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The velocity and attenuation of 27—28-GHz longitudinal hypersonic waves in fused quartz have been
measured for temperatures between 80 and 600'K. The data are obtained using high-resolution signal-
averaging techniques of thermal Brillouin spectroscopy. The velocity, or Brillouin shift, is found to increase
with temperature at a rate of 0.011%/'K throughout the range. The attenuation, or linewidth, goes
through a pronounced peak at a temperature of ~130'K. This sort of behavior usually indicates a structural
relaxation mechanism for the hypersonic damping, as has been suggested for previous ultrasonic mea-
surements in fused quartz. However, it is demonstrated that an anharmonic model involving three-phonon
interactions can explain the absorption data with fewer adjustable parameters, which have better physical
justi6cation.

I. INTRODUCTION

HE velocity and attenuation of thermally excited
longitudinal hypersonic waves in fused quartz

have been measured for temperatures between 80 and
600'K. Phonon frequencies of about 27 GHz are
probed by backward scattering of 632g A single-
frequency laser light. High-resolution, multiscanned
interferometry is employed to obtain adequate pre-
cision and signal-to-noise ratio.

The temperature variations of the damping and
velocity of hypersound in fused quartz are similar to
those measured by lower-frequency ulti asonic methods. '
There is a prominent low-temperature peak in the
absorption; the temperature at the peak increases
slowly with frequency; and the maximum absorption
increases slightly faster than the frequency. The
velocity of hypersound increases with temperature.
These results are in marked contrast to those obtained
earlier in crystalline quartz at comparable frequencies. '
In O.-quartz, the damping increases monotonically with
increasing temperature and the elastic constants
generally soften. This discrepancy has led to the view
that the excess absorption in the vitreous Inaterial is
caused by a resonant interaction with thermally acti-
vated structural transitions. However, in this paper we
demonstrate that the absorption data for fused quartz,
particularly at hypersonic frequencies, are better ex-
plained by a simple anharmonic mechanism involving
scattering of thermal phonons. The principal difference
between silica and n-quartz arises from the branches
of thermal phonons dominant in the interaction.

For fused quartz, there have been no microwave
frequency studies of induced sound-wave propagation
like those in n-quartz, because of the relatively high
attenuation. Jones, Klenmns, and Rayne' achieved the
highest frequencies ( 1 GHz) to date by conventional
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Wright (Springer-Verlag, New York, 1969), p. 581.
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pulse-echo methods. Thermal Brillouin scattering, on
the other hand, is admirably suited to probe this
regime, since it is not restricted to low absorption.
Several workers have recorded clear Brillouin spectra
from fused quartz. Krishnan4 and Flubacher et al. ,

'
using mercury arc lamps and prism or grating spectro-
graphs, were able to show that the hypersound was
underdamped and its velocity close to the ultrasonic
value. Thus, contentions that high-frequency sound
could not propagate in "viscous" glasses could be
dismissed. ' Shapiro, Gammon, and Cummins~ obtained
more accurate results using a He-Ne laser and a Fabry-
Perot interferometer. The first room-temperature
spectra to resolve the natural linewidth, from which

the attenuation could be inferred, were exhibited
recently by Durand and Pine. The experimental tech-
niques developed in this latter work are employed here
to obtain the temperature dependence of the sound-

wave propagation. Stimulated 3rillouin scattering
using Q-switched ruby-laser excitation has also been.

observed in fused quartz. ~" In principle, the same
information about phonon velocity and damping can
be extracted by stimulated methods. %alder and Tang"
obtained a 300'K damping, in agreement with the data
herein when frequency-corrected. However, transient
effects may complicate the analysis for the damping. "

Closely connected with the theories of acoustic
attenuation are the frequencies and densities of states
of other thermal-phonon modes and the presence of

possible structural relaxations. Such information may
be contained in the Raman and infrared spectra of

i R. S. Krishnan, Proc. Indian Acad. Sci. A37, 37'7 (1953).
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fused quartz. Features of these spectra have indeed
been implicated in the previous studies of ultrasonic
absorption. We will reexamine these conclusions and
present an alternative interpretation which favors our
hypothesis of anharmonic acoustic damping.

II. ANHARMONIC AND STRUCTURAL
RELAXATION MODELS

We will review briefly two possible mechanisms that
could account for the attenuation of sound in fused
quartz. The erst is an anharmonic or three-phonon
interaction, which is the usual cause of such damping
if the material exhibits no low-frequency resonances.
The second is a structural relaxation process, the
existence of which would imply a great deal about the
fundamental nature of the glassy state.

The anharmonic model to be considered here was
introduced by Bommel and Dransfeld" as a qualitative
explanation of their acoustic absorption measurements
in o,-quartz. Their calculation of the damping rate F
was based on Akhieser's mechanism of sound-induced
changes in the thermal-phonon distribution and
entropy. For a crystal of density p, temperature T,
a sound wave of frequency co and velocity v&, and a
thermal-phonon mode with heat capacity t,„and relaxa-
tion time 7., they obtained for the damping

P Q)TC7) C07r=
SpvP 1+(cor)'

Here y is an averaged dimensionless Griineisen con-
stant of order unity which measures the anharmonicity.
F is related to the acoustic attenuation constant o. and
the Brillouin linewidth 5v (full width at half-maxi-
murn) by

r =mbv =nv).

Equation (1) is valid under restricted circumstances
only. ' Terms higher than cubic in the anharmonicity
have been neglected. Elastic isotropy, both harmonic
and anharmonic, have been assumed, and the group
velocity of the thermal phonons has been taken to be
much smaller than v&. Only one thermal mode has been
considered, and the "dominant-phonon" approxi-
mation has been made. The dominant-phonon approxi-
mation applies when the frequency and relaxation time
of the thermal phonons are not rapid functions of wave
vector. In addition, it is required that kT))Iten and that
processes involving the decay of the hypersonic wave
into lower-frequency phonons are negligible. These
latter requirements are well met for typical experi-
mental conditions. Harmonic elastic isotropy is, of
course, valid for fused quartz; damping from the
scattering of other thermal modes is simply additive.

"H. E. Bommel and K. Dransfeld, Phys. Rev. 117, 1245
(1960).

It is not surprising from the above approximations that
Eq. (1) has the form of acoustic damping in liquids due
to interaction with molecular internal degrees of
freedom. " The principal difhculty in applying (1) to
the attenuation data is the great uncertainty in the
relevant thermal-phonon frequency and lifetime. In
general, if Raman and neutron scattering data are not
available, these quantities must be estimated from
theoretical models.

Woodruff and Ehrenreich'4 derived the acoustic
daInping for the exceptional case of a Debye spectrum
of thermal phonons. These phonons have group velocity
v& and are responsible for the energy or heat transport
in a solid. It was then possible to estimate 7. from the
umklapp relaxation time accessible by thermal conduc-
tivity measurements. They obtained a reasonable
quantitative 6t to Bommel and Dransfeld's data on
n-quartz. However, more recent measurements have
demonstrated the importance of including dispersion, "
anisotropy, ' and distributed normal relaxation proc-
esses' for the thermal modes.

The simple equation (1), with its restrictions and
its relationship to the theories of Woodruff and Ehren-
reich and others, is derivable' from a more general
fprmulatjpn due tp Kwpk ~ and later tp Klein These
latter authors extended the Green's-function pertur-
bation method of Maradudin and Fein' for the
anharmonic interaction problem to considerations of
acoustic absorption. The Kwok and Klein theories do
not include the effects of temperature- and momentum-
shifted thermal-mode distributions which Woodruff
and Ehrenreich had discussed for their model. This is
equivalent to dropping the vertex contributions in the
diagram formalism of Griffin. "At present, no complete
theory exists from which we could assess the e6ect of
these contributions on Eq. (1).

The thermal-phonon lifetime 7- is obtained directly
from the basic anharmonic theory of Maradudin and
Fein." In general, a vibration of frequency coo is
broadened by decay into two other phonons such that

+co~"= aconed by scattering one mode into another
according to co' —co"=coo. The temperature dependence
of these processes is primarily contained in the boson
factors

For most cases one can simplify the damping contri-

"R.Y. Chiao and P. A. Fieury, in Physics of Quantum E/ec
trorlics, edited by P. L. Kelley, B. Lax, and P. E. Tannenwald
(McGraw-Hill Book Co., New York, 1966), p. 241.

' T. O. Woodruff and H. Ehrenreich, Phys. Rev. 123, 1553
(1961).

» H. J. Maris, Phil. Mag. 9, 901 (1964).
~6 N. S. Shiren, Phys. Letters 20, 10 (1966).
"P. C. Kwok, Ph. D. thesis, Harvard University, 1965 (un-

published).
"R.Klein, Physik Konsierten Materie 6, 38 (1967).
"A. A. Maradudin and A. K. Fein, Phys. Rev. 128, 2589

(1962).
~ A. Griffin, Rev. Mod. Phys. 40, 167 (1968).
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butions of the decay and scattering mechanisms to (0) 347'K (b) 538 K

r '= (e'+m"+1)Ap,

r—'= (tz"—ts')Bp,

(4a)

(4b)
~ ~

~ ~
~ ~
0

~ ~

Here 0 is the transition rate or frequency of a structural
relaxation, and G is a temperature-independent con-
stant representing the strength of the relaxation.

The particular structural transition postulated by
Anderson and Bornmel is a reordering of the Si-0-Si
bond angle. Such a picture is a convenient visual aid,
but let us start with a more general description. We
presume that an ion in the disordered structure may
reside in a double potential well with a central barrier
of activation energy E. The transition rate for jumping
between minima is the product of some zero-point
vibrational frequency co~ in one minimum and the
Boltzmann probability of surmounting the barrier.
Thus,

n =~& e-~I". (6a)

Alternatively, if rpt is much less than kT/h, then the
transition rate is of the Eyring form

II= (kT/h)e s"r. (6b)

Anderson and Bomrnel hypothesize that an oxygen
may be displaced normal to a Si-Si axis if the silicons
lie closer together than they do in crystalline quartz.
This occurs because the Si-0 bond length is nearly the
same for the ordered and disordered structures. The
double well then arises because the oxygen may have
another equilibrium position on the opposite side of the
Si-Si axis, assuming rotations about the axis are in-
hibited. The data of Anderson and Bommel could be
6tted arbitrarily well with a distribution of relaxation
terms of type (6b). Such a distribution could be expected

"A. S. Pine and P. E. Tannenwald, Phys. Rev. (to be pub-
lished).

respectively. " Ao and Bo are complicated integrals
involving anharmonic selection rules and joint densities
of states at co' and co". In the absence of direct measure-
ment of 7-, the factors Ao and 80 may be adjusted to
6t the data once the thermal-phonon frequencies are
chosen. The damping rate F of the hypersonic wave is a
specialization of the category (4b). There the frequency
is so low that co' and co" belong to the same thermal-
phonon branch whose lifetime thereby becomes a
factor.

We now discuss the structural relaxation mechanism
advanced by Anderson and Bomrnel' to explain ultra-
sonic absorption in fused quartz. The mathematical
form of this model is similar to that of the anharmonic
model, but the physical mechanism is distinct. Here the
damping rate is given by

Gs) (tp/II)r=
1+(pp/II)'

.Stokes

~1498 MHz ~
(c) 183 K

Og ~

\

p

= Stokes

~1498MHz ~
(d) 294 K

~9983MHz ~ ~751MHz ~
FIG. j.. Brillouin spectra of longitudinal hypersonic waves in

fused quartz. The temperatures and free spectral range of the
interferometers are indicated. All traces are Suprasil except the
upper (d), which is Corning high-optical-quality fused quartz.

for the random silica lattice where several different
bond angles may occur, each with its own activation
energy and relaxation strength.

The mathematical similarity between the anharmonic
and structural relaxation models is apparent from Eqs.
(1) and (5). It is also possible to identify r ' of (4b)
with II of (6b). At very low temperatures such that
kT/h&«u" or cpp, r ' e """IPT; at high temperatures
such that kT/h)) '

ppr '~T. Thus, the two models
have the same asymptotic temperature behavior if we
identify Iten with the activation energy.

III. EXPERIMENTAL RESULTS

Although the attenuation of hypersound in fuse8
quartz is extremely high by the standards of pulse-echo
techniques, the damping is generally lower than one
encounters in liquids. "'At room temperature and above,
the high-resolution system described by Durand and'.

Pine' is used to record the Brillouin spectrum. A
single-mode He-Ne laser of 150 pW is the source; the
back-scattered light is analyzed in a piezoelectric multi-
scanned confocal spherical interferometer; a low-dark-
count photomultiplier feeding a synchronously swept
multichannel analyzer registers the spectrum. TypicaI
Brillouin spectra of fused quartz at various tempera-
tures are shown in Fig. 1.Note that the intense Rayleigh
peak triggers the analyzer so that slow drift of the
spectrometer is automatically compensated in the
accumulated spectrum. Such stabilization is necessary
because of the long integration times required to
enhance the signal-to-noise ratio of the extremely
weak scattered light. Below room temperature, where
the sound absorption increases and the total scattering
decreases proportionally to T, the above system over-
resolves the natural linewidth and yields a critically
weak spectrum. For this reason, a lower-resolution
pressure-scanned plane-parallel interferometer is used
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"H. J. Mc5kimin, J. Appl. Phys. 24, 988 (1953).

with concomitant lesser stability and shorter inte-
gration times, resulting in larger inaccuracies in the
data. Though this system could also be multiply
scanned, Quctuations in the room temperature and pres-
sure limited the reproducibility of the slow sweep rate.

The fused-quartz sample is a 2.5-cm-diam cylinder
of Suprasil, 5 cm long, with optically polished ends.
Temperature is measured with a thermocouple in
contact with the sample's circumference less than 1 cm
from the scattering volume. Thermal environment is
provided by an evacuated Dewar or oven with a single
window to minimize spurious light rejected in the
backward direction.

The experimental velocity of sound and Brillouin
shift are plotted as a function of temperature in Fig. 2.
These data are. compared with the ultrasonic measure-
ments of McSkimin2' at 20 MHz in a material supplied

by Amersil. Though it is tempting to ascribe the de-
crease in velocity of the hypersonic data from the
ultrasonic to dispersion, it is possible that sample
dependence or inaccuracy of the ultrasonic time-of-
Aight absolute measurement are responsible for the
discrepancy. Calibration of the Brillouin shift using
several interferometer spacers is better than 0.2%. The
relative precision of the thermal variation of the shift
is about 0.02%%u~. As seen in Fig. 1(d), a sample of
Corning high-optical-quality fused quartz is found to
have a velocity 0.04% higher than Suprasil at room
temperature.

Srillouin linewidth data for fused quartz are plotted
in Fig. 3(a). The data reduction procedure by which
the natural linewidths are deconvolved from the experi-
mental spectra is described at some length in the
Appendix. For purposes of comparison, linewidth data
for n-quartz are presented in Fig. 3(b). These results
and their possible interpretation have been reported
in more detail previously. ' The broad low-temperature
peak in the absorption of fused quartz is clearly a
distinct and challenging feature. This peak;has been
the focus of interest in many previous ultrasonic
experiments. "'3 Lack of resolution and scattering
intensity prevent an extension of the measurements to
lower temperatures where Jones ef at.s observed sub-
sidiary peaks. Higher-temperature data could not be
reliably obtained because of severe thermal gradients
in the sample caused by radiation. These gradients
yield an artificial broadening over the scattering
volume, since the velocity is a function of temperature.
Obviously, it would be interesting to see if the fused-
quartz absorption ever drops below the "intrinsic"
level in crystalline quartz at higher temperatures.

Iv. DISCUSSION

We now compare the anharmonic and structural
relaxation models with the available acoustic absorp-
tion data in fused quartz. The temperature dependence

'3M. E. Fine, H. Van Duyne, and N. T. Kenney, J. Appl.
Phys. 25, 402 (1954).
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TABLE I. Ultrasonic data in fused quartz at
the absorption peak.

Acoustic
frequency

(MHz)

0.050
0.126
0.066
0.201

20
330
507
748
930

26 820

Peak
temperature

(K)
36
37
35
39
46
60

67
130

Peak loss

Q 1=11.5X10 4

Q '=11.5X10 4

Q '= 8.3X1M
Q-i= 9.4X10-4
Q i=18.8X10

a=36 dB/cm
a=62 dB/cm
a=83 dB/cm
a = 113 dB/cm

Bv =200 MHz

Ref.

23
23

1

3
3
3
3

This work

of,the absorption and the frequency dependence of the
temperature and damping at the peak are the interesting
features to be explained. In Fig. 4 we apply the theory
of Anderson and Bommel' to the hypersound damping.
Two possible anharmonic channels are superimposed
for comparison. Each of the models has been normal-
ized for a rough 6t to the Brillouin scattering data.

The parameters used for the two anharmonic processes
are (a) a)p=100 crn ' cp'=500 crn ' pp"=400 cm '
Bp=3X10" sec ' and Ap ——0, and (b) a&p

——50 cm '
~'=450 cm ', co"=400 cm ', 80=10' sec ', and 30=0.
Thus decay of the thermal phonon at ~0 has been
neglected. Bommel and Anderson chose their parameter
E=1030 cal/mole~375 cm ' and placed an arbitrary
factor of 0.8 in Eq. (6b) to improve their fit. There
is one less adjustable parameter per mode in the
structural relaxation theory but there is much poorer
agreement with the data. As previously mentioned, this
situation may be remedied by including a distribution
of structural transitions and thereby increasing the
number of parameters. Of course, this is also true of
the anharmonic models but fewer modes appear to be
necessary. At lower acoustic frequencies, both models
predict too narrow a temperature width to the damping
peak. .

The peak absorption occurs at a temperature such
that co7-= j. or co=0. Because of the mathematical
sixnilarity between 0 and v. ', there is little difference
in the two theoretical predictions of the frequency
dependence of the peak temperature. In Fig. 5 this
similarity is illustrated. The data are accumulated in
Table I from the work of Fine et al. ,

'3 Anderson and
Bommel, ' Jones et al ,

s and th. is paper. Although the
anharmonic model appears to fit the data better, the
older model could be improved by slightly readjusting
the parameters in light of the more recent data.

A more crucial test arises from the behavior of the
magnitude of the peak absorption versus frequency.
From the experimental sources above, the peak loss
factor increases slowly with frequency as seen in Fig. 6.
The loss factor is variously de6ned as the internal
friction (Q '), the attenuation per wavelength (aX/s),
or the linewidth divided by the frequency (5|/v).
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From Eq. (5) it is obvious that a single structural
relaxation results in a peak loss factor equal to G which
is independent of frequency. Aware of this failure,
Anderson and Bommel demonstrated that a distri-
bution of relaxation terms could account for the experi-
mental results, at least at low frequencies. On the other
hand, a single anharmonic process does produce an
increasing loss factor with frequency. This occurs
through the TC„ term in Eq. (1), since the peak tem-
perature is a function of frequency as we have just
discussed. We have plotted the single-channel theories
in Fig. 6 using an Einstein-type speci6c heat for the
thermal phonons at a&0=50 and 100 cm '.

In order to select the most likely acoustic damping
mechanism it is useful to examine other physical
evidence and consequences of the two models. Anderson
and Bommel cite as possible evidence of their structural
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transitions a strongly depolarized Raman band at
30 cm ' seen by Rank and Douglas. ' This is the room-

temperature frequency 0 calculated to fit the acoustic
absorption. However, this prominent low-frequency
band is only observed in a lead glass and not in a
silicate-rich material'; nor has such structure been
reported in fused quartz and certainly no feature with
the temperature dependence of 0 has been seen.

The existence of low-frequency modes, perhaps of
structural transition origin, is implied by two other
phenomena in fused quartz. The first is the rf dielectric
loss'4 which has roughly the same frequency-tempera-
ture behavior as the acoustic loss. Assuming these to
have a common cause, the structural transition model
predicts that the rf couples directly to the ion oscil-
lating in the double well. The rf loss can also be ex-
plained by the anharmonic model as a second-order
scattering process analogous to the two-phonon differ-
ence bands in infrared absorption.

The second evidence for low-lying modes is the
anomalous low-temperature heat capacity of fused
quartz. Flubacher et al. ' attribute the anomaly to the
presence of three low-frequency modes which they
select from their continuum Raman spectrum. Though
they note the Anderson-Bommel structural relaxation,
they suggest that the relevant motion is a translation
or libration of a molecular grouping such as an Si04
tetrahedron. There is, however, a serious question as to
the interpretation of the Raman or infrared low-
frequency continuum as a manifestation of low-lying
optical modes. Stolen" has remarked that a heat
capacity calculation using the actual Raman distri-
bution of modes does not agree with measurements
nearly as well as the three modes arbitrarily selected
by Flubacher et ul. Further, Dawber and Elliott" have
shown that the ir spectrum of a disordered crystal
contains a component which rejects the perfect-crystal
density of states. The same is true of the Raman
spectrum, '~ so the continuum of fused quartz may
essentially arise from the acoustic and lower optical
phonon branches in crystalline quartz.

The same view of the Raman spectrum, as the dis-
order-induced one-phonon density of states, provides a
firmer basis for the anharmonic model. The thermal-
phonon frequencies ~0, co', and cu" used to 6t the data
are all close to identifiable features of the spectrum of
Flubacher et ul. The n-quartz progenitors of the two Np

channels would probably be the 128-cm ' E mode and
the lowest zone-edge TA branch near 50 cm '. The
fused-quartz ir transmission measurements of Plendl

"J.M. Stevels, discussed in Ref. 1."R. Stolen (private communication); for interpretation of the
ir spectrum see W. Bagdade and R. Stolen, J. Phys. Chem. Solids
29, 2001 (1968)."P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London)
273, 222 (1963);Proc. Phys. Soc. (London) 81, 453 (1963)."N. D. Strahm, Ph.D. thesis MIT, 1969 (unpublished). The
work of D. W. Feldman, J. H. Parker, W. J. Choyke, and L.
Patrick LPhys. Rev. 178, 787 (1968)g is relevant by extension to
random polymorphs.

et al. '8 also show structure near 120 cm '. Since the
spectral distribution of these modes is inhomogeneous,
their natural lifetime is masked. We must then look
elsewhere for an estimate of r which would confirm our
choice of parameters in the anharmonic model.

Pine and Tannenwald" studied the temperature
dependence of the lifetime of the 128-cm vibration in

o,-quartz. Because this mode is the lowest-lying optical
phonon, it can only decay into a relatively small
density of acoustic phonon states. Therefore, at low

temperatures, where scattering processes are frozen
out, the residual damping of this mode is much smaller
than for any other Raman line in o.-quartz. However,
this residual width is still considerably larger than the
damping of the analogous 100-cm ' mode in fused
quartz required to explain the hypersonic absorption.
On the other hand, the lowest zone-edge acoustic
branch cannot decay because of energy and momentum
conservation conditions. These phonons are bottle-
necked, as Orbach and Vredevoe" describe, and only
scattering processes are available to damp them.

Since we had to neglect decay processes in order to
have 7- fit the hypersonic attenuation data, it appears
that the most likely candidate for the thermal mode
coo is the lowest zone-edge acoustic branch at 50 crn '.
Although this mode does not fit the experiment as well
as the 100-cm ' mode, as seen from Figs. 4 and 3(a),
this may simply be a limitation of the single relaxation
theory. Probably a component of the "intrinsic"
absorption of Fig. 3(b) is operative in the fused-quartz
results. Of course, the intrinsic absorption is basically
the same anharmonic mechanism involving the upper
acoustic branch. ' An unanswered question is: Why
are only the phonons around 400—500 cm ' effectively
scattered by the mode at Mo? These are the major peaks
in the fused-quartz Raman spectrum, but scattering
of lower modes is indicated in e-quartz. "

In summary, it is seen that the acoustic and dielectric
losses are not uniquely explained by a structural
relaxation mechanism. On balance the anharmonic
model appears to 6t the hypersonic attenuation data
with fewer parameters. These parameters may be
reasonably justified in terms of recently measured
lattice spectra of quartz and more modern interpre-
tations. The Anderson-Bommel parameters are based
on a more speculative model of the dynamical structure
of fused quartz. Of course, many aspects of the an-
harmonic model are untested and any definite con-
clusion must await a detailed temperature study of the
Raman and neutron spectra of fused quartz.
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APPENDIX

I I I I I I

+1498 MHz+

X(v)

The deconvolution procedure used to analyze the
data is illustrated here by example. The procedure is
similar to that used by others"" to extract spectral
line shapes from instrumentally broadened contours.
In Fig. 7 we show the instrumental prolle I(v), the
experimental data E(v), the observed Brillouin peaks
E'(v) =E(v) I(v),—with the background and overlap
visually subtracted out, and the deconvolved Lorentzian
spectral distribution L(v). The raw data are the same
as those in Fig. 1(a).
"' The instrumental profile for the confocal Fabry-
Perot (free spectral range 1498 MHz, 6nesse 40) is
entered digitally into a computer for a numerical con-
volution integration. The computer is programmed to
generate Lorentzian functions I.;(v) =L1+(2v/8v;)') '
for various full widths bv;. These Lorentzians are
convolved with I(v) until the resultant spectrum has
the same full width at half-maximum (FWHM) as the
observed contour 8'(v). The FWHM of the matching
Lorentzian hvar is printed out together with the point-
by-point convolved spectrum I(v)SI.(v). The latter
may be compared with 8'(v) as in Fig. 7 to demon-
strate that the Lorentzian spectral distribution properly
represents the true line shape. A small angular broaden-
ing hvar due to the finite collection solid angle is then
subtracted from 8v~ to give the natural width bvy~HM
presented in Fig. 3(a). This angular broadening in
fused quartz is simply induced by the angular depend-
ence of the Brillouin shift, so

8vs~ —v (88)'/8~5 MHz, (7)

where M is a measure of the half-angle of collection
inside the sample. In principle, this spectral shift
should be incorporated in the theoretical distribution
before convolution with I(v), but the correction is
small and does not noticeably affect the 6t of the
convolved line shape with E'(v).

The accuracy of this procedure is as good as the
linewidth measurement of E'(v). Of course, this varies
for the data at diRerent temperatures because of the
varying signal-to-noise ratios and varying interferom-
eter resolution. The signal-to-noise ratio of the multi-
scan data $e.g. , Fig. 1(a) and 1(b)$ is about 10 times
that of the pressure-scan data Le.g., Fig. 1(c)],since the
integration times for the former are 100 sec and for the
latter 2 sec. Furthermore, linewidth data are given
only'when the observed width exceeds the instru-

"T. J. Greytak and G. B. Benedek, Phys. Rev. Letters 17,
j.79 (1966);T.J.Greytak, Ph.D. thesis, MIT, 1967 {unpublished).

"W. R. L. Clements and 3. P. Stoicbe8, Appl. Phys. Lptters
12, 246 (1968),

~ ~
&P

$e

—r(~)
I

~ ~ ~

~0
~v I
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FIG. 7. Sample deconvolution of Brillouin scattering data.
j(v), instrumental pro61e E(v), experimental data, E'(v), ob-
served Brillouin spectrum with background subtracted oiI, I,(v),
Lorentzian convolved with I(v) to match E'(v); 1.(v) hand-
sketched from computer-generated BI I.=82 MHz.

mental resolution by at least 50%%u~ for the pressure-
scanned Fabry-Perot data and 100+o for the multi-
scanned. The results are spot-checked against spectra
taken with the very-high-resolution interferometer
shown in Fig. 1(d). The convolution errors are reduced
greatly when the natural width is many times that of
the instrument, but of course the signal-to-noise ratio
is reduced since the spectrum is overresolved. To reduce
the errors from overlap of the Brillouin components
with each other or with the laser line, no linewidth data
have been entered where the Brillouin peak falls outside
the range 0.22-0.40 interorders.

It is of interest to point out that the Fabry-Perot
profile I(v) closely approximates the theoretical Airy
function

I(v) [1+(2dv/rrovr)s sin'(s v/hv)$
—', (8)

where b, v is the free spectral range and bv~ is the instru-
mental full width. For large finesse, this function
resembles a Lorentzian with slightly compressed wings.
If I(v) were exactly Lorentzian, the convolved spec-
trum would be a Lorentzian whose width would be
the sum of bvl and bvt. . In reality, as with the Airy
function, the convolved spectrum is a near-Lorentzian
with compressed wings and with a width less than the
sum of bv~ and hvar. Experimentally, we have observed
that the Lorentzian width hvar, is always about 10'%%uo

higher than the width obtained by straightforward
subtractio n.


