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that his effective mass was measured at a Fermi energy
up to 0.05 eV above the bottom of the conduction band.
The donor binding energy calculated from the eRective-
mass approximation using a, mass of 0.19m, is approxi-
mately 30'Po smaller than the experimentally determined
binding energy obtained on the assumption that the
n=2 excited state is effective-mass-like. For the n=2

states, the eRective-mass approximation should be good.
For the n=i state, it is evident that central-cell
corrections become important.

There is still some uncertainty as to the dielectric
constants in ZnO. This will have the greatest effect on
the binding-energy determination. It will also have a
small effect on the effective-mass value.
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The dependence of the imaginary part of the dielectric function, eq(~)& on a small-amplitude ac stress
in the energy range from 1.9 to 2.8 eV for germanium is analyzed. The dependence of the differential be&

on polarization and stress direction is described in terms of three symmetry-adapted response functions:
Wr(~), WI(+), and W5(ca). The function W&(co) characterizes the response to hydrostatic stress. L001j
uniaxial stress generates W&(co) and WI(s&) while L111jstress generates W&(cu) and Wq(cu). The W, (co) con-
tain contributions W '"(cu) from energy-band shifts, and also W, ""(a&) due to optical-matrix-element
variation. We find Wph' (co) =0, which implies that the critical points near 2.1 and 2.3 eV lie in the $111$
direction (A) or at the I. point, in agreement with previous work. W&(a&) contains almost purely energy-
shift effects, which leads to the derivative of the unstrained e2(a&) function, since hydrostatic shifts lead
to very little wave-function mixing. Wz(cu) and Wa(&u) give very distinct line shapes which are characteristic
of energy-band shifts and matrix-element variation, respectively. Here Wz(~) can be represented as a
linear combination of W&(cu) and Wq(co). We can account for the observed line shapes quantitatively on
the assumption that ~2(s&) consists of two distinct contributions e~ (co) and e2 (ar) from each spin-orbit-
split band, which are identical except for an energy shift equal to the spin-orbit splitting. This analysis
yields four deformation potential constants: D&', D&', DP and D3'. The quantities D&' and D&' agree with
previous measurements by Zallen and Paul and by Gerhardt. D33 agrees with the value determined by
Pollak and Cardona using a dc stress method, while D& difters by a factor of 4. The origin of this discrepancy
is not presently understood, but recent calculations by Saravia and Brust tend to support this value.

I. INTRODUCTION AND CONCLUSIONS

'HK pioneering work of Seraphin' initiated a great
deal of study of optical critical-point structure by

differential methods, chiefly piezoreQectance' ' and
electroreQectance. 4 One of the advantages of these
methods is the increase in sensitivity over dc measure-
ments. Another advantage is the information about
critical point synUDetry which can be inferred from the
symmetry-breaking property of differential perturba-
tions. This latter advantage has not been as widely
exploited because the difficulties of measurement and
interpretation are somewhat greater.

In this paper, we use polarized light to study the
structure in the reflectivity of germanium (Ge) in the
region from 1.9 to 2.8 eV, using an ac piezoreQectance

' B. O. Seraphin and R. 3. Hess, Phys. Rev. Letters 14, 138
(1965); B. O. Seraphin and N. Botta, Phys. Rev. 139, A560
(1965); 140, A1716 (1965); 145, 628 (1966).

2 W. E. Engeler, M. Gar6nkel, J.J.Tiemann, and H. Fritzsche,
Phys. Rev. Letters 14, 1069 (1965);G. W. Gobeli and K. O. Kane,i'. 15, 142 (1965);U. Gerhardt, D. Beaglehole, and R. Sandrock,i'. 19, 309 (1967).' M. GarGnkel, J. J. Tiemann, and W. E. Engeler, Phys. Rev.
148, 695 (1966).

4M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Rev.
154, 696 (1967).

technique. While measurements of this type on Ge have
not yet been reported, they are very closely related to
measurements made under high dc strain reported by
Gerhardt' and by Pollak and Cardona. ' We feel the
ac stress method is somewhat simpler. It can also be;
applied to materials which cannot sustain strains high
enough to produce observable splittings of critical point
structure.

It is generally accepted that the structure between
2.1 and 2.3 eV in Ge results from critical points in the
h.-direction, or at the I point with transitions occurring
between an I.s. (A.s) valence band and an Lr (Ar):
conduction band. The I.s (As) double degeneracy is
lifted by spin-orbit interaction of 0.2 eV. Most band.
calculations find an Mo singularity at the I.point an@
an F1 singularity along the A direction. ~ The two
singularities are within a few tenths of an eV of each
other. The strong structure at 2.1 and 2.3 eV is generally

' U. Gerhardt, Phys. Rev. Letters 15, 401 (1965); Phys. Status
Solidi 11, 801 (1965).

6 F. H. Pollak and M. Cardona, Phys. Rev. 172, 816
(1968).

r D. Brust, Phys. Rev. 134, A1337 (1964); L. R. Saravia and
D. Brust, ibid 176, 915 (1968)..



D. D. SELL AND E. O. KANE

TABLE I. Symmetry conditions on the component of W'; due to
energy-band shifts. From Ref. 15.

Critical point location

%=0
4=a
4=x, 1.
k=2, U2 symmetry

Symmetry condition for
nondegenerate bands

g7 shift gl shift 0
gl shift 0
gj shift —0
gj'Sshift 0

identi6ed as coming from the spin-orbit-split 3fi
singularity along the A direction. '

L-point transitions have been identified by Potter'
as occurring at 1.74 and 1.94 eV at room temperature.
The structure is very weak and we feel the interpreta-
tion is insecure. Ghosh' has used electroreAectance
measurements to identify L-point transitions at 2.05
;and 2.24 eV at room temperature. This structure
strongly overlaps the A-point structure, and we feel
that the problem of electroreAectance line shapes is not
sufFiciently well in hand to permit such interpretations
to be made with confidence. However, our conclusions
are not in convict with his interpretation.

( oulomb effects at ~0 ii and ~i i2, i3 singularities
have been studied in the effective mass approximation.
The line-shape modifications are very strong. The
effective-mass approximation is probably not adequate
to study critical points whose energy separation is only
a few tenths of an eV. It is not even clear to what
extent structure due to Coulomb effects could be assign-
ed to the singularities separately.

For small lifetime broadening, excitonic effects at
an Mo singularity are unambiguously characterized by
sharp peak structure in e&. For heavy lifetime broaden-
ing the spectrum resembles a square edge which has
been folded with a I orentzian, The relatively abrupt
rise on the low-energy side of the critical point is the
main distinguishing feature. For an 3fi singularity, "
the strongest structure results from the lowest two-
dimensional bound state of the light mass degrees of
freedom. This structure is characterized by an asym-
metric peak whose steepest slope is on the high-energy
side, just the opposite of the ufo case. The line shapes
we obtain are characterized by steep slopes on both
.high- and low-energy sides, and it is tempting to suggest
that this results from the combination of an 3IIO and Mi
singularity separated in energy by about 0.1 to 0.2 eV.
'The energy scale for Coulomb effects is determined by
the two-dimensional light-mass binding energy, ' which
is only 0.01 eV for Ge. This is small compared to the
Iifetime broadening energy, but not so small that
Coulomb effects can be safely ignored. Saravia and

8 J. C. Phillips, Phys. Rev. 133, A452 (1964).
~ R. F. Potter, Phys. Rev. 150, 562 (1966).' A. K. Ghosh, Phys. Rev. 165, 888 (1968)."R.J. Elliott, Phys. Rev. 108, 1384 (1957)."B.Velicky and J. Sak, Phys. Status Solidi 16, 147 (1966);

J. Hermanson, Phys. Rev. 166, 893 (1968).
'~ E. O. Kane Phys. Rev. 180, 852 (1969).

Brust'4 have found agreement with piezoreRectance line
shapes on a pure density-of-states basis. Possibly a
combination of band structure and Coulomb effects are
involved, with neither being dominant.

The most general linear relation between the dielec-
tric constant and the strain in a cubic crystal can be
described in terms of the three functions W~(co),
W3(co), and W5(&o)."The function W~ is the normalized
response to hydrostatic stress, while 8's and W5 describe
the polarization dependence induced by L001j and
L111] uniaxial stresses, respectively. Contributions to
these functions are of two types W,'"'"caused by energy
band shifts, and lV,™ardue to matrix element variation
induced by strain. S", h"" is a simple indicator of
critical-point symmetry for nondegenerate bands as
shown in Table I.

For the 2.1- and 2.3-eV structure in Ge, we find

0) which indicates a critical point at 5 or in
the A-direction. This conclusion agrees with band-
structure calculations, and also with Gerhardt' and
Pollak and Cardona's' conclusions based on the effect
of large dc strains.

8 i "is expected to be very small, because hydro-
static strain mixes only bands of the same symmetry
which are separated by several eV, or more, at the
same point in k space. Then if the hydrostatic deforma-
tion potential D&' does not vary appreciably over the
region of k space contributing to e~(cv), we expect that
W~(co) de~/d&u. We have tested this conclusion using
our determination of 5 i and Potter's measurement of

and And it to be well obeyed.
The measured values of 8'i and lVs, then, give a

very clean separation of the effects 8""'"and 8"~ "
and we And two very distinct and characteristic line
shapes associated with 8 &=ADVS"'" and 5's=R™'r.
The function 8 5 is expected to include both effects, and
we find that it can be represented quite well by a linear
combination of 8'i and lVs.

We can analyze our data more quantitatively if we
make several assumptions which are suggested by the
effective mass (2 band) approximation. Specifically, we
assume that we have two energy bands ~ identical
except for the spin-orbit splitting, which give contribu-
tions e~"(a&) to the dielectric function. These functions
are simply shifted relative to each other by 2X, the
spin-orbit splitting, i.e., e2 (&o+2X)= e, (&o). These
functions are experimentally determined and hence may
be assumed to include Coulomb effects.

We assume that the effect of strain on these bands
can be described by four deformation-potential con-
stants Di', Di', Ds', and Ds'." The constant Di'
represents hydrostatic strain, where all bands are
shifted by the same energy. Here D&' represents a shift
of both bands at a given critical point ko by the same

"L.R. Saravia and D. Srust, Phys. Rev. 178, 1240 1969.
5 E. O. Kane, Phys. Rev. 178, 1368 (1969).This paper provides

the ground work for the symmetry results presented here. Our
notation for the deformation potentials is nonstandard. We prefer
it because it is "universal" for all symmetry situations.
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amount but a different shift for equivalent ks. Finally,
Dss and Dss do not lead to band shifts (up to terms
linear in the strain), but do lead to wave-function
admixture and changes in optical matrix elements which
are linear in the strain. In Sec. IV, we discuss the
relation between our deformation potential constants
and the standard definitions.

The above assumptions can be justified on the basis
of an effective mass (2 band) approximation when the
kinetic energy (or exciton binding energy) relative to the
band edge is small relative to the spin-orbit splitting.
This assumption may be accurate for the peaks at 2.1
and 2.3 eV, but less accurate for energies &0.2 eV
away from the peaks. If a large region of k space does,
in fact, contribute to the peaks, then our assumptions
would require that none of our D vary strongly over
that region.

On the basis of the above assumptions, we are able
to give a reasonably self-consistent quantitative analysis
of our data. We can decompose e2 into the two contribu-
tions es+ and show that Ws as+—es . We also obtain
values for the four deformation potentials D~', D~',
D3 and D3'. The energy-shift parameters D&' and Dj'
agree with earlier high stress measurements by Zallen
and Paul" and by Gerhardt. s D3' and D3' are deter-
mined from matrix element variation. The inQuence of
matrix element variation was noted both by Gerhardt'
and by Pollak and Cardona. ' Pollak and Cardona's
discussion of the effect is very similar to ours, although
our treatment is somewhat more general.

Pollak and Cardona' have determined D3' and D3'
using a dc stress analysis. They find agreemerit with the
corresponding parameters measured at k=0. We agree
with Pollak and Cardona for D3' but our value for D3'
is smaller by a factor of 4. The source of this discrepancy
is not presently understood, but recent calculations by
Saravia and Brust" tend to support our value.

In summary, we have measured the three funda-
mental linear dielectric-stress functions 8"~, 8'3, and
8'5 for Ge from 1.9 to 2.8 eV. We have found that 8'~
represents energy-shift effects, 8'3 represents optical
matrix element variation, and 8 5 is a linear combination
of the two. The fact that 8"3'"'"——0 implies that the
critical point is at A. or L. From line-shape studies, we
suggest that the structure may involve Coulomb effects
at an Mo and M& singularity separated by 0.1 to 0.2
eV, although band structure effects appear to be
important also, as shown by Saravia and Brust. '4 We
have determined the four deformation potential param-
eters D~', D~', D3', and D3' for the critical point to a
reproducibility of the order of 10%. The accuracy
depends on the correctness of the interpretation. We
feel that Dss is the least certain (+1,—0.5 eV). The
ratio Ds'/Ds' is measured more accurately, but Dss is
limited by the accuracy of D33. Our results indicate
that the present technique should be applicable to a

"R.Zaiien and W. Paul, Phys. Rev. 155, 703 (1967).

CONCENTRIC TUBES
TO TOP OF DEWAR

PLUNGER

SAMPLE WITH I OWER
MOUNTING CAP

TRANSDUCER

FIG. |.Schematic representation of the sample press. This unit
is mounted on the cold finger of a helium cryostat.

large number of materials with nondegenerate critical
points, and should be easier to apply than the dc
strain method.

II. EXPERIMENTAL DETAILS

Samples of intrinsic, single-crystal Ge were oriented
to within 0.5 deg by x-ray diffraction and cut into 1
mm)&i mm)(10 mm rectangular parallelepipeds such
that the long axis was either a (001)or a (111)direction.
One sample face was carefully polished to remove
surface damage and to obtain a good optical finish
before one end was epoxied into a stainless steel end
cap. '~ The samples were given a final cleaning in hydro-
Quoric acid before they were mounted in the stress
apparatus.

The samples were mounted in vacuum on a cold
finger in a helium cryostat. A diagram of the sample
press is shown in Fig. 1. A dc and superimposed ac
pneumatic force was applied to a piston at the top of
the Dewar and was transmitted to the sample through
two concentric stainless-steel tubes.

In an early version of the apparatus a modified
commercial rotary value was driven with a dc motor so
that it alternately filled and exhausted the pneumatic
chamber and thereby modulated the force on the
piston. " This valve, which proved to have a short
lifetime, was later replaced with a high-speed solenoid
valve.

'7 Various samples were mechanically polished and etched with
CP-4, electropolished, and syton polished. (Syton is produced by
Monsanto Chemical Co.) No differences were observed except
that the syton polished samples which had the best optical finish
tended to give the smallest offsets."A. J. Williams (unpublished).
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The force on the sample was monitored with a
Kistler 912 quartz force transducer in contact with the
sample within the Dewar. The transducer output was
amplified with a Kistler 503 charge amplifier and the
fundamental frequency component of the force was
monitored with a PAR 121 detector used as an ac
voltmeter.

In typical operation, an ac force of 5 kg rms at 90 Hz
was superimposed on a dc level of comparable magni-
tude. For such forces (strains of approximately 2&& 10 '),
the 8R/R signal was proportional to the ac force and
no dependence on the dc stress level was detected.

To our knowledge this is the first report of such a
stress modulator for piezo-optic experiments. We
believe it offers characteristics not easily realized with
other stress modulation apparatus. These characteristics
include: (1) Relatively large stresses (at least a factor
of 5 larger than those used here) can be applied to
samples at low temperatures without the complications
of resonant operation. (2) The dc and ac stress compo-
nents can be monitored during the experiment to an
accuracy of at least 5%. (3) The operation of the
modulation apparatus is very independent of sample
characteristics.

Light from a 150-W quartz iodide lamp (or tungsten
ribbon lamp) was passed through a 0.3-m Mcpherson
218 monochromator, plane polarized by a Gian-Thomp-
son polarizer at the exit slit, focused onto the sample at
approximately 7 deg from normal incidence, and was
detected by an EMI 9558 photomultiplier. The instru-
mental resolution was better than 0.01 eV.

The ratio 8R/R was measured in the conventional
manner by varying the photomultiplier gain (by elec-
tronically varying its high voltage) such that the dc
signal, which is proportional to R, was held constant at
1.0 V. The ac signal at the stress modulation frequency,
which is then a direct measure of 8R/R, was phase
sensitively detected with a PAR HR-8. Digital elec-
tronics was used to record the signal on punched paper
tape for later computer analysis.

In early experiments we had considerable difficulty
reproducing the amplitudes of the 5R/R data and also
observed small variations in the shapes of the traces.
It was found that this was caused by bending of the
sample. The problem is that the surface stress, which
determines the optical signal, differs from the average
stress measured by the transducer. For a bar which is
both bent and compressed the surface stress can be
either larger or smaller than the average stress (and can
also have nonuniaxial character).

It was found that careful alignment alleviated this
diculty. The stress apparatus, especially the sample
mount shown in Fig. 1, was accurately machined to
minimize the possibility of applying a bending moment
to the sample. The ends of the sample were lapped Oat
and perpendicular to the sample axis. Care was also
tak.en to mount the sample in its end cap such that the
sample and plunger axt:s were parallel, Finally, a three-

mil thick soft copper foil was placed between the plunger
and the top of the sample to further reduce the effects
of imperfect alignment. With such precautions, the
amplitude of the 0R/R data for different samples could
be reproduced to within 10%%uo.

A common diKculty in optical modulation experi-
ments (especially piezo-modulation) is that there is a
spurious, energy-independent variation of the zero
level of the 8R/R data. This so called offset can arise
from vibration induced in the apparatus. For our
apparatus (when properly aligned) nearly all the offset
arises from the relative motion of the optical beam and
the sample surface. For a smooth surface without pits
or scratches, the offset is insignificantly small. Since
it is difEcult to experimentally measure the offset, an
analytic procedure discussed in Sec. IV was used to
determine it. The data presented here have been
corrected for offset.

The accuracy to which we can determine the deforma-
tion potential constants depends upon factors such as:
(1) signal to noise reproducibility of the data, (2)
systematic error in calibration of the apparatus, and
(3) uncertainties of the data analysis. We estimate
that the first two sources introduce less than a &10%
error. The third item will be discussed further in Sec. IV.

IIL THEORETICAL BACKGROUND

The quantity e2 the absorptive or imaginary part of
the dielectric function, is the most important property
to study from a theoretical point of view. It can be
deduced from the measured reAectivity using the
Kramers-Kronig relations. "For the case of differential
perturbations, the appropriate formulas have been
given by Garfinkel, Tiemann, and Engeler. ' One erst
computes the auxiliary quantity, 60 by

1 d (8R) R+coo
bg(o)o) =— —

~

—~ln du).
2il' 0 kd (R / M —%pi

(3.1)

The change 5&2 is then given by

be2 B', (8R/R) AM——,
-—

A =—e(ei —1)—k,e2,

B—=k(~i —1)+n~2,

(I+Zk) = ti+ 1f2 .

(3 2)

(3.3)

The quantities entering into Eq. (3.3) refer to the
unstrained crystal, which we take from Potter' s
measurements. 9

The actual limits of integration used were 1.9 to
2.8 eV. Although this range is much smaller than is
customary in dc reAectivity measurements, we are
partially justified in our choice because 5R/R is dom-
inated by the region of interest to a much greater extent
than is 8 itself. The main effect of extending the limits

"F. C. Jahoda, Phys. Rev. 107, 1261 (1957);H. R. Philipp and
E. A. Taft, ibid. 113, 1002 (1959).



185 PIEZQREFLECTANCE OF Ge 1107

of integration would probably be to change the average
value of 8&2, a quantity which is not very important to
our analysis.

The analysis of the linear strain dependence es(&o)

is most simply described in terms of the three functions
W~(co), Ws(to), and We(&o) which relate the components
of the change in the dielectric tensor e2 to the strain
tensor e in a symmetry adapted basis. "

862, 1 ~ 11)

be, 3,——g,e3„
be2, 5,——8 5e5„.

v=~, P,
Q=Sp) SS) $2'.

(3.4)

The irreducibly transforming components of any
second-rank symmetric tensor may be written

et= (e„+e„o+e„)/v3,
e, = (2e„—e„—e„„)/g6,
etc =—(e..—e„„)/v2,

e5,„=—e „,e~,=—e „|,5„=—e„,.

(3.5)

The definition of e2, ~ is completely analogous.
The three H/' functions are most conveniently deter-

mined by applying uniaxial stress in the L001] and
L111]directions which generates the strain components:

L001] stress

e,= (s„+2st,)T/v3,

e,.= (Q,') (s s,)T-, —
L111]stress

eg= (sg, +2sts) 2'/V3,

eeeo = csee= eeoz= $44T/6.

(3.8)

(3.9)

All components not listed are zero. T is the uniaxial
stress. The corresponding components of the dielectric
tensor may be determined by measuring the reQection
of light polarized parallel and perpendicular to the
stress axis. [001]stress

les, t =8 (s~,+2 et )/V3 &

8e2, 3a (V s)5(ei[ el) i

$111]stress

c'est= 8 (e[~+, 2 et,)/v3 )

(3.10)

(3.11)

(3.12)

~e 5 28eeos, see —6e2, 5oe 5 (et & o'J)/3 . (3.'13)

The contributions to W come from two sources, strain
shifts of energy bands and variation of optical matrix
elements with strain. The strain shift contribution is
easiest to analyze and satisfies the simplest symmetry
relations. For nondegenerate bands the synunetry
conditions are given in Table I.

These results have been obtained by group-theoretic
methods but most of them are easily explained in an
elementary manner. Consider the case of nondegenerate
critical points in the $111] direction under a L001]

stress. The critical points are clearly all equivalent.
(Cubic operations leaving the stress invariant can be
found to interchange any pair of critical points. ) Thus,
their energy shifts must be identical. Identical shifts
correspond to the hydrostatic part of the uniaxial stress
and contribute only to P'~'"'" thus, 8 3'"'"=0.

Since it is generally accepted that the 2.1-eV reQec-

tivity structure comes from critical points in the A. or
L regions, we expect to find 8'3'"'"——0.

The contributions to 5' from matrix-element varia-
tion, which we denote by 8' ",are generally finite for
all critical-point locations. For nondegenerate bands,"is inversely proportional to the smallest "direct"-
energy separation E y(k )-eE s(kp) between bands which
are mixed by the strain. Since hydrostatic strain mixes
only bands of identical symmetry which are usually
well-separated in energy, we expect to find that S'&

is very small. In Ge, the L&-L& separation is 8 eV, and
the L3 -L3 separation is even larger. '

The smallest direct-energy separations are usually
associated with spin-orbit splittings so that this will

usually lead to the largest values of t/t/™'r.
If the 2.1-eV structure in Ge is associated with an L

or A critical point it undoubtedly corresponds to a
transition from an Le (As) valence band to an Lq+ (A~)

conduction band. The Ls (As) orbital degeneracy is
removed by spin-orbit interaction giving a I'4 Kramers
doublet and a I'~, I'6 doublet in Koster's notation. "
These doublets are effectively nondegenerate since they
cannot be split by strain.

Ke can make a quantitative estimate of 8'
within the framework of the effective mass approxima-
tion, as discussed in Ref. j.S. For kinetic energies or
exciton binding energies small compared to the spin-
orbit splitting, the kinetic-energy operators of both
sets of bands are identical (off-diagonal kinetic-energy
terms between spin-orbit split states are neglected).
One then obtains a complete spectrum of states f~t
which may be written

P~' ——y'Ug, Bp' —E'&X+Ee. (3.1—4)

U~ is the band-edge pair-band Bloch function with
band energy &X+E'.The quantity 2X is the spin-orbit
splitting. The function q is an envelope function, and
8' is the energy of state t relative to the band edge.
The important point is that y' and E' are independent
of whether the state is in band U+ or U . The function
p' can be taken as a hydrogenic exciton or as an uncor-
related pair in a plane-wave state, e'~'&'& '». The
spectrum of E' and form of p' determines the shape and
magnitude of the functions

es+(co) =L(to —E'wX), (3.15)

but in our model &2+ and e2 are identical except for a
translation of the origin.

~ G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the Thirty Tvoo Point G-roups (The MlT Press,
Cambridge, Ma, ssachusetts, 1963).
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Wi —— v3—Di'(d/ko) e2'((o),

W2 g—2—D22(e2+ e2 —)/X—,

(3.17)

(3.18)

(22 —22 ) Di
W2 ——+2D2' -+ —e20 (a&) . (3.19)

2&3 do)

Using (3.17) and (3.18), Eq. (3.19) can be rewritten

1 Dg' 2 D35
W2 ———— Wi+ — W2.

6 Di' 3 D3'
(3.20)

The deformation potentials D describe the influence of
strain on the band edge functions V~. In particular, D~'
describes the eQ'ect of hydrostatic strain which shifts
all P+'(k, ) by the same amount, independent of t, &,
or ko. Hydrostatic strain thus takes a simple energy de-
rivative of the unperturbed spectrum. This would not
be the case if we consider the strain mixing of bands
other than V~. It would also not be true if D~' varied
appreciably over the region of k space contributing to
the range of e2(a&) which we study.

D~' represents the eRect of strain components which
transform like the identity (Fi) under the group of
I (A), but transform like F2 under the group of k=0.
All states for a given k2 ——I-(A) are shifted by the same
amount, but equivalent k2 shift differently, because the
strain tensor has different components when referred to
k2' rather than ko.

The deformation potentials D3' and D3' represent
strain interactions between V+ and V . They cause the
oscillator strength to transfer from band V+ to V .
Equation (3.18) follows from (3.14) by first-order
perturbation theory as discussed in Ref. 15.

Equations (3.15)—(3.20) are derived on the basis of
an eRective mass approximation for the pair states
together with the more restrictive assumption that the
kinetic energy relative to the band edge is small
compared to the spin-orbit splitting. We do not assume
anything about the importance of exciton sects. Such
eRects inliuence the shape of the function I. in Eq.
(3.15) which is determined from experiment.

We do not expect that our assumptions will be
accurately obeyed. They provide a convenient basis for
analyzing the data and for approximately determining
the constants D .

Some of the relations implied by Eqs. (3.15)—(3.20)
will be more accurately obeyed than others. For
instance, Eq. (3.17) is valid if hydrostatic band mixing
can be ignored, and if D&' does not vary greatly over
the region of t2 space contributing to e2(&v) in the range
studied. 8'& and 8'3 give two very diGerent line shapes.

Of course, the unstrained dielectric function e2, is
given by

C2 (M) = E2 (CV)+ 62 (CO) ~ (3.16)

We consider strain effects only within the multiplet of
states q 'V~. It then follows that one can write:

where the TV; and 5; are related by the Kramers-Kronig
relations

1
W, (a)) = I'—1 1

W;(M')
~

+ ~dco'. (3.22)
GD

—
GO M M

The reQectivity changes may then be written

)5R
I

—
) =Q', (3.23)

Q;=nW+pW;, (3.24)

n= ,'p=
A2+82 A2+B2

(3.25)

where A and 8 are defined in Eq. (3.3). Quantities
analogous to the Q s have been used by Gerhardt. "

Using these definitions, we can then write the
analogs of Eqs. (3.17), (3.18), and (3.20) for the Q's

1 dR'((a)
Qi= &3D'—

E' Ao
(3.26)

where R' is the unstrained reflectivity

(R+—R )
Q +2D3 (3.27)

=«2 +P~2 (3.28)

1Dj' 2D '
e.=—'e.+- 'e'

6 Dg' 3 Dg'

"U. Gerhardt, Phys. Rev. 172, 651 (1968).

(3.29)

The erst is almost entirely energy-shift effects, and the
second almost entirely matrix-element sects. 85 is
seen to be a linear combination of the two. This relation
might be more accurate than the effective mass assump-
tions but it is not easily proven. Experimentally, we
find that Eqs. (3.17) and (3.20) are quite accurately
obeyed if we adjust the three parameters D&', D&', and
D22/D22. Equation (3.18) is less accurate, particularly
when the restriction e2+(&o+2X) = e2 (~) is imposed.

Although the analysis presented above in terms of
the dielectric constant is certainly the most fundamental
approach, it is somewhat inconvenient because of the
need for performing a Kramers-Kronig analysis on the
measured reAectivity. This procedure may also further
compound any errors in the data. It is therefore of
interest to see what approximations have to be made in
order to perform the analysis on the reQectivity itself
without going through the Kramers-Kronig transform.
The detailed analysis is presented in the appendix.
We summarize the results here.

We define quantities analogous to Eqs. (3.4)

(3.21)
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These equations differ in their degree of accuracy.
Equation (3.29) is as accurate as (3.20), being a simple
consequence of the linearity of all the transformations
involved.

Equation (3.26) involves the approximation that we
neglect the term

GE

STRESS = 5.0 k

ALONG [
3 R/R

I.O—

.0 I I I
J

I I I
l

I I I
j

I J I
l

I I I

1 "W;((a')

7l e re +M
(3.30)

on the right-hand side of Eq. (3.22) in comparison to
the much larger term with the "resonant" denominator.

Equation (3.27) requires the above approximation,
together with the further approximation that the
structure in the unstrained reQectivity R+ is small
compared to the reQectivity itself, so that the differen-
tial expansion of Eq. (3.28) can be made. This is the
least accurate of all the relations but it is still a tolerable
approximation at the level of accuracy at which we are
able to work.

Using these relations the need for a Kramers-Kronig
analysis can be bypassed as far as symmetry analysis
and deformation potential constant determination is
concerned. Of course, the j/t/'; curves are of more basic
significance than the Q;s so that it is desirable to
determine them. The use of the Q's may actually be
better for determining deformation potential constants
since the errors in the data which get compounded by
the Kramers-Kronig analysis may be worse than the
approximations we have had to make to justify the
reflectivity relations.

A "compromise" version of Eq. (3.27) may also be
written, namely,

D33
Qs=V's L~(et+—er-)+P(es+ —es-)7. (3.31)

This formula obviously requires a Kramers-Kronig
analysis of the unstrained reQectivity, but not of the
differential reflectivity. It is as accurate as Eq. (3.26),
since the approximation involved in (3.28) is not
required. The neglect of the expression in (3.30) is
still necessary. It may be desirable to use Eq. (3.31) even
when (3.28) is not too inaccurate simply because it is
more reliable to decompose e2' into &2+ than it is to
decompose R' into R+.

IV. DATA ANALYSIS

Figure 2 illustrates the 8R/Rn and bR/R~ data for
polarization parallel and perpendicular to the $001j
direction, respectively, at 300 and 77'K. It is seen that
the structure sharpens as the temperature is lowered to
77'K, and that it moves by 0.09&0.01 eV toward higher
energy corresponding to an average temperature
coefficient of 4.0)& 10 ' eV/'C. Data were also taken at
liquid helium temperatures. The structure at O'K is
essentially the same as that at 77'K except that it is
shifted by approximately 0.01 eV toward higher energy.

"I 0—

O—-20
X
IK

3.0

2.0—

2.0

77oK---- 300'K

2.2 2.6

8 R/R~

2.8

I 0—

—l.0—

-2.0
I.8 2.0 2.2 2.4

ENERGY (e V)

2.6 2.8

Fro. 2. BR/R of Ge for a uniaxial stress of 5.0 kg/mm' along the
$0017 direction. The dashed and solid curves are for 300 and
77'K, respectively. The u ~per and lower curves are for the optical
electric vector parallel ( ) and perpendicular (J ) to the stress
direction, respectively. The data have been corrected for oGset.

Our results for 300'K in the form of the Q; and]W; are
shown in Figs. 3 and 4, respectively. The Q; defined in
Eq. (3.23) are simply the symmetry adapted piezo-
reflectivities given by the analogs of Eqs. (3.10)-(3.13)
divided by the respective symmetry adapted strains
defined in Eqs. (3.6)—(3.9). The W; are obtained
through a Kramers-Kronig transformation of the Q;
according to Eqs. (3.1)—(3.2). Potter' s' 300'K dielectric
function data were used to obtain the 2 and 8 coeffi-
cients in Eq. (3.2).

The two objectives of our data analysis are: (1) To
confirm that the structure arises from a critical point
in the $1111direction of k space, and (2) to evaluate
the four deformation potential constants. We accomp-
lish both of these if we demonstrate that our data are
accounted for by the theory in Sec. III. We can work
with either the Q; or W, . In our case it is advantageous
to obtain Dr' from Qr, Dss from Ws, and Dss and Dr'
from the comparison of Qs with Qr and Qs.

Throughout this analysis we use least-squares curve
fitting to compare diferent functions. We define the
symbol = to denote that the function to the left-hand
side is represented by the functions to the right-hand
side in the least squares sense. The fit is obtained by
using a digital computer to determine the optimum
coeS.cients C,.
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The solid curve in Fig. 3(a) illustrates the fit obtained
for D~' ———9.7&1 eV. The error limits include both the
random errors in the data and the uncertainty arising
from the data analysis. The fit which is already quite
good could probably be improved if both Qi and
(1/R)dR/dE were obtained from measurements on
the same sample.

The constant C& in Eq. (4.1) measures the offset in

Qi. The data shown in Fig. 3a have already been
corrected by subtracting Cs from the experimental Qi.

We cannot use C2 directly to correct other quantities
such as Qs and Qs because the offset is not completely
independent of polarization. Instead we have used the
following approach. For some data Qi had no appreci-

Q I I

l600 —
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I I I I I

~ ~

~ ~
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I I I I I I I I I I I I
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3004K
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I I I I I I I I I I I ! I I

1.2—
—(c)

.8—
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-400 ~ ~W&+l
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4— — (b)
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-4— 0

—.8
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I.8 2.0

0
! al I I I I I I

2 ~ 2 2.4
ENERGY (eV)

I I I I

2.6 2.8

tO

-200—

-400—

FIG. 3. The Q&, Qz, and Qs data for Ge at 300'K are plotted as
discrete points. The solid curve in (a) is —V3DP(1/E)(dR/dE)
with D&'= —9.7 eV as obtained from Eq. (4.1), using the reQec-
tivity data in Ref. 22. It was necessary to shift the data in Ref. 22
by 0.03 eV to higher energy in order to obtain the correspondence
shown here. The solid curve in (c) is the fit obtained from Eq.
(4.3), with Di6/Dii = —0.'V and Dss/Dss=0. 68.

-600 I I I I I I I I I I I I I I I I I I

80—
— (c)

40—

First let us consider Qi shown in Fig. 3(a). We find
that the two Qi's obtained from L001] and [111]
oriented crystals are the same (as they should be).
Equation (3.26) indicates that Qi is proportional to the
logarithmic derivative of the unstrained reQectivity.
To check this, we calculated (1/R)dR/dE from Ger-
hardt's" 300'K reRectivity data, and then fitted the

Q, =' C, (1/R) dR/dE+ C„(4.1)

-40—

-80—

—120—

"160—

-200
1.8

4 ~

I I I I I I

2.0 2.2
I I I I

2.4
I I I I

2.6 2.8

D i'= —Ct/W3. (4.2)
~ U. Gerhardt (to be published).

with the hydrostatic deformation potential constant
given by

ENERGY (eV)

Fro. 4. The W~, Wa, and Ws data for Ge at 300'K are lotted
as discrete points. The solid curve in (b) is g—,(DP/X) (e~ —es )
where D3' ——2.2 eV and ~2+ are obtained from the decomposition
of eg'.
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able offset. We assumed that in this case the offset was
zero for both polarizations, and we corrected other
experimental runs to have the same zero level as these.
In this way we have determined the zero level for all
the data in Figs. 2—4.

The presence of offset does not create any great
difTiculty for our analysis of the Q; (as long as it is
actually energy-independent). It is important though to
remove the offset before transforming to the 8',. An
offset in Q; distorts the shape of W; by contributing a
term proportional to B(ce) to Eq. (3.2).

Next we consider Qe shown in Fig. 3(c). Since Eq.
(3.29) indicates it should be a linear combination of Qi
and Q3, we attempt a fit of the form

20—

l5—
LV

IO—

I I I I I I I I I I I I I I I I I I I

Ge
300

with

and

Qs='CiQi+C2Q3+C3,

DP/Di' —6Ci, ——

D3'/Da'= V2.

(4.3)

(4.4)

(4.5)

with
W3 —Cl(e2 e2 )+C2)

Dg' ——(g-', )XCi.

(4.6)

(4.7)

To use Eq. (4.6), we must obtain some representation
for functions &2+. We have used Potter's data' to
determine e2+(&v) in Eqs. (3.15) and (3.16). We proceed
in a purely arbitrary manner by setting e& (ce) =Ce& (ei)
for IEco&1.9 eV. If we select the constant C such that
e2 (e~) is continuous at 1.9 eV, Eqs. (3.15) and (3.16)
give a unique decomposition of c2 into e2+ as shown in
Fig. 5. It appears that our assumption (see Eq. 3.15),
that e2+(ei) is equal to e& (co—2X), has lead to the
unphysical oscillations in &2+ for energies above 2.4 eV.

The fit obtained from Eq. (4.6) with D&' ——2.2 eV is
shown as the solid curve in Fig. 4(b). Here we have
restricted the least squares fitting to the region near
the peaks.

We can obtain another representation of e2+ by using
the 8 3 data in the relation

2e2+ ——e,'a+-', ()tWe/De') .

Our result for Di'/Di' —0.77 and ——Da'/D3' 0.68 is-—
the solid curve in Fig. 3(c). This rather good fit,
obtained without the use of any external data, strongly
supports the theory and provides rather accurate values
for the ratios in Eqs. (4.4) and (4.5). With Di'= —9.7,
we have Die = 7.5&0.8 eV. We have assumed that most
of the error in D1' arises from the uncertainty in D1'.

We note finally that a small value of C& in Eq. (4.3)
provides a further check. that the offset in the data has
been removed.

The deformation potential constant D33 is the most
difficult one to determine, because we must first deter-
Inine either &2+ or R+ which are not directly measurable.
Here we choose to work with the more fundamental
quantities e~+ and W, . Equation (3.18) suggests a fit of
the form

0
I.8 2.0

I I I I 1 I I I I I I I

2.2 2.4 2.6
ENERGY (eV)

I

2.8

FIG. 5. The upper curve is e&' at 300'K obtained from Ref. 9.
The two lower solid curves are &2+ obtained from the decomposi-
tion procedure. The two discrete curves are obtained from Eq.
(4.8) with DP= 2.2 eV.

TABLE II. Our measurements of the four pair-band deformation-
potential constants Dj', DI', D3', and D3' compared to other
measurements. The values at 0=0 come from Table III and
Eq. (4.9).

D1

DIS
D33
D 5

2X
Di'/Dii
Dg'/DP

Our measurements
(eV)

—9.7 &1

7.5 +0.8
2.2 0.5+~

~.5-0.3
0.21

—0.77&0.04
0.68&0.03

Other
(eV)

—9.9~0.5'b
—7.8+0.7

5 9~1 2b

2.6 A=Oo
6.4 k=Oo
0 20 P —Oo

0.43~ k=L

a Reference 16. b Reference 5. & Reference 6, & Referegqe 14.

The two functions &2+ obtained in this manner, with
D3'=2.2 eV, are shown in Fig. 5. It is seen that the
functions have different shapes for energies above the
peaks. It is not surprising, therefore, that we en-
countered difhculty in the decomposition of e2 when we
required the shapes of &2+ to be identical.

The experimental reproducibility error in 8'3 is less
than &10%. We believe, however, that a greater
uncertainty in D3' arises from the uncertainty in the &2+.

We estimate the error limits to be D3 =2.2 p. 5+ eV.
Even though the ratio DP/D33 should be accurate to

&5%, the accuracy of DP is limited by the uncertainty
in Di'. From Eq. (4.5), we obtain D3e=1.5 e,+"
More accurate values for D3' and D3' must await a
better theoretical understanding of the e2 line shape.

The values of the deformation potential constants
are summarized in Table II.Our value of D1' agrees with
the results of Gerhardt' and Zallen and Paul, "but is
somewhat larger than the value obtained by Pollak
and Cardona. ' Gerhardt's' value E2=5.1 eV is equiv-
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Our notation
Kleiner

and Roth
Pikus

and Sir
Measured

in eV

TAax.z III. Relations between the single-band deformation
potential constants, d, at L and at I' assuming that the periodic
parts of the wave function do not change. The relation between
our notation and that of Kleiner and Roth (Ref. 24) or Pikus and
Sir (Ref. 25) is also given. The numerical values originate from
Ref. 26. The pair-band deformation potential constants are
obtained from Eq. (4.9).

k p calculations that the two upper valence band wave
functions in the A. direction are nearly the same as at
k=0. One can then estimate the parameters d' and I'
from the measured values at k=0. See also Refs. 24—26.

The appropriate relations are given in Table III.
With these values, we can make a comparison to our
measured values as shown in Table II.

dg'(L) =d, (r) = @3'' V. DISCUSSION AND SUMMARY

d '(L) = (r)
K2

ds(r)
d '(L)=

dg'(L) =ds(I')

2
=—D„

v3

242
Du'

V3

=4.5

= —2.6

= —6.4

= —0.10

where the superscripts e and c refer to the valence and
conduction single band parameters. Here / is 2 the single
band spin-orbit splitting. 5;~ is Kronecker's b.

If the critical point is the L point, the parameter d~"
is known from a variety of measurements. In Herring's

d&"——-„/v3=10 eV. (4.10)

Pollak and Cardona' have suggested on the basis of

"C.Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
'4 W. H. Kleiner and L. M. Roth, Phys. Rev. Letters 2, 334

(1959)."G. K. Pikus and G. L. Sir, Fiz. Tverd. Tela 1, 1642 (1959)
t English transl. : Soviet Physics —Solid State 1, 1502 (1959)].

'6 J. C. Hensel, Phys. Rev. Letters 21, 983 (1968) contains
D„.= +3.9 eV. We also have D„=+3.2 eV. J. C. Hensel (private
communication).

alent to Dt' ——(2/&3)Es ——5.9&1.2 eV in our notation.
Our more accurate value is consistent, within errors,
with his result. The quantities D3' and D3' have not
been measured previously although they were implicitly
determined to be equal to the values at k=0 by Pollak
and Cardona. '

It is seen that analysis of piezoreflectivity requires
rather accurate reflectance and/or dielectric function
data. Such data are not available for an analysis of
our 77'K results. We have, however, used Potter' s
120'K data to analyze S'& and 8'3. On the other hand,
we can use our own data to decompose Qs according
to Eq. (4.3). The resulting deformation potential
constants are consistent with the values in Table II
but are probably somewhat less accurate.

It is very easy to relate the pair-band deformation
and spin-orbit parameters to the single-band parameters
since the conduction band has L& (Ar) symmetry. The
relations are

(4.9)
and

The line shapes for the three fundamental response
functions H/"~, 8'3, and H/5 are given in Fig. 4, and their
reflectivity analog Q; are given in Fig. 3. Together,
they constitute the principal results of this paper. We
have given a detailed quantitative description of the
interpretation of these line shapes which constitute a
very convincing proof that the critical points at 2.j. and
2.3 eV lie in the A. direction or at the L point. A number
of independent results have strongly suggested this
conclusion previously. The approach most closely
related to our own is the dc strain dependence of the
polarized reflectivity measured by Gerhardt. ' Our work
is more detailed and, we feel, even more convincing.
More importantly, our approach is directly applicable
to other materials whose band structures are more
controversial than Ge and should be more generally
useful than the dc strain techniques since many
materials cannot sustain the high strains required by
the dc method.

The line shapes Wr and Ws or Qq and Qs are very
distinctive. W& or Q& represent the hydrostatic response
and are very nearly the derivative of the unstressed
response as shown for Qr in Fig. 3. Ws or Q, represent
purely matrix element changes because of the critical
point symmetry. The line shape reflects a transfer of
oscillator strength from one spin-orbit split band to the
other. W, or Qs contain terms which lead to both energy
shifts and matrix element changes and in Fig. 3(c) we
see that Qs can be reasonably well represented as a
linear superposition of Qt and Qs.

The amplitudes of the 8' functions are controlled by
four deformation potential parameters; D~', D~', D3',
and D3' in our notation. The relation of this notation
to other more standard notations is given in Table III
and the values we have obtained for these quantities
are given in Table II.

The procedure for determining the D's has been
discussed in Sec. IV. The values for D ' and D3' in
Table II are compared to their analogs at k=O. Pollak
and Cardona' have analyzed their piezoelectroreflec-
tance results at 2.2 eV in terms of the k=0 values and
find good agreement. As seen in Table II, all our values
are in reasonable agreement with measurements
obtained by other methods, except D3'. The discrepancy
here is a factor of 4 and is well outside our limits of
error. We have not considered valley-orbit interactions
or electron-hole spin-spin coupling due to exchange in
our analysis. It seems unlikely that these effects could
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account for a factor of 4. Uncertainties in D33 contribute
to the uncertainty in D35 because the Qs analysis
determines DP/D33. These uncertainties can be by-
passed by comparing the ratios directly. The ratios
still differ by a factor of 3.6 which focuses the dis-

crepancy entirely onto the assumption that Q5 can be
uniquely represented as a linear combination of Q& and

Q3. The agreement in Fig. 3 is really quite good and the
line shapes of Qz and Q3 are sufficiently distinct that
very little parameter variation is possible. We must
conclude that the disagreement is genuine.

We have used the recent theoretical calculations of
Saravia and Brust" to deduce a value of D3'/D33 at
the L point. We find Da'/Da'= (nui/nxoo)'I'= 0 43. The
value of 0.68, which we have measured, lies between
the values at I.and F, which tends to support our value.
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APPENDIX

We here derive the results presented in Sec. III which
show that one can avoid the Kramers-Kronig analysis
in studying the differential reQectivity at the cost of
only a small error.

We take the bc& analog of Eq. (3.2) from Garfinkel,
Tiemann, and Kngeler' and write

beg A '(bR/E)+B——b8,— (AI)

where A and 8 are defined in Eq. (3.3).Equations (3.2)
and (AI) can then be solved for bR/R

bE/R= nbeg+Pbe2, (A2)

We now make the approximation of neglecting the
second term in the integrand in Eq. (A4) in comparison
to the 6rst. This term is smaller because it is "non-
resonant" and much less rapidly varying with co, so
this should be quite a good approximation for analyzing
any sort of sharp structure. This approximation will
be used throughout the remainder of the appendix.
Using the well-known relation

I/x+ is = P/x in b (x—),
we transform our approximate version of (A4) to

I " be2(o)')des'
bty(Gl) — +Zbe2(G7) .

7i 0 M —M

(A10)

This form is useful when we integrate by parts.
We now attempt to extend Eq. (3.17) to its Q& analog.

Substituting (3.1"/) into (A10) gives:

/'I "d I
Wy(N) = —v3Dx

~

— 6u (0J ) da)
&~ 0 d ' ~' —~+ze

d
+i e20(~)

~

. (AII—)
&CO

Then an integration by parts and the use of the identity

da)' ((o' —(o) do) (co' —s))
(A12)

Quantities analogous to Q; have been used by
Gerhardt. "

It is easy to see, again by linearity, that Eq. (3.20)
holds if W, or Q; is substituted for 8;, namely,

1 Dg' 2 D3'
5 I 3 ~6D' 3 D'

2A/Am+ jp. p 2g/A2+gp (A3) allows us to write (AII) as

The Kramers-Kronig relations between be~ and be2

may be written

where I' denotes the principal value.
If we substitute Eqs. (3.4) into (A4) the linearity

allows us to write

beg,;,——W,e,„ (AS)

I " /'11
(~)= PW;(~')

I

— + — l~'; (A6
0 ~~ —~ &+~~

/I d em (M)
Wg(co) = —VBDPi ——

(n dM 0 (M Cd+Le)—

+i—e2'(o&)
~

. (A13)
Ao

Equation (AIO) then permits us to write

Wg((o) = —v3Dg' de/(a))/des. (AI4)

We now substitute Eqs. (3.17) and (A14) into (A8),
and use (A2) to obtain

Qg= V3D 'dR'(a))/dcuR' —(AIS)

and Eq. (A2) leads to

(bR/E);„= Q;e;,

Q, = W+PW;.

(A7)

(AS)

where E' is the unstrained reflectivity. (E'=E, the
superscript is added for emphasis).

Finally, we wish to study the relations for W3 and Qs
which are the analogs of Eq. (3.18).
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Thus, we have

Wg ——+2aD3a(eg+ —eg )/X (A17)

in exact analogy to Eq. (3.18) for Wa.
However, we cannot now proceed to the analogous

relation for Qs without making a further approximation.
We must assume that the structure in the reflectivity is
small compared to the reQectivity itself, so that we
can use Eq. (A2) to write

R+/8= ner~+pe2~.

Equation (A18) then allows us to write

Q,=g;D,3(Z+ R-)/XR. —-
(A18)

(A19)

We substitute Eq. (3.15) into (A10), and derive the
relation

er~((o) =L(~—E'W)j.)

(A16)

The accuracy of (A18) can be tested using results from
Kramers-Kronig analyses on the unstrained refl. ectivity.

Our principal results are Eqs. (A7), (A9), (A15),
and (A19) which are in exact analogy to Eqs. (3.4),
(3.20), (3.17), and (3.18) for the W, 's. Note that (A7)
and (A9) for the Q's are as accurate as the corresponding
equations for the W's. Equation (A15) requires an
approximation which should generally be quite good.
Equation (A19) requires a further approximation which
is less accurate but can be checked if e1 and e2 are known
for the unstrained crystal. Alternatively, one can use
the relationship

Q = v'l(D '/~)L ( +——)+p( +——
)j. (A20)

Equation (A20) is much more accurate than (A19),
and should compare to (A15) in accuracy. The only
approximation required to derive (A20) from (3.18)
was the neglect of the nonresonant denominator in
Eq. (A4) as in Eq. (A10). If e2+ has been determined,
Eqs. (A16) specify e&+.
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Observation of Mixed-Mode Exc1tons in the Photoluminescence of Zinc Oxide

R. L. WzIHKR AND W. C. TAIT
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Mixed-mode excitons have been previously reported in the absorption spectrum of uniaxial Il-VI crystals
when plane-polarized light is used with its E Geld in a plane containing both the photon's wave vector k
and the c axis of the crystal. Lines due to annihilation of mixed-mode excitons should also be observed in
the emission spectrum of these uniaxial crystals. We describe here the observation of such emission lines in
the photoluminescence of ZnO at 77'K. The strengths of these lines are essentially zero when 1r.J q, but
increase rapidly as the angle between k and c is reduced below 90'. The energies of the A and 8 longitudinal
excitons in Thomas's line assignment are found to be 3.373 and 3.386 eV, respectively, in good agreement
with results obtained from reactivity data.

' 'T has been shown theoretically by Hop6eld and
~ ~ Thomas' that "longitudinal" excitons should be
optically observable in uniaxial crystals. In that same

paper, they demonstrated the existence of longitudinal
excitons in ZnO by optical-absorption measurements.
Similar observations have been made on CdS by
Hopfield and Thomas' and on CdSe by Parsons,
Wardzynski, and YoGe' and by Wheeler and Dimmock. ,4

as well as by other investigators.
The actual absorption lines observed are due to

"mixed-mode" excitons which have components of
both transverse and longitudinal polarizations. As

shown by Hopheld and Thomas, ' mixed-mode excitons
are observed only when the light is polarized with the
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electric Geld (E) in a plane containing both the photon
propagation vector (k) and the c axis with the k vector
at some internal angle p, after refraction, with the c
axis as shown in Fig. 1. When the angle p is 0' (k~~c),
the excitons are pure transverse, and when $=90'
(kLc), they are pure longitudinal. At all other angles,
mixed-mode excitons are observed.

Two notable features of the mixed-mode excitons
are the dependences of their oscillator strength and
their position in energy on the angle P. The oscillator
strength of the mixed mode is given by'

4a'pmx = 47I pr cos Q ~

where 47rpr is the oscillator strength of the transverse
mode. The position, in energy, of the mixed mode is

&m~= ~r(1+ (4~Pr/ )sein'y$', (2)

where Ey is the energy of the transverse mode and e

is the dielectric constant due to all higher energy
transitions.


