms of the
lattice infrared polarization Le.g. , Eq. (2.22) of Ref. 5j:

+electron+lattice+~ interaction

—e d'r D P;., ~', (2.31)

where the constant y in Eq. (2.31) is given by

1/y = (tc'/4m-) (1/e„—1/c) .

~ is the frequency of the longitudinal optical modes io
the long-wavelength limit; e„and e are the high-
frequency and static-dielectric constants, respectively.
The interaction potential satis6es

—gradV= —4~P;., ~~. (2.32)
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This may be compared to the field term due to the (y,y)
mode's contribution to the potential given by Eq.
(2.29):

4tr e~(k; y,y)——Q es Q(y, y)e' ' '

n, & QJVQMs
(2.33)

When x has the value x(l,k), the term in square brackets
is just the (y,y) mode's longitudinal displacement of the
:(t,k) ion from its equilibrium position. Thus, the quan-
tity Eq. (2.33) appears as —4tr times the longitudinal
macroscopic polarization produced by a vibration mode.
Although the interaction field of the potential Eq.
(2.30) and the Frohlich interaction field may both be
viewed as polarization terms, the restrictions imposed
hy phenomenological considerations have been re-
moved, i.e., a simple single-frequency lattice model has
been avoided.

The rigid or point-ion model of the lattice employed
in the derivation of the potential may be superseded by
a more realistic ion model in a simple way. From the
work of Szigeti" (see also BH, p. 112) we see that some
allowance for the fact that the ions are extended polariz-
able charge distributions may be taken into account by
assigning to the ions an effective charge of magnitude

eI, =se, (2.34)

where ~e~ is the magnitude of the electron charge and s
is the Szigeti charge coefficient. These have been tabu-
lated for a number of ionic crystals in the above-
mentioned references. The use of the Szigeti charge
,coefficients is consistent with the lattice-vibration data
used in the calculations (see Sec. V). These data have
'sheen computed on the basis of the Karo-Hardy de-
:formation dipole model by Jaswal. '

To simplify the notation, the real normal coordinates
are denoted by the single index j replacing the (y,y,X).
'The electron-lattice scalar potential energy takes the
form

yields
+n, v +n, v+n, v (3.5)

~-LTz+e. (q) j&-, +~(~-&-, ) = ~-&...&-,' (3 6)

Z(y„X„,„) is the nonadiabatic term. It is conventional
to delete this term; thus,

L&z+ -(q)3~-,.(q) =&...~-,.(q) (3 7)

Two interesting features of Eq. (3.7) are: (i) The elec-
tronic eigenvalue becomes the potential function of the
lattice Schrodinger equation; (ii) the lattice eigenvalue
is taken to be the total energy of the system.

The potential e„(q) can be expanded:

s-(q) =e-(0)+2 e-(j)Vt+s 2 e-(i,i')atilt'+ (3 g)

For any given set of q's we may always write

Vr=ao(r)+Z gi(j r)V+s 2 ~'(j)C'

where TI and f are the kinetic-energy operators for the
ions and the trapped electron (or electrons), respec-
tively. The electronic Hamiltonian is defined as follows. '

X.= t+ Vr. (3 2)

For each fixed ion configuration, and hence fixed set of
generalized ion coordinates q, (the set being denoted
by q), this Hamiltonian defines an electronic Schrodinger
problem:

5(',v. (q; r)= -(q)~-(q; r) (33)
One can introduce any set of linearly independent q, of
which there are an infinite number. The eigenvalues and
eigenfunctions depend on the particular frozen con-
figuration q. The total system eigenstates are approxi-
mated by

»'-, (q; r) = ~-(»; r) &-,.(q), (3 4)

where v denotes additional quantum numbers. Substitu-
tion into the eigenvalue problem

—eV= —eP f(j; r)q, , (2.35) +s Z gsU,i' r)CV'+, (3'9)

where the f(j; r) are the functional coeKcients of Eq.
(2.30). r is the position of the electron.

III. EIGENSTATES OF SYSTEM

Here we are concerned with the problem of determin-
ing the shape of optical bands; hence the main interest
is in the lattice-vibrational eigenstates. The Born-
Gppenheimer technique is used to investigate these
eigenstates as a function of electronic states. The pro-
cedure follows techniques outlined previously. "

The total system Hamiltoniaii is given by

e (q) = d'r p *(q; r)5e, q „(q; r) .

Furthermore,

(3.10)

where the co's are not a true angular frequencies since g&

and g2 do not equal zero. The only problem ignored here
is that there could be fewer degrees of freedom in the
actual crystal. In the case of an F center, the crystal has
three degrees of freedom missing because of the ionic
vacancy.

The electronic energy is

BC= Tz+ t+ Vr, (3.1) e (0)=—e„(q=0)

' B. Szigeti, Trans. Faraday Soc. 45, 155 {1949);Proc. Roy.
Soc. (London) A204, 51 (1950).

tt J.J. Markham, Rev. Mod. Phys. 31, 956 (1959).
d'r y„*(»=0;r)Lt+g, (r)jq„(»=0; r) (3.11)
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and

' (j)=
B~z

d'r q „*(q=0;r)- y„(q=0; r)
~(g' q=u

In the Condon and dipole approximations, the optical
transition rate associated with light of angular frequency
v and a definite imperfection electron transition from
a state g (ground) to a state u (upper) is proportional to

d"
I ~-I'a (j; r), (3.12) o'(v) =Kf„g[Av, P I {&-,"I &.,.}I

g'

If e„(j,j') =0 for j'& j, one may relate (3.13) to (3.8)
as follows:

(3.14)q-(j) =q t3q-(1)—

where
~-'(i) =~'(i)+t-(j j) (3.15)

e-(i)
~q-(j) =—

~-'(j) ~-'(j)
d'r

I v .I
'g (j ; r) (3 16)

where the Feynman theorem (BH, p. 189) has been
used. The linear lattice-potential coefticients are de-
termined by the linear total-potential coefficients of
Eq. (3.9) and the electronic eigenfunctions.

If the true normal coordinates q„(j) had been intro-
duced, the lattice Hamiltonian would have the form

3('--(L ) =T + -(0)+l 2 -'(j)q-'(j) (3 13)

XB[(F.„,„.—Zg„)—Avj, (4.1)

where 3 is the Dirac 8 function, f„, is the transition
oscillator strength

4 ns-
f~p= p

3h
d r &p„

ling

(4.2)

and E involves such factors as an "effective Geld ratio"
and the concentration of imperfections. E„,„and E, „
are the upper and ground-state system energies (lattice-
state eigenvalues), respectively; E,„—E,,, includes
the electronic-state transition energy and the change in
the vibrational energy of the lattice. Q„.denotes a sum-
Ination over all possible final lattice states, while Avz
denotes a thermal average of the initial states.

Using the closure relationship

(See Ref. 11, p. 959, for details. ) In view of (3.13), the
lattice functions have the form

P Ix„,„}{K„,„ I
=1, (4 3)

~-,.=II X-Lv ~-'(j) q-(j)j it follows that

~[v&& & (j)+t (j j) q&
—

q (j)]. (3.17) & I { -."I 0, }I'

We stress that the simple product form applies only to
the q„'s and not to our arbitrary set introduced in Eq.
(3.3). The true modes of a crystal with an imperfection
are not the perfect lattice modes.

Omission of the e„(j,j') terms for j'N j may be a
rather crude approximation, as it can be shown that this
neglects the eigenvector effect (a change of the eigen-

vectors from those of the perfect lattice, particularly for
ions in the vicinity of the defect) discussed by Casselman
and Markham" and by McCombie, Matthew, and

Murray.

IV. METHOD OF LINE-SHAPE ANALYSIS

~e are primarily concerned with defect-center opti-
cal-spectra band shapes in which there is detailed at-
tendant phonon structure. A direct method of line-shape

analysis is described that is suitable for this calculation.
The fundamental details of the theory of optical tran-
sitions is left to the references (e.g. , Dexter" or
Markham').

=Ave P {Xg „Ix„,„}{K„„.I x, „}
v'

=Av, {X,„I X, „}=1. (44)

Therefore, if we neglect the frequency dependence of
Kf„„ this result means that the quantity in square
brackets of Eq. (4.1) is a normalized absorption line-
shape function. The overlap matrix element M„,&

X (v, ',v;) is defined as

The normalized line shape is described in terms of a dis-
tribution of quantities AvT g, IM„,'(v, ',v;) I'.

We make the assumption that the change in the nor-
Inal coordinates is the dominant effect in coupling differ-
ent vibrational levels and we neglect the change in the
lattice frequencies accompanying an electronic transi-
tion; hence oi,(j)= &o (j)= &v;. To systematize the calcu-
lations, the per-mode Huang-Rhys factor is defined

~-.'(v"»t)={x [»' ~'(i) q
—~q (j)jl

XX.[v ~.'(i) q
—~q.(j)j} (45)

"(a) T. N. Casselman and J. J. Markham, J. Phys. Chem.
Solids 24, 669 (1963); (b) C. W. McCombie, J. A. D. Matthew, g.—[q (j) q (j)jr~ y2y
and A. M. Murray, J. Appl. Phys. Suppl. 33, 359 (1962).

"D.L. Dexter, Solid State Phys. 6, 353 (1958). = [~q-(j)—~q. (j)3'~J/2& (4 6)
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&sing Eq. (3.16), S; becomes

L' (j) ' (j)]'
S;=

2 bc'&'

1

2jhco&

d'r gt(j r)(l &'I' —
I ~gl') (47)

It can be shown'4 that, in the approximation employed,
It/I„, r(tr, trr) is given by

(~',~)=L(v,.) l( ')

ye—s//s(S/) le/' —e/i/sI lw/' —e/i(S. ) (4 g)

where I.b'(x) is an associated Laguerre polynomial.
In order to simplify the discussion to follow, we con-

sider only the limiting case of extremely low tempera-

tures, i.e., e;=0. For this case, the matrix element Eq.
(4.g) has the simpler form"

We define the distribution si(Aor) as follows:

1 fi(61+&ed)

si(kor) = P S, .
A co.=key

(4.14)

Hence, the one-phonon spectrum intensity distribution
1s

I,(kv Av „v a—Aor) =——e—ss, (reer) . (4.15)

The fraction of the integrated intensity due to one-
phonon processes is

between /s(v„, +or) and ALv„g~(or+&or)] is

ItPi(v„,+or)]M or

A (co+Aco) 5(co+6,o) )
Adv ii(rsv) =e s g S (413)

r'(tr I 0) LS u/ e—s//(tr ) t]1/2 (4 9) dE Ii(E) = e—ss, (E)=e sS. (4.15

The transition which leaves all the vibration modes
unexcited (i.e., all trr'=0) constitutes the zero-phonon

line, which has zero width in our approximate model.

The contribution of this line is

I,y„)=g Im„,'(o,o) I
sP(.—.„,)]

=e—
sc'ALA(v —v„,)], (4.10)

where v„, is the angular frequency of the zero-phonon

line and

The relative probability of a transition creating just
two phonons in the jth and j'th modes is

f/ld„, (1,o) I I1lI„,'(1,0) I H Im„„"(O,O) I

&i i
=S;S"e s (j'&j) (4.16a)

ol

l~-.'(2,O) I' D l~"'"(o,o) I'
S=Q S;. (4.11)

=e S;!if Av —A(v„,~or,)], (4.12)

where the plus sign corresponds to absorption and the
minus to emission. Therefore, the contribution of one-

phonon processes to the spectrum in the energy range

ic (a) T. H. Keil, Phys. Rev. 140, A601 (1965); (b) J.T. Ritter,
Ph.D. thesis, Illinois Institute of Technology, 1967 (unpublished).

"Equation (4.9) was first obtained by Pekar, based on the as-
sumption that Aq„(j)—& 0 and the number of modes are very large.
Reference 11 gives a general proof for the case where the phonon
frequencies are not effected by the electronic transition and calls
the resulting band shape "Pekarian. " However, !M„&'(v,,0)!'
actually gives the Poisson distribution! see Eq. (4.21)g.

Thus, e ~ is the ratio of the zero-phonon line intensity

to the integrated intensity of the entire spectrum, or the
zero-phonon relative transition probability. S is the

generalized Huang-Rhys factor or "S factor" used by
many authors. 4

The transition event in which a single phonon is

created in the jth mode, all other modes remaining un-

excited, contributes to the spectrum according to

st(Av)

= I1M., (1,o) I' lI Im-, '(o,o) I aPv —@(v„,~~;)]

=—Srse s (j'=j). (4.16b)
2I

Therefore, the two-phonon spectrum intensity distribu-
tion may be expressed as

Is(Av —Av v
=a Ace) = e ss, (/t/or);—

the two-phonon distribution s&(reer) is defined by

(4.17)

ss(Aor) = 1 g (co+66e)

L(1/2!) 2 S.S ],
hd(0 jI,j2

(4.1g)

s2(E) =(Ii2!) dE"t(E').,(E—E').

It follows from Eqs. (4.15'), (4.17), and (4.19) that the
fraction of the integrated spectrum arising from two-

where 5(or;,+or;,) = /so/. The (1/2)! correctly weights the
case of two phonons being created in the same mode, as
well as taking into account that if the two different
modes j and j' satisfy the energy conditions, then this
term is counted 2! times by the sum. ss(E) may be ex-
pressed as a convolution of si(E) as follows:



ELECTRON —PHONON INTERACTION AND DEFECT SPECTRA 1209

phonon processes is ard deviation 0..
sr(E) = S[1/(2~)'"o.] exp[ —(E—A&a,)'/2o']. (4.23)

dEI2(E':)=e s dEs~(E)=e sS'/2!. (4.17') s„E is given by

where A(~;+ +re, )= E. If one term of Eq. (4.20)
involves n different modes, then the factor (1/n!) ac-
counts for the n t rearrangements of this term. If a con-
tribution involves the creation of L phonons in the /th

mode, L' phonons in the l'th mode, etc. , then the
(1/n!) accounts for the repetitions of this term and
properly weights it by (1/L!), (1/L'!), etc. , as required

by Eq. (4.9). &he number of modes need not be large
nor all S, be small for this relationship to hold; it holds
even if one employs a single mode in the calculations.
The s„(E) may be expressed in terms of s&(E) as
follows:

00

s„(E)=— dEI
t

dgn —1

&&sr (E')sr (E")

sr[E—(E'+E"+ . +E" ')], (4.20b)

dE' sr(E')s„r(E—E') . (4.20c)

Furthermore, the fraction of the spectrum's integrated
intensity due to n-phonon processes is

We may generalize to the case of the n-phonon dis-
tribution s„(E):

1 E+6E
s„(E)= [(1/n!) Q S;,S,, S,„], (4.20a)

AR

m' =M2/M p
—(3E,/Mo) ', (4.25)

where HEI„ is the nth moment of the band. m' is given by

m'=g A'co'S coth(A~;/2kT), (4.26)

where T is the temperature. If the band shape is Gaus-
sian or Poissonian with large S, then the full width at
half-height H(T) is given by

H'(T) =(8 in2)m'

s„(E)= (S"/n!)[1/(2mm) '~'o]

Xexp[ —(E—nAre )'/2na']. (4.24)

Thus s peaks at nkco, and the standard deviation is
(Qn)o. . If the interacting vibrational modes are en-
visioned as having a single effective frequency &u. (as in
either a single local mode or con6gurational coordinate
model, " or the Frohlich longitudinal optical modes
modePb), then Eq. (4.22) is a series of 8 functions A&v,

apart and weighted according to a Poisson distribution.
The broad P-center band is often described by a single
effective frequency. We feel that the smoothness of the
Ii band arises from phonon dispersion.

Equation (4.22) represents a possible method of cal-
culating a spectrum line shape when the sum coverges
rapidly. This means that S must be small in order for
this to be a practical approach. This is the situation
when a strong zero-phonon line and detailed discrete-
phonon structure occurs. In lieu of this, we quote a re-
sult of the methods of moments" suitable for broad-
band calculations. The important quantity is the square
deviation m', defined by

E(e)=e s dE s„(E)=e—sS"/et. (4.21) = (8 ln2)g A'aP&S, coth(Aa&, /2kT) . (4.27)

It is interesting to note that the discrete-phonon spec-
trum distribution having the largest fractional contribu-
tion to the integrated intensity occurs for an integer
n=(S——',).

The total spectrum-distribution function is the sum

of the distribution terms we have just considered; thus

I(Av Av„v WE)— ——
=e e[8(hv)+sr(E)+ . +s„(E)+ . ]. (4.22)

Since the integration of the nth term yields S"/n!, which
is the nth term in the series expansion of exp(S), it fol-
lows that Eq. (4.22) is a normalized line-shape function
as expected.

In order to demonstrate the nature of the terms of Eq.
(4.22), we shall consider the assumption that sr(E) is
a Gaussian distribution centered about Acr. and of stand-

We see that S, also enters into broad-band calculations.
S enters the calculation only in special situations where
one can take averages over sums such as those appearing
in Eq. (4.27). If a broad band is described by a single
effective frequency co„ then

H'(T) = (8 ln2)A'~ 'S coth(Aca, /2kT)
(special case) . (4.27')

V. CALCULATIONS

This section reports calculations on: (i) the F-center
half-width in NaC1 and KC1 "; (ii) the one-phonon line
shapes in LiF, NaCl, and KCl. '7 Both types of calcula-

"These calculations were reported previously! see Phys. Letters
25A, 675 (1967}j and are included here for completeness."The KCl calculations have been partially reported previously
Lace Phys. Letters 24A, 524 (1967}g.
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tion are based on the expression for S; given by Eq.
(4.7). In this equation the g&(j; r), which are the general
linear coefficients of the system's potential, are taken to
be ef—(j; r), where the f(j; r) are the scalar potential
coeKcients derived in Sec. II Lsee Eqs. (2.30) and
(2.35)) and —e is the electron charge. Since (~ q„~'
—

~ p, ~') has even parity,

dsr(~ y ~' —
~ q, (s) sin2s-y r=0,

we need evaluate only

I(y) = d rs(~ y„)s—[&p, [') cos2sy r. (5.1)

S; becomes

and of Gilbert. " Their wave functions are "is-like"
ground-state functions p, (1+nr)e ~' and 2p, upper-
state functions p„re ~" cos8, where the n and P were
determined from a self-consistent variational calcula-
tion. In these calculations y were taken to be of a
spherically symmetric form. I(y) then depends only on
the magnitude of y and can be analytically evaluated.

X(T,C) plots were made with calculated H(T) data.
These plots are straight lines within the rounding-off
errors (about 1%), and the slopes define the calculated
effective lattice frequencies. However, C cannot be de-
termined with much precision. Values of S were com-
puted from Eq. (4.27') with T=O. Calculated results
are compared with experimental results in Table I.

A value of C determined from these calculations is
nonzero because H(T) is computed from a distribution
of frequencies. Thus the calculations are fitted to a phe-

1 e2&2 y; e(k; j)
TABLE I. Calculations and experimental data for the F-center

absorption and emission spectra in NaCl and KCl.

where the j's are selected so that X= 2. Perfect crystal
vibration data (eigenvectors and frequencies) were used
in all computations. These were calculated and supplied
to us by Jaswal, " who used the deformation dipole
model developed by Karo and Hardy. ' Some computa-
tions were also made for comparison, using Kellermann '
rigid-ion-model data. 7'

Half-Width of the E Band

If a broad-band center "sees" a single-phonon fre-
quency co., then Eq. (4.27') applies and

arccothLH'(T)/H'(0) j
plotted against k/2kT is a straight line through the
origin with co, as its slope. Such a plot with alkali-
halide F-center data does form a straight line within the
experimental error, and this defines an effective fre-
quency for the center. ' However, for some alkali halides
the line does not extrapolate to the origin. For these
cases' "one plots

X(T,C)= arccothL(Hs(T) —C)—/(H'(0) —C)j
against $/2kT, where C is a constant chosen so that the
straight lines extrapolate to the origin. We shall return
to the question of the meaning of C.

The half-width calculations reported here assume that
many-phonon frequencies are involved and Eq. (4.27)
applies. For each case considered, the S;were computed
for a representative sampling of 6000 modes corre-
sponding to a "Kellermann~ mesh" of 1000 wave-vector
points y uniformly distributed in the Brillouin zone. By
using NaCl symmetry, one need specifically consider
only 48 points in 1/48 of the zone (see Kellermann
for details). The wave functions used to compute the
integral I(y) were taken from the work of Fowler"'

» J. J. Marl. ham and J. D. Konitzer, J. Chem. Phys. 34, 1936
(1961).

Experimental
Calculated data data+

Gilbert's Fowler's
wave wave

functions functions

NaCl
Absorption
Data

NaCl
Emission
Data

KCl
Absorption
Data

KC1
Emission~

Data

a(A ')
P(A ')
H(0) (eV}
co.(10"sec ')
C (eV2)

S
a(A ")

P(A ')
H(0) (eV)
cv, (10'3 sec ')
C(eV')
5
n(A ')
P(A ')
H(0) (eV)
co.(1013 sec ')
C(eV')
5
u(A ')d

p (A
—

1)d

H (0) (eV)
ar.(10"sec ')
C(eV')
S

1.067
0.821
0.250
3.10
0.004

27

0.606
0.078
0.404
4.20
0.008

38.4

0.995
0.722
0.173
2.59
0.0015

18.5

0.462
0.101
0.294
3.61
0.005

27.5

1.057
0.782
0.192
3.13
0.005

15.6

0.822
0.189
0.485
3.91
0.020

63.9

0.255
2.76

—0.01b

35 3c

0.337
3.71
?

34 3c

0.163
1.86
0.00b

31 9c

0.261
2.86
?

34 7c

"(a) W. B. Fowler, Phys. Rev. 135, A1725 (1964); (b) R. I..
Gilbert, Ph.D. thesis, Illinois Institute of Technology, 1967
(unpublished}.

a W. Gebhardt and H. Kuhnert, Phys. Letters 11, 15 (1964).
b From Ref. 18.
e Recalculated from Ref. a, above. Some other values of S experimental

are: for NaCl, 40 /see J. Markham and J. Konitzer, J. Chem. Phys. 34,
1936 {1961)g and for KCl, 28.4 fsee J.Konitzer and J.Markham, J.Chem.
Phys. 32, 843 (1960)j.

& The values used in KC1 emission are obtained by Gilbert in his thesis
(case V2). The published values have been corrected. The new values
would give better agreement with experiment, but we have not repeated
the calculations.
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nomenological single-frequency model in which the
half-width obeys" '

H'(T) =C+D coth(her. /2kT), (5.3)

where C and D are constants (see Ref. 11, which dis-
cusses the possibility of C arising from an oscillator-
strength dependence on the lattice normal coordinates).
Figure 2 shows plots of arccothLH'(T)/Hs(0) j against
Aor, /2kT for various ratios of C/D. (We use values of C
that are larger than realistic in order to demonstrate
the situation. ) The appropriate C in an X(T,C) plot
produces the central straight line. There is a basic
failure of these calculations to predict the proper sign
of C (see the NaCl results in Table I). This failure may
be because the calculations have neglected the depend-
ence of the F-center wave functions and forms of the
lattice vibrations upon temperature, or perhaps C is not
primarily determined by phonon dispersion.

- ).0

.6
ly lroyZ

1.0

Fxo. 3. I(~ y~) as a function of reduced wave vector based
on Powder's (16a) NaCl wave functions.

,0'

rapidly. The calculations reported here are limited to
the one-phonon distribution term since the S; required
could not be estimated with su%.cient accuracy to
warrant further consideration. However, the one-
phonon region of a spectrum has the sharpest resolved
structure and hence it can be compared to calculated
phonon structure with the least ambiguity.

S; of Eq. (5.2) is now written in the form

~u~/2kT

S;=L;F;,
where the factor L; is defined by

1 e&/ y, e(k;j)'I=—2 —
I

e &[y, /' gM

(5 4)

(5.5)

l'ro. 2. Illustration of X(TC) plot when EI(T) is given by Ecl. (35).
Note that Fig. 8 of Ref. 11 was mislabeled.

The marked difference between effective frequencies
for absorption and emission arises from the dependence
of the electron-phonon interaction on the electron wave
functions. Figure 3 shows l(~ y ~ ) calculated from
Fowler's'" NaC1 F-center absorption and emission

wave functions. LNote that P(~ry~) is actually re-
quired. $ Since the emission wave functions are much
more diffuse than those of absorption, longer-wave-
length (smaller

~ y ~ ) phonons are more important in the
emission band broadening. It is the relatively large con-
tributions of the long-wavelength optic modes to the
emission band that accounts for its effective frequency
being substantially higher than that of the absorption
band.

One-Phonon Line Shayes

A defect center whose spectrum shows detailed at-
tendant phonon structure and a prominant zero-phonon
line (relative intensity= e e) has a small S factor and
the line-shape representation of Eq. (4.22) converges

I; is called the per-mode lattice factor and depends only
on the lattice vibration data. F; is given by

F'= (4e4/e'&)I'(yi) . (5.6)

The wave functions are not known for those centers in
alkali halides whose optical bands show discrete-phonon
structure. Therefore, it is impossible to calculate F,,
and hence S;. Correspondingly, we have made the as-

sumption that a distribution formed from the L, con-
tains the essential features of the one-phonon distribu-
tion factor sr(Aor). This is equivalent to the assumption
that. I(y;) is a constant independent of the mode j.
Some feeling for the error that this introduces can be
found from the F-center calculations above. It is clear
from Eq. (5.1) that F;~ 0 as ~y;~ ~ 0 (see Fig. 3).
Hence, our approach here greatly overestimates the
long-wavelength modes.

For KC1, NaC1, and LiF crystals the L, have been
computed for the 6000 representative modes associated
with the "Kellermann mesh" as for the P-center calcu-
lations. These L; are grouped according to their fre-

quency to form lattice-factor distributions. Comparisons
are made between these distributions and phonon-
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ABSORPTION SPECTRUM
OF Rp CENTER IN LiF

l
~ I

~PHONON ENERGY

~PHONON ENERGY
L

Fro. 4. Absorption spectrum of the KCI Rq center
t from Ref.

1(b)g compared to the lattice-factor distribution and density of
vibration states. (Asar, =0.026 eV).

structured spectra of various F-aggregate centers by
placing the origin of a lattice-factor distribution at the
zero-phonon line of an experimental spectrum. Figures
4—6 show predicted line shapes from one-phonon con-
tributions and the experimental absorption spectra of
the R2 centers in KCl, NaC1, and LiF, respectively,
obtained from Ref. 1b. The calculated distributions of
phonon states of the host crystals are also shown for
comparison purposes. The observed line shapes contain,
of course, multiphonon structure and they continue well
past the photon-energy limit (Isv„,+&&or,) associated
with one-phonon processes, where col, is the maximum
angular frequency of the lattice phonons. The abrupt
drop in the calculated one-phonon line shape at the pho-
non energy Ace& occurs because the factor P; was ne-
glected. If Ii; were taken into account, the one-phonon

Fro. 6. Absorption spectrum of the I IF Rs center Lfrom Ref.
1(b)g compared to the lattice-factor distribution and density of
vibration states (Acyl, =0.0825 eV). Note that peaks in the spec-
trum do got correspond to the gap between the vibration branches.

line-shape distribution would go smoothly to zero as
the phonon energy 5~1. is approached. Thus the lattice-
factor distribution s prediction of a feature in the spec-
trum at this point arises from an oversimpli6cation of
the calculations and is not a failure of the theory.
Figures 7—9 show further comparisons between lattice-
factor distributions of KCl, I-iF, and NaCl crystals and
the experimental spectra of the E' center (KC1) and M'
center (LiF and NaC1). The experimental spectra have
been redrawn from Fitchen, Fetterman, and Pierce'
(KC1 and LiF) and Pierce" (NaC1).

A NaCl lattice-factor distribution has also been com-
puted from rigid-ion-model (Kellermann) vibration
data. Figure 10 shows the NaCl R~ center spectrum
Lfrom Ref. 1(b)j compared to one-phonon calculations
based on both rigid-ion model and deformation dipole-
model vibration data. In contradistinction to the re-
sults of the deformation dipole-model calculations, the
rigid-ion-model calculations show poor agreement with
experiment as to the positions of major features in the
attendant phonon structure. This indicates that the
deformation dipole model is a more realistic representa-
tion of the lattice vibrations than the older rigid-ion
model.

LATTICE
DISTR

SPECTRUM OF
R CENTER IN KCI

! I

~PHONON ENFRGY

FIG. 5. Absorption spectrum of the NaCI Es center t from Ref,
1(b)g compared to the lattice-factor distribution and density of
vibration states. (Acyl. =0.0319 eV).

ONON ENERGY O

Fre. 'I. Absorption spectrum of the KCI 2' center Drom
Ref. 1(d)g compared to the lattice-fact. or distribution.
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A8SO
SPE

I
EMISSION

\
J

LA
0

lFACTOR
r

I

f
I
1 lg

~PHONON ENERGY O

Fzo. 9. Absorption spectrum of the NaC1 M' center Lfrom
Ref. 1(c)g compared to the lattice-factor distribution.

RIGID ION

1
~ GALCULA

I 1I

I

)
I

I
~ I

I
I

~PHONON ENERGY

FIG. 10. Absorption spectrum of the NaC1 R& center /from
Ref. 1(b)g and lattice-factor distributions calculated from de-
formation dipole model (Aevi. =0.03195 eV} and rigid-ion model
(Acor. =0.03954 eV) vibration data.

VI. CONCLUSIONS

Agreement between calculations and experiments
have been better than might be expected in view of the
restricting approximations employed which have taken
into account long-range lattice order but have neglected.
short-range lattice disorder about an imperfection. The
simplifying approximations employed in the theory
were: (i) use of a simplifying model of the ionic crystal

~ ENERGY

FIG. 8. Absorption and emission spectrum of the LiF M' center
Lfrom Ref. 1(d)) compared to the lattice-factor distribution.

and neglecting the effects of an imperfection on the
lattice dynamics in the electron-lattice interaction;
(ii) limitation to explicit consideration of only linear
terms in the lattice Hamiltonians, which neglects the
eigenvector e6ect and vibrational frequency differences
between the ground and excited states of the electron;
(iii) use of nondegenerate electron-states adiabatic-
approximation model that neglects effects, such as the
Jahn-Teller effect, that may be important. In carrying
out the calculations, a further approximation has been
made simplifying the dependence of the S; on the wave
functions. For the P-center computations, this was done
in forming the F; factor such that the effects of non-
spherical wave functions were neglected. Ii; itself was
neglected in the one-phonon computations.

The I'-band calculations show reasonable agreement
with experiments as to the widths of the bands, and the
effective frequencies are qualitatively correct in that
the emission band is associated with a higher frequency
than the absorption band. The latter has a simple
interpretation here: The electron in the more diffuse
emission states interacts more strongly with the long-
wavelength optical modes. ln the limit of very diffuse
electron wave functions, the interaction is dominated.
by these modes and the longitudinal-optical-modes
approximation applies. To arrive at an effective fre-
quency when the calculations consider many frequen-
cies, a constant. C is introduced as in Eq. (5.3) so that
the II(T) data conforms to a single-frequency model.
However, a C from the calculations compares only in
approximate magnitude with a C from experiments.
This discrepancy may have arisen because the calcula-
tions have neglected the temperature dependence of the
5;.

The one-phonon line-shape calculations show agree-
ment with experiment as to the positions of major
features in the attendant phonon structure. This is
thought to be signi6cant as the calculated line shapes
are a weighting of the lattice modes as stipulated by the
derived electron-lattice scalar potential.
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