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line Ams, so that the exact shift could not be
ascertained.

It is interesting to compare the emission spectrum
for EL ¢ [Fig. 2(a)] and for the mixed-mode geometry
[Fig. 2(b)]. In Fig. 2(a), the bound exciton lines (Z,
I’, and I”) dominate the spectrum. Because a small
component of the E vector can be resolved perpendicular
to k in the mixed-mode geometry, the bound excitons
should be observed in this geometry if they are also
dipole-allowed transitions. The oscillator strengths of
the bound excitons should depend upon ¢, as given by
Eq. (1). Also, because the reported refractive index®
is larger near 4 mx than the bound I lines, the refraction
should be less near the I lines, so that these latter lines
should consequently dominate the spectrum in Fig.
2(b). It is seen, however, that this is not the case. We
believe that spatial dispersion effects may be responsible
for the above unexpected behavior. It has been shown
that the scattering of polaritons (apparent absorption)
by phonons is dependent upon the shape of the polariton
dispersion (E versus k) curve.l>!! Conversely, the con-
tribution to the emission from the scattering of
polaritons is expected to depend upon the shape of the
dispersion curve especially just above the “knee” in
the lower branch.? The knee occurs very near the
crossing of the uncoupled exciton-photon dispersion
curves, and it is at precisely this energy that the shape

9Y.S. Park and J. R. Schenider, J. Appl. Phys. 39, 3049 (1968).

10 W. C. Tait and R. L. Weiher, Phys. Rev. 166, 769 (1968).

11y, Osaka, Y. Imai, and Y. Takeuti, J. Phys. Soc. Japan 24,
236 (1968).

12 W, C. Tait and R. L. Weiher, Phys. Rev. 178, 1404 (1969).
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of the polariton dispersion curve is the most sensitive
to the coupling parameter 473. It may be expected,
then, that the emission due to intrinsic excitons
(polaritons) would have some implicit nonlinear de-
pendence on 478mx, given by Eq. (1).3

In conclusion, emission lines have been observed in
ZnO which clearly verify the existence of mixed-mode
excitons in photoluminescence. Mixed-mode excitons
are observed for the two lowest-lying excitons (4 and
B). This work points out the importance of precise
alignment of uniaxial crystals when emission is mea-
sured for the polarization El|lc, kLc. It seems likely
that a slight sample misalignment would account for
the observations and polarization assignments recently
reported for some of the emission lines in ZnO by
Filinski and Skettrup.” Recent emission studies’-415
have again pointed out the controversy over the
valence-band assignments in ZnO suggested by Thomas?
and by Park ef al.1® The observations made in this note
are in agreement with the assignment of Thomas,®
and because of the noted difference in behavior between
intrinsic and extrinsic excitons, a further study may
provide conclusive proof of intrinsic or extrinsic nature.

We wish to thank G. Voll for experimental assistance.

18 Mixed-mode excitons have also been observed in our labora-
tory in the emission spectrum of CdS crystals at different external
angles ¢’. The intensity of the “free” 4 exciton-mixed-mode line
in CdS has a similar dependence on ¢’ as the Ay line in ZnO.

( 14T). Skettrup and L. R. Lidholt, Solid State Commun. 6, 589
1968).

16 C. Solbrig, Z. Physik 211, 429 (1968).

16'Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds,
Phys. Rev. 143, 512 (1966).
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Approximate ground-state wave functions for effective-mass impurity centers of arbitrary binding energy
are derived by the quantum-defect method and applied to calculate optical absorption and emission processes
involving impurities in semiconductors. The dependences of band-impurity and impurity-ionization cross
sections on impurity binding energy are calculated and shown to limit to those of the hydrogenic model
and Lucovsky’s 8-function model for shallow and deep impurity centers, respectively. Formulas relating
the cross sections to the absorption coefficients and radiative recombination rates are also presented.

I. INTRODUCTION

HE observed binding energies of effective-mass
impurities in semiconductors depend on the
chemical species of the impurity ion (e.g., P, As, or
Sb donors in silicon or germanium and B, Al, Ga, and
In acceptors in silicon).! This is contrary to the simple

* Work sponsored in part by U. S. Air Force Office of Scientific
Research, under Contract No. F44620-67-C-0073. .
1'W. Kohn, in Solid State Physics, edited by F. Seitz and D.

effective-mass theory which predicts a unique binding
energy (for all effective-mass impurities) that depends

Turnbull (Academic Press Inc., New York, 1957), Vol. 5. Kohn
briefly discusses the QDM (p. 289) in this connection, but because
of an unfortunate error in his asymptotic wave function he does
not attain the full significance of the formalism. Kohn records a
hydrogenic function with the Bohr radius scaled to the observed
energy in the usual way. The correct QD functions possess a
rather different form and contain parameters which obviate the
necessity of scaling quantities formally specified by the host-
crystal properties, e.g., the effective Bohr radius.
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only on host-crystal parameters such as dielectric
constant and effective mass. Efforts to account for the
observed chemical shifts have enjoyed limited success.
An interesting treatment with references to earlier work
is given by Morita and Nara.?

Because of the complexity of performing quasi-
first-principles calculations, it is highly desirable to
determine a simple means for obtaining good approxi-
mate wave functions which are sensitive to the impurity
binding energy. The simplest means is, of course, to
assume hydrogenic wave functions and scale the effec-
tive Bohr radius to reproduce the observed impurity
binding energy e(obs)= —¢?/2Ka*. However, this pro-
cedure does not change the functional form of the wave
functions but only their spatial extent; it requires
assuming values of the effective mass »* and dielectric
constant K different from those appropriate to the host
crystal; and, finally, it does not yield good agreement
with empirical observation. Another approach to de-
scribe deep impurity centers was taken by Lucovsky.?
He assumed the ion core of the impurity rather than the
Coulomb potential arising from the impurity charge was
responsible for the increased ground-state binding
energy. He approximated the ion potential by a
é-function well and, borrowing from the deuteron photo-
dissociation problem, determined simple wave functions
to describe deep impurities. He applied the results to
calculate the spectral dependence of the photo-ioniza-
tion cross sections of impurities and achieved good
agreement with the deep In center in silicon but not
with the moderately deep Al and Sb acceptor impurities
and certaintly not with the shallow B acceptor.

More recently, Bebb and Chapman? borrowed the
well-known quantum-defect method (QDM) from
atomic physics to calculate good approximate wave
functions for impurity ions of arbitrary binding energy.
Using QD functions to approximate both the ground
state and continuum states of the impurity, the differing
photo-ionization cross sections of B, Al, Sb, and In
impurities in silicon as well as the Hg center in ger-
manium were all accurately predicted. This successful
test of the QD theory provides some confidence in its
capability to provide accurate, but still simple, wave
functions for impurity centers of arbitrary binding
energy.

In the present work, QD functions are utilized to
calculate rather general formulas for band-impurity
absorption and recombination rates where the impurity
centers can possess arbitrary binding energies. The
results are compared with those obtained from the
hydrogenic approximation in the limit of shallow im-
purities and Lucovsky’s é-function model in the limit
of very deep impurities. In addition, the application of
the QDM to impurity ionization is reexamined for the

( 2?) Morita and H. Nora, J. Phys. Soc. Japan Suppl. 21, 234
1966).

2 G. Lucovsky, Solid State Commun. 3, 299 (1965).

¢ H. B. Bebb and R. A. Chapman, J. Phys. Chem. Solids 28,
2087 (1967).
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purpose of determining a simpler approximation to the
positive-energy states than the continuum Coulomb
functions used in Ref. 4. I find that “free waves” (or
plane waves) appear to yield a far better approximation
to the continuum states of impurity centers than could
be expected from their rather poor showing in atomic
calculations, e.g., photo-ionization of hydrogen or
heavier alkali atoms.

While the major purpose of this paper is to apply the
QDM to calculate optical cross sections involving im-
purities, the results are couched within a rather general
discussion of absorption and emission processes in an
attempt to simplify the application of the formulas to a
wide range of experimental results. The band-edge value
of the interband momentum matrix element p., as
estimated from k-p perturbation theory is given for
several typical band structures. Also, numerical values
for factors containing atomic constants are recorded for
convenience.

The regime of validity of the QDM as applied here
corresponds to that of the general effective-mass theory
for impurity centers, which finds application to a wide
range of materials. Though most of the detailed work
on deep effective-mass-like impurities has been re-
stricted to those found in silicon and germanium, effec-
tive-mass theory is often applied to describe defect
centers in III-V compounds, II-IV compounds, alkali
halides, and more recently ferroelectric oxide crystals.
The QDM of extending the effective-mass theory to
deep impurities is applicable to a similar wide range of
problems. Because of the broad scope envisioned, we
restrict our attention to a presentation of theoretical
results, with no attempt being made to explain any
empirical data. The QDM has geen applied to the
latter purpose in an earlier paper.4

II. QUANTUM-DEFECT THEORY
A. Bound States

The QDM is a standard and well-known technique in
atomic physics and certain areas of solid-state physics.
A general introductory discussion of the application of
QDM to the impurity-ion problem, along with citations
to the literature on the formal technique, is contained
in Ref. 4. Only essential points are repeated here.

The QDM relies on the observation that while the
impurity-induced potential energy is likely to be very
complicated in the vicinity of the ion core, it must
nevertheless, for large 7, asymptotically approach a
Coulomb potential —e?/Kr. As has already been
emphasized in connection with the é-function model,
the ion core can cause the binding energy of the im-
purity to differ greatly from that predicted by assuming
a 1/r potential for all #. On the other hand, much of the
wave function lies outside the core region, where the
potential is given by —e?/Kr. In this exterior region the
wave functions are Coulombic; further, they must be
continuous with the core function, which is unspecified.
It is through the continuity requirement that the ex-
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terior Coulomb function reflects the core potential.
Since the core potential is unknown, we attempt to
estimate its effect on the exterior region by looking for
solutions of the wave equation with the eigenenergy
replaced with the observed binding energy e(obs). In
effect, the absence of knowledge about the potential
in the core region is replaced by empirical information
about the binding energy which is sensitive to the core.
The QD functions are solutions of

[— (#2/2m*)V?—e*/Kr— e(obs) JF,(r)=0, 6}
which is valid in the region of large . Since the observed
energy e(obs) is not, in general, an eigenvalue of the
differential equation, we cannot require the function
to remain finite at the origin. However, divergence
of the solution at #=0 does not affect its validity away
from the origin, where the major contribution to optical

integrals occurs. The general solution is a Whittaker
function.? Specializing to the ground s state, we have

F,(t)=P,(n)Y(6:¢). 2)
The radial function can be approximated*® by

P,(r)=Nylerlva* (3a)

N,= (2/va*)"/ (va*) T (v+1). (3b)

The quantity » is referred to as the effective principal

quantum number. It is determined from the observed
binding energy by

e(obs)=—R*/»?, 4)

where R* is the hydrogenic Rydberg 62/2Ka.*. This

result is more familiar in the context of the alkali atoms.

In the early days of atomic spectroscopy, it was noted
that the emission-line energies of the alkali atoms were

given by assuming
en(0bs)=—R*/(n—p)?, ©®)

where the parameter u is called the quantum defect.

where

5 M. J. Seaton, Monthly Notices Roy. Astron. Soc. 118, 504
(1958).
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Its significance accrues from the fact that it remains
nearly constant over a series of 7 values of a given
angular momentum. Equations (4) and (5) imply the
relation

vY=n—u. )

From the QD point of view, the wave functions are
scaled from the binding energy in terms of » rather than
in terms of the effective-mass parameters a* or R*.
Formally this is more acceptable, since a* and R* are,
in principle, determined by host-crystal parameters,
e.g., effective masses and dielectric constant, and should
not be a function of the chemical species of the impurity.
In applying the QDM, we obtain R* as a solution of the
effective-mass equation assuming a Coulomb potential
—¢*/Kr. Deviations of the true potential U(r) from a
Coulomb potential in the core region are then taken
into account by adjusting » to reproduce the empirical
binding energy.

It is instructive to compare the QD functions with
the hydrogenic approximation in the limit of shallow
impurities and the §-function model in the limit of deep
impurities. The hydrogenic wave function is given
within the QD theory by setting »=1. Neglecting
normalizations, the hydrogenic function in atomic units

is
Py(r)~er; (7a)
the QD function in atomic units is
P,(r)~rlgrlr, (7b)

with » given by e(obs)=—R*/»?; and the s-function-
model wave function is?

Po(r)~rlgar,

(7c)

where o= — e(obs) /R*. Clearly, » and a are reciprocally
related : @=»7". For very deep centers, » is small and the
factor 7 in (7b) becomes slowly varying over the range
of 7 where P,(r) is significant. Consequently, in the
limit of small » (large binding energies), the function
(7c) yields a good approximation to the QD function
(7b), i.e.,
P,(r) ~ ylgrlv,
»—0

It appears that the QD function essentially contains
both the hydrogenic approximation and the é-function
model as limiting cases but is also valid in the region of
intermediate binding energies.

Figure 1 compares 7P (r) together with corresponding
potentials for the three models. As the binding energy
increases from the hydrogenic value R* (and »
decreases), the QD function becomes more compact,
with the charge distribution #2|P,(r)|%dr increasing
rapidly near the core. This is just the behavior that
should have been expected from our earlier arguments
connecting the binding energy and the core potential.
All three wave functions, of course, become more com-
pact with increasing binding energies, but their behavior
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for large r differs depending on the parameters a*, v,
or a, respectively.

B. Continuum States

Quantum-defect Coulomb functions can also be ob-
tained as solutions of Eq. (1) for the positive energy
states. These continuum Coulomb functions were
utilized as the final-state functions for calculating the
photo-ionization cross section in Ref. 4. However, the
positive-energy Coulomb functions are rather intract-
able; in addition, their use involves the complication of
estimating the QD parameter u appropriate to the
continuum. While, in principle, the QD for the con-
tinuum states can be extrapolated from the higher-
lying bound states, the procedure is so imprecise that,
for most practical purposes, u remains an adjustable
parameter.

Here we consider the simpler approximation of
plane-wave continuum functions. These functions are
considerably easier to use for computations and lead to
analytical functions for the required dipole matrix
elements. It would not be readily expected that plane-
wave functions should be as good an approximation to
the positive-energy solutions of Eq. (1) as the Coulomb
functions used in Ref. 4. However, contrary to expecta-
tions, appeal to experiment indicates they often provide
an excellent approximation. In the next few paragraphs
we present the free-wave solutions followed by an
attempt to rationalize their use.

Free-wave functions are obtained as solutions of
Eq. (1) with the Coulomb potential put equal to zero,
e.g., let /K — 0. The resulting equation,

[— (#/2m*)V*— €(obs) ]F (r)=0, ©)

can be diagonalized simultaneously in energy H and
momentum p (Cartesian coordinates x, v, z) to yield
plane waves e®** or it can be diagonalized simulta-
neously in energy H, angular momentum |L|2, and z
projection of the angular momentum L, (spherical co-
ordinates) to yield functions formed from products of
spherical Bessel functions j;(k7) and spherical har-
monics V;"(0,0), i.e., 7:(kr)V™(0,0). Since both sets of
functions form complete sets, one can be expanded into
the other. The well-known expansion®

Grmdr S S G rOTE) ()

=0 m=—1

is of computational use. The second spherical harmonic
v (k) depends on k. It is a function of the arguments
(0x,9%) specifying the direction of the unit vector k.
We shall utilize this expansion in calculating both band-
impurity transitions and impurity-ionization and cap-
ture processes.

6 A. Messiah, Quantum Mechanics (John Wiley & Sons, Inc.,
New York, 1962), Vol. I, p. 359.
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In atomic physics, for example, in calculating photo-
ionization cross sections of the hydrogen atom, free-
wave functions do not provide a good approximation
except in the high-energy limit. Why, then, do free
waves appear to be adequate for calculating photo-
ionization cross sections of impurities in semiconductors,
as indeed we will later establish to be true?

It is possible to speculate that the larger orbits as-
sociated with the excited discrete and continuum p
states are shielded from the core potential of the im-
purity ion, while at the same time the more compact
ground-state s function (which is finite at »=0) ex-
periences the full core potential. In fact, the higher-
energy bound p states of the deeper group-III im-
purities in silicon do show some tendency to become
more weakly bound than predicted from a Coulomb
potential. This trend leads to the use of negative QD
parameters in the continuum, which in turn forces the
Coulomb waves to approach free waves more closely.

Additional support for our speculation is provided by
the success of Lucovsky’s §-function model for describ-
ing deep centers.>7:8 As previously discussed, the bind-
ing energy of the ground-state s function is largely
determined by the short-range ion core potential. If
the potential is assumed to be a § function, no excited
bound states occur, and the continuum states are free-
wave Bessel functions. Adding weak ‘“Coulomb-like
tails” to the é-function core potential will introduce
bound excited states and cause some distortion of the
continuum states. If the Coulomb tails do not extend
over a range that is too great, the distortion of the
continuum states may not be significant.

III. ABSORPTION AND EMISSION PROCESSES

The formulas for the absorption coefficient and the
spontaneous recombination rate involve the transition
rate between individual states, the number of filled
initial states, and the number of empty final states. The
number of filled or empty states is given by the total
number of states times the occupational probability
(e.g., Fermi-Dirac, Boltzmann, etc.). The manner in
which the number of states enters depends, among other
things, on whether or not the probability of the state
being filled or empty is dependent or independent of the
occupation of the other states. Consider two energy
levels E, and E;, formed from N, and N, states. Let
m=N,f; and n,/=N,f,' be the number of occupied
lower and empty upper states, respectively. If the
occupation probability of the lower states f; is in-
dependent of the occupation of the upper states f,/,
and all IV, IV, states are coupled by optical transitions,
then the optical transition rate from £, to E; must be
proportional to #,%;. This product enters in a natural
way upon summing over all initial and final states

( 7 11{]) A. Chapman and W. G. Hutchinson, Phys. Rev. 157, 615
1967).
8 J. S. Blakemore, Phys. Rev. 173, 767 (1968).
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Fig. 2. Band-impurity absorption and recombination showing
the difference in the effective degeneracy for neutral and ionized
impurities. Donor is illustrated as twofold-degenerate (spin
degeneracy) and acceptor is illustrated as fourfold-degenerate
(two degenerate valence bands plus spin degeneracy).

appearing in the transition rate, say, as calculated from
Fermi’s “Golden rule”:

27
W=—2" |3u1]20(Ewi—hw).

T u,l

(10)

Similarly, the number of downward transitions is
proportional to nm,’. Clearly, the interaction Hamil-
tonian JC,; may contain selection rules (e.g., spin flips
are forbidden) that eliminate some of the terms but
still leave the transition rate proportional to the product
N,N;. With these assertions, the absorption coefficient
(in units of cm™) follows directly from the Golden rule:

2w
a(w)=——— 3 (|3u|?av

AV gx (hw) Bu,E2

X (nmy' —nm1")8(Eu—ho).  (11)

The spontaneous emission rate is somewhat more dif-
ficult to derive but can be shown to be

2
RSP(hw) =—;7G(hw) EZE < |3Cul | 2>av

Xnunl’é (Eul_ hw) . (12)

The sums over E, and E; account for the fact that more
than one pair of energy levels can conserve energy with
fiw. In these formulas, V gy (%w) is the radiation-field-
energy velocity; it is related to the index of refraction
7 (hw) through the real part of the dielectric constant
by eV un(fiw)=mn(hw)c.® The optical density of states is

_nz(hw) (hw)?

Glha)= () 3Va

(13)

where V¢ is the group velocity. The “reduced” inter-

?R. S. Knox, in Solid State Physics, edited by F. Seitz and
D.l’(l)“tslrnbull (Academic Press, Inc., New York, 1963), Suppl. 5,
p. 105.
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action Hamiltonian |3C,;|? is defined as the energy of
interaction for one photon®:

eZ
|3Cur|?=

[ulea-plD)]?,  (14)

€,m%w?

where ky is the wave vector of the radition field and &
is the polarization direction, which we will normally
take as z. The angular brackets around the matrix
element in Egs. (11) and (12) indicate an average over
all degenerate initial and final states appearing in (14).
In the standard dipole approximation, we have e=%-r~1,
For most cases of interest to semiconductor physics,
the energy summations in Eqgs. (11) and (12) are elimi-
nated. One summation is of course eliminated by the
energy-conserving 8§ function 6(F,;—hw). The dis-
position of the remaining summation depends on the
particular case of interest. For band-to-band transitions,
momentum conservation does the trick. For transitions
involving impurities, the discreteness of the impurity
state provides the second § function needed. Since this
is the case of interest here, we will treat it explicitly.
Let the lower level be a discrete impurity state at
energy (Er): then we have

mi=m(E;)8(E;—Er) (15)

1’L11=7L1,(E1)5(E1—E1‘). (16)

Substituting into Egs. (11) and (12) eliminates the
sums over F, and E; through the agency of the &
functions:

and

/ AE AL (B yy— 1) (E1— Ey) . amn

Clearly, the same result obtains if the impurity is the
upper level ; hence, (11) and (12) reduce to

a(w) =m< l ot | Dav (i —numy’) (18)

and

2w
Rsp(hw) =;G(hw)([5€ulf2>avnum’. (19)

From Eq. (18), the absorption cross section o (#w) (in
units of cm?) is defined in the standard way :

2w
o (hw)=—

. m(lmulmavp (£,

j=u,l (20)

where p(E;) is the density of continuum states. In
terms of o (%w), we have

a(hw)=a(hw) (nl%ul—”u”l/)/P<Ej) (21)

Rsp(hw) =0 (hw)V ey (he)G (ho)n.m'/p(E;), (22)

10 W. Heitler, The Quantum Theory of Radiation (Oxford Univer-
sity Press, London, 1957), p. 176.

and
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where j=u, I, depending on whether the continuum
level is the upper or lower energy level. These formulas
readily reveal the relation between a(%w) and Rgp(%w)
as determined from detailed balancing.!!

The absorption cross section defined above contains
the information pertaining to the transition probability
between one filled and one empty state. Using the rela-
tion® €.V gn(fw)=n(hw)c, in combining Eqgs. (14) and
(20) gives for the cross section

A7%a0hw {| pui|?)ay
—p(E
’}’L(hw) P( ) )

where p(E) is the density of final states and « is the
fine-structure constant ¢?/%c. The momentum matrix
element is averaged over all degenerate states. Let g,

and g; denote the degeneracies of the energy levels E,
and £;;then

1 o
([pur|Dav=—" 2

gugdl dydi=1

o (hw) =

(23)

miw?

[pu]?. (24)
If only spin degeneracy occurs and spin flips are for-
bidden, then we have

(1w av=%1pu]. (25)

Averages over degenerate impurity states arising from
multiple bands (e.g., complex valence-band structure of
most elemental and compound semiconductors) usually
do not introduce additional factors. Thus the general
average in Eq. (24) often reduces to (25).

In the following sections we calculate the cross sec-
tions for band-impurity transitions of the type shown in
Fig. 2 and impurity-ionization (and capture) processes
illustrated in Fig. 3. Considering both processes in
juxtaposition provides an opportunity to contrast cer-
tain aspects of the two calculations. Band-impurity
(e.g., donor-valence-band or acceptor-conduction-
band) transitions are adequately described as transi-
tions between a bound impurity state and a band Bloch
function. In contrast, photo-ionization reduces to a cal-
culation between localized impurity states, namely,
between the discrete negative-energy ground state and
the continuum positive-energy excited state (in exact
analogy with photo-ionization of the hydrogen atom).
In order to distinguish the impurity-induced positive-
energy continuum states from the Bloch functions, we
refer to localized continuum states in Fig. 3. Localiza-
tion is something of a misnomer, but it nevertheless
retains a certain precision in suggesting the formal com-
monality of the negative- and positive-energy solutions
of the effective-mass equation (1).

IV. BAND-IMPURITY CROSS SECTION
A. Spectral Shape

Consider optical transitions between the conduction
band and an acceptor contained in a semiconductor

1 E, W. Williams and H. B. Bebb, J. Phys. Chem. Solids 30,
1289 (1969).
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F16. 3. Impurity-ionization and capture processes illustrating
difference in the effective degeneracy for neutral and ionized im-
purities. Donor is illustrated as twofold-degenerate and acceptor
as fourfold-degenerate.

possessing simple parabolic bands with only spin de-
generacy (see Fig. 2). In the simplest approximation,
the acceptor wave function is given as a product of the
valence-band Bloch function at the band edge—say,
k=0—and the slowly varying envelope function ob-
tained as a solution to Eq. (1)':

[4)=F,(t)its,0(x)= |7; 2,0). (26)

The conduction band is described by the usual Bloch
function

[c,k)=e® a1 (r). (27)

In a well-known approximation,! valid when F,(r) is
slowly varying compared to the periodicity of #a,x(r),
the momentum matrix element reduces to

<C;k| PZ | v; ‘ZJ,0>= Pcv (k)av(k> I (28}

where

a,(k) = / " e, (1)dr (29)

and p., (k) is the usual momentum matrix element be-
tween the conduction and valence bands. In all cases
examined by k-p calculations, it is found that p.,(k)
can be replaced quite accurately by the band-edge value
per(0).12 This, of course, is a standard approximation,
but we wish also to stress that it is a good approximation
even when band warping is appreciable.
From the partial-wave expansion (9) we have

L@ =4r Y 5 (=) f FEDP()dr

1=0 m=—1

X f V0 9)Y$(6.4)d2.  (30)

Evaluating the angular integral (noting the usual selec-

12 E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
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F16. 4. Plot of shape function S (»,x) versus normalized energy x
for several values of ». The normalization is chosen so that in the
hydrogenic limit S(1,x) reduces to the function x2/(1-4-x)*
defined by Eagles. The absorption cross section is proportional to
S (v,x). The decreasing magnitude and weaker spectral dependence
finakesI experimental observation of the deeper centers more

ifficult.

tion rules) and substituting in the defining relations for
jo(kr)=sin(kr)/kr and P,(r)= N, e r/* we have

a,(k) =4a N,V P (B)a*r+ / p” sin(k'p) e*dp, (31)

where p=7/a* and k’'=ka*. The integral is evaluated in
the Appendix. Noting also that V(&)= (4m)7'/%, we
finally obtain

472% (va*)3 sin?(v+1) tan~ (vka*)
(ka*V[14(ha®)?

In the hydrogenic limit, »=1 and (32) reduces to the
familiar form?!3.14

[@y=1(k)|*= 64ma**/[14- (ka*)*]'.

la,(k)|*= (32)

(33)

For the opposite limit of very deep impurity centers,
the é-function model yields

|au(k)|?=8m(a*/a)*/[1+ (ka*/a) T,

where o?= — e(obs)/R*.

It is this expression for |a(k)|? that reflects the use of
different approximations for the wave function. All three
expressions (32)-(34) show the same qualitative be-
havior, namely, that ¢(%) remains nearly constant for
k out to some value reciprocally related to the extent
of the impurity envelope function—say, in the QD
case, k~1/va*. Indeed, the integral (29) defining @, (k)

(34)

13D, M. Eagles, J. Phys. Chem. Solids 16, 76 (1960).
4 W. P. Dumke, Phys. Rev. 132, 1998 (1963).
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is in reality just the Fourier transform of F,(r). As »
becomes smaller corresponding to increased binding
energies, the wave function becomes increasingly com-
pact, and larger values of k space are requird to repre-
sent F,(r). This same Fourier relationship also exists in
other approximations, e.g., scaled hydrogenic or §-func-
tion-model wave functions. Consequently, the QD re-
sults differ quantitatively but not qualitatively from
other theories ; arguments based on Fourier relationships
would seem to preclude any great differences from being
introduced by any theory. However, the distinction be-
tween quantitative and qualitative depends on the
measurement scale. From the experimental measuring
stick of data interpretation, changes introduced into
the predicted optical properties by the QD model are
substantial.

In order to investigate in more detail how QD for-
mulas differ from hydrogenic formulas, it is useful to
cast the results into a slightly different form. Still
referring explicitly to acceptor—conduction-band transi-
tions, we can write the cross section using Eq. (23) as,

2me\3/?
5”(2?) « )

aghw 1 IPOAP

n(hw) 2 miw?

o (hw)

where the conduction-band density of states is (not
including spin)
dc [2m\32
(e
(2m)2\ #2

where &, is a factor differing from unity only if the con-
duction mass is not a constant (nonparabolic bands),
and where m, is the band-edge value of the mass.
Defining

Xe=Mg€/My€,
where

(37

€= N2k 2m,= ho— eg— €a,

we can write the cross section [upon substituting

[peal?= [ pes*] ar (k)]

2% e |2 M
o (hw)= o 1]

N (V:xc) ) (38)

n(hw) m*e® m,R,*

where R,* is the effective Rydberg appropriate to the
valence-band mass m,, and where

v2% sin?(v+1) tan(x,/2)

162,12 (142,)"H

S(V;xc) = (39)

Here we have also identified »*£%2a,*2=m e,/Mm,e1=2%,.
The dependence of the cross section on impurity bind-
ing energy [es(obs)=R,*/»*] is contained entirely in
the shape function S(v,x.). For »=1, .5(1,x,) reduces to
the function x,'/2/(14-x.)* defined by Eagles.”® In the
o-function limit we have S(a,x.)= (1/802)x./2/ (14x,)2.
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Figure 4 plots S(v,x) for several values of ». For
generality the masses are identified by numerical sub-
scripts, with 1 referring to the band coupled with the
impurity ion and 2 referring to the opposite band.
Two features are apparent. First is the decreasing
magnitude of .S (v,x) with decreasing », and second is the
apparent weaker spectral dependence. As remarked
above, these qualitative features should occur in any
approximation. The quantitative differences in S(»,x)
for different values of » are made more apparent by
plotting S (v,&)/Smax in Fig. 5. On this plot the hydro-
genic approximation (v=1) yields a unique spectral
curve for all choices of the effective Bohr radius. The
changes in S(»,2)/Smax as a function of » are peculiar
to the QD theory. At the opposite limit of infinite bind-
ing indicated by » — 0.0 and calculated usings-function-
model wave functions, we also obtain an invariant curve.
The QD model spans the region between, as well as
incorporating, the two limits.

A formula describing the cross section for valence-
band-to-donor transitions is obtained from Eq. (38)
by interchanging ¢ and v and replacing e4 by €p. Thus,
in general, we can write for band-impurity transitions

2571"(10 IPN,P M2hw

315(1/,.7(:2) y
n(hw) miw? mlR1*

(40)

o (hw) =

where x,=mqes/mi€;. For donor-valence-band transi-
tions, we have 2—9 and 1—¢, and for acceptor—
conduction-band transitions, we have 2— ¢ and 1 — .

B. Magnitude

For certain well-known band structures the mo-
mentum matrix element can easily be evaluated from
k-p perturbation theory as applied by Kane. We
consider first the band structure appropriate to direct-
gap III-V compounds, i.e., a spin-degenerate conduc-
tion band separated by eg from a valence-band struc-
ture formed from spin-degenerate light- and heavy-hole
bands degenerate at k=0 and a split-off band separated
by the energy A.’® From the f-sum rule,'® the conduc-
tion-band mass at £=0 is

112 5 THE "
me m 2 etys Eo(0)—Eo(0) (

where
EC(O) —E, (0) =€gq,
=eg+A, (42)

From Kane’s calculations it can be shown that!2:14.17

[perl?=per|?=]pes|?; (43)

1B E. J. Johnson, Semiconductors and Semimetals (Academic
Press Inc., New York, 1967), Vol. III, p. 153.

16 A. H. Wilson, The Theory of Meials (Cambridge University
Press, Cambridge, England, 1953), 2nd ed.

17 F. Stern, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1963), Vol. 15, p. 370.

for v=h,l
for v=s.
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F1G. 5. Plot of normalized shape function S(»,x)/Smax versus
normalized energy «x. The dashed curve indicated by » — 0.0 is
obtained from the §-function model (see text).
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then we have
ész eg+A

61 eg+2A°

| peo]?= (44)

where 7, is the mass parameter introduced by Kane.!8
Itis related to the effective mass m, through

(45)

In most instances, we have e¢>>A, making eqgm?/61, a

good approximation to | pe |2 By trivial rearrangement

we can also write other useful computational formulas:
€q EG_R]_* m1

| Des]?
= = —a*?, (46)
mPw?  6mw? 3 (hw)? 1,

m/me=m/m.—1.

where 1 refers to the band associated with the impurity.
Combining Eqgs. (40) and (46) gives
251ra0(11*2 €q My

—_ —625 (I/,xg) .

3n(hw) hw m, 7)

o (hw) =

The quantity $maea® is common to many cross-section
calculations and has the value 8.56 X107 cm?. Insert-
ing this value gives

8(a */ao)z
S/ 8 56310) -

n\nw W,

€egmily
825 (v,%2) cm?. (48)

o (hw) =

For donor-valence-band transitions, both the light-
and heavy-hole bands can contribute (and perhaps the
split-off band also). Then the cross section is obtained
by summing over the valence bands!:

8(ar*/ao)?
o () =L (8.5610-1%)
n
€@
X——2_ m:8,S(v,x,) cm?.  (49)
WM 2

Other examples are readily worked out from the
f sum rule. Particularly simple is the two-band model

18 See, for example, Eqs. (49) and (68) of Ref. 15.
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with |p.|? given by

11 2 |pol?

me m M eg

or

| pon|?= eqm®/ 21c, (51)

which compares with Eq. (44).

Equation (51) can also be used to estimate |pe, |2
for more complex band structures upon dividing by
the number of contributing degenerate (or nearly
degenerate) bands summed on in the f sum rule. This
rule is easily verified directly from Eq. (41).1°

V. PHOTO-IONIZATION CROSS SECTION

Photo-ionization and radiative capture involve transi-
tions between states made up from a given band (i.e.,
donors associated with the conduction band and ac-
ceptors with the valence band).4 Thus it is not necessary
to distinguish between bands with the same care as
when different bands are involved. Associating the im-
purity level with a band of index b gives the ground-
state s function of the impurity as a product of the
envelope function F,(r) and the band-edge Bloch
function #4,0(r):

|I)=F,(t)us,o(r). (52)

Similarly, the continuum state is given by a plane-wave
“envelope function” e* multiplied by #s,0(r):

[ I,) =gik* 'ub,o(r) . (53)

In calculating intraimpurity transitions it is more
convenient to use the dipole moment operator z than
the momentum operator p,. Again with the standard
approximation that the envelope functions are slowly
varying with respect to the periodicity of the Bloch
functions, the dipole integral reduces to

(I’]sz)=/e*"‘”zF,,(r)dr. (54)

Because of the appearance of cosf from z=7 cosf, only
the p-wave term in the partial-wave expansion (9)
survives:

(I'|2|I)=—idr ¥V 0 (k) / V0 cosd ¥ dS
X / J1(kr)r P, (r)r*dr

4 R
- “V’ng’(k)N» / Jalkr)rerir, (%)

where the second line follows upon performing the
angular integral. The /=1 spherical Bessel function

1 Q. Madelung [ Physics of III-V Compounds (John Wiley &
Sons, Inc., New York, 1964)] gives a useful discussion of the rela-
tion of |pey|? to the effective masses.
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is j1(kr)=sin(kr)/ (kr)?—cos(kr)/kr. Performing the
integral over r gives

va*)s  p2
? ———f(y), (S6a)

I'| 2| I) |2 =3 (4m)2| V2 (k)
[(I7|2] 1) [2=%(4m)*| V1( S i

where

1) = <sin(v+1) tan~1(y'/2)

1/2
y/

(v=+1) cos(v+1) tan1(y*/2)
(1)

y=ka*)?=ep/eg=(hw—er)/€r. (56¢)

The last identity follows trivially from the definition
of e:

)2 (56b)

and

€5 =128/ 2my = Ry* (ha*)?= e (vha®)?.  (56d)

Finally, we must average the matrix element over all
degenerate initial and final states. The average over
final states includes an average over the possible direc-
tions of £ [namely, /| V°(k)|2(dQs/4m)= (4n)71], as
well as over the spin and band degeneracies. Substitut-
ing the result into Eq. (23) and recalling that |pui|?
=m%wyi?| 241]%, We obtain

2

47 aoh&)(l I’I 7 |2> 1 Zmb 312 12
) ¢ D (zw)2<?> °

ao(1+y)
—_— ’ 2 1/2
e LU

4raea™? 1 322 f(y)
(g —— (57)
(o) 2 yR(14y)H

where y= (fw—e€r)/ e and f(y) is given by Eq. (56b).
Again numerically evaluating 4maa¢?/3=8.56X1071°
cm? and defining the normalized matrix element cor-
responding to Ref. 4

o (hw)=

27 f(y)
e 58
ST o9
we obtain
(a*/ao)*
20 () = (8.56X10719),2 (1+7) | g|2 cm?

7 (hw)

_ ) (59)
1 (fi

The factor of 2 appearing with o(%w) arises from the
average over spins, assuming that spin flips are for-
bidden. Often the spin degeneracy is included in the
density of final states and cancels the § arising from the
average over spins. However, here we chose to maintain
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all degeneracy factors explicitly in the number of
initial and final states, i.e., ¢(%w) is the cross section
appropriate to one ‘‘average’” initial state and one
‘“average” final state.

Figure 6 presents the normalized atomic cross section
a(#)/v? versus the normalized photon energy #w/ er for
several values of ». Lucovsky’s é-function model was
used to calculate the » — 0.0 curve. From the figure
there is a clear trend starting at the »=1 curve, which
has its maximum near threshold and falls off rapidly
with increasing energy. As » decreases (increasing bind-
ing energy), the maximum moves to greater energies
and the cross section decreases more slowly with in-
creasing energy, until finally the »=0.3 curve ap-
proaches Lucovsky’s é-function model rather closely.
In fact, in the limit of small », the normalized atomic
cross section becomes independent of » (=a™!) and
assumes the functional form 43/2/(1+4y)® appropriate
to the d-function model. Specifically, the §-function
model predicts the matrix element |g|? appearing in
Eq. (59) to be

| g2 =852/ (149)*.

While the change in spectral shape between »=0.3
and the §-function model » — 0.0 seen in Fig. 6 appears
to fit the established trend, the magnitude seems slightly
anomalous. This probably is in part due to the un-
certainty in specifying the correct normalization of the
wave functions. The normalization of the QD functions
in Eq. (3) is prescribed to force the functions to ap-
proach the correct magnitude for large 7 rather than to
yield a normalization integral of unity, while the 8-func-
tion solutions are normalized to unity. Normalization
of the QD functions to values different from unity is
justified by the fact that the major contribution to
optical integrals comes from moderately large values of
r and that the wave functions are not required to be well
defined near »=0. The apparent disparity between the
results of the QDM and §-function model is not
sufficient to warrant trying to conform the two
normalizations.

(60)

V1. DISCUSSION

The effect of impurity binding energy on optical
transitions is contained within the absorption cross
section. Various optical properties such as absorption
coefficient, radiative recombination rate, and lifetime
are readily obtained from the calculated cross sections
according to the prescriptions sketched in Sec. III.
The major purpose of this work is to apply the QDM
to calculate absorption cross sections for optical transi-
tions involving impurities of arbitrary binding energies.
Every effort is applied to put the results in a readily
accessible form for interpreting experimental data.

Two cross sections are calculated: the impurity
photo-ionization cross section (Fig. 3) and the band-
impurity cross section (Fig. 2). Some general trends
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F16. 6. Plot of normalized atomic cross section a(/uw)/v? versus
normalized photon energy /w/e; for different values of ». The
dashed » — 0.0 curve is calculated from Lucovsky’s é-function
model (Ref. 3).

common to both calculations are of considerable ex-
perimental interest. From a comparison of Figs. 4 and
6 it is evident that as the impurity binding energy in-
creases, the spectral dependence of the cross section be-
comes weaker and its magnitude decreases. Both of
these trends make experimental observation of im-
purity-induced optical effects for deeper impurity
centers more difficult; this is contrary to the intuitive
argument that deeper centers should be easier to ob-
serve because they are further removed from the band
edge.

Fourier relationships between r space and k space
provide a unifying link to the general characteristics
mentioned above. Both calculations (at least in the
Born approximation) involve the quantity | (y,k) |22,
where b(v,k) is the Fourier transform of k(r) =r7e~";
for band-impurity transitions we have 0>vy(=v—1)
>—1, and for photo-ionization transitions we have
1>v(=»)>0 [compare Egs. (29) and (54)]. The cor-
relation in the spectral extent of b(y,k) with the com-
pactness of %(7) is apparent in Figs. 5 and 6.

Studies of photo-ionization processes of deep centers
in semiconductors have been performed in sufficient
detail to allow critical assessment of the applicablity
of different theoretical models. Investigations of
group-IIT impurities in silicon and the Hg center in
germanium validate the QD model for impurities of
arbitrary binding energies and the Lucovsky é-function
model for very deep impurities. Comparison of the
present calculation with previous theoretical and ex-
perimental results indicates that the approximation of
replacing the Coulomb continuum states with plane
waves (while keeping QD ground-state functions) pro-
vides a quite simple working model which retains its
sensitivity to the impurity binding energy. Indeed,
appeal to experiment perhaps even favors the Born
model over the full QD model. Certainly, when the in-
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creased simplicity is also taken into account, use of the
Born model can often be justified.

Recently, deep impurity centers have been recognized
as potentially important in understanding optical
properties of certain “ferroelectric-type” crystals. Some
attempts to understand their influence have been at-
tempted from a Lucovsky-like model.?? Perhaps as these
studies become more refined, the QD model will find
application to these and other materials.

In the case of band-impurity transitions, much less
experimental evidence concerning deep impurity centers
exists with which to verify theoretical predictions. It
has only been very recently that direct-gap semicon-
ductor materials have been prepared of sufficient
quality to give rise to emission lines which could be
unambiguously identified as band-impurity transitions.
Williams and Bebb!! show that emission arising from
conduction-band-acceptor transitions involving shallow
acceptors in high-purity GaAs is accurately interpreted
in terms of the hydrogenic model. In addition, band-
edge absorption involving shallow impurities has been
studied. It is hoped that similar studies on deeper cen-
ters will be performed.

Finally, we consider the realm of validity of the QD
model. Basically the QDM is a technique for solving the
usual effective-mass equation in a different and pre-
sumably improved approximation from the hydrogenic
model. Thus, it clearly inherits all of the approximations
embedded within the effective-mass theory itself. Of
greatest concern is the requirement that the impurity
envelope function remain slowly varying compared to
the periodicity of the lattice. For very deep centers this
condition is not well satisfied.2! However, there is not
yet any experimental evidence that violation of the
slowly varying requirement detracts from the ability
of the theory to yield accurate results. General experi-
mental trends established for shallow to moderately
deep impurities continue in a regular way to very deep

2 C. N. Berglund and H. J. Braun, Phys. Rev. 164, 790 (1967).

21 The need for the envelope function to encompass a large
number of lattice constants arises from the approximation of re-
placing a summation over lattice points by an integral over all
space to arrive at Eqgs. (28) and (54) [cf., H. J. Zeiger, J. Phys.
Chem. Solids 35, 1657 (1964)]. The associated difficulty of de-
scribing wave functions in the immediate neighborhood of the
impurity-ion case is bypassed because the optical integrals are
insensitive to the nature of the wave functions at small ». This
latter point is discussed in some detail by D. R. Bates and A.
Damgaard, Phil. Trans. Roy. Soc. London A242, 101 (1949).
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centers, though their wave functions may extend only
over a few lattice constants.

The QD theory does not a priori encompass defect
centers associated with lattice defects, complex centers,
or transition-metal ions, since these do not fall within
the effective-mass formalism. In an earlier paper, the
photo-ionization cross section of the manganese center
in GaAs was shown to be in agreement with QD pre-
dictions. This comparison can be interpreted as for-
tuitous or considered as evidence that the transition-
metal ion gives rise to Coulomb states in addition to
the crystal field “d states.”
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APPENDIX

For convenience we record an integral which is
common to many QD calculations:

I(v,k)= / rve e dy . (A1)
0

The integral is the standard y-function integral
I(y+1) I'(y+1)
(1/v—ik)r+  (1/p24-k2) (D12

Xei('y-l-l) tan—lylc.

I(y,k)=

(A2)

In (A1), let e?*" =coskr-i sinkr; then we have

Im py*HT (y+1) /sind
(Y- 2R
Re (1-L02%2) +0 12\ cosf

where 6= (y+41) tan~Wwk.

(A3)



