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Expressions for the long-range screening Geld around a localized point charge in an electron gas of arbi-
trary degeneracy have been obtained by evaluating the Dirac density integral for a scattered plane wave
and appropriate expansions of the Fermi-Dirac function. The results present a more comprehensive account
of the variation of long-range screening with distance and electron-gas degeneracy than has yet been given.
It is found that corrections to simple standard forms like the Friedel oscillations and the Brooks-Herring
screened Coulomb are quite complex and more signiGcant than generally believed. In the alkali and noble
metals these corrections can reverse the sign, and change by a sizable factor the magnitude, of the interac-
tion given by the Friedel expression at the Grst-neighbor distance.

I. INTRODUCTION

'HE long-range screening field around a localized
point charge in a Fermi-Dirac electron gas is of

interest in several areas of the physics of materials. It
plays a particularly central role in the study of hyper-
Gne interaction in metallic alloys and doped semicon-
ductors, ' and in problems on the structure of liquid
metals. ' In practice, it is usually assumed that this
long-range screening can be approximated by the Friedel
wiggle' ( r ') in a gas of low degeneracy, and by the
Brooks-Herring screened Coulomb4 in a nondegenerate
gas. These simple analytical functions, however, should
be used with caution, because they are only limiting
forms of complex mathematical expressions and a,re
strictly valid over some particular range of distance and
temperature. Serious errors could result if they are em-

ployed outside that restricted range without the appro-
priate corrections or without ascertaining if these cor-
rections are really negligible. It is only recently that
efforts have been made to improve on these approximate
screening Gelds. Kohn and Vosko, 5 Flynn and Odle, 6 and
Adawi' have discussed some temperature corrections to
the Friedel wiggle in a gas of low degeneracy. Alfred and
Van Ostenburg, s on the other hand, following Friedel, '
have considered higher-order distance corrections to the
Friedel expression for the case of complete degeneracy.
In the case of a nondegenerate gas, Kochelaev' and
Adawi~ have indicated that the long-range screening has
a Gaussian rather than an inverse exponential factor.
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Several numerical solutions of the problem have also
been reported by Langer and Vosko, "and by March
a,nd Murray il, i These previous investigations, how-
ever, particularly those yielding analytical results,
have been fragmentary. They certainly demonstrated
that important corrections were being overlooked, but
the essential results are not general or detailed enough
to permit a reasonably accurate treatment of most
charge screening problems within the free-electron
framework.

In the present investigation, an attempt is made to
account more comprehensively than has yet been done
for the variation with both distance and degree of
degeneracy of the tail of the charge screening Geld in a
noninteracting Fermi-Dirac electron gas. The results
a,re derived from Grst principles in a quasi-Hartree self-
consistent scheme by evaluating the Dirac density
integral" for a scattered plane wave and appropriate
expansions of the Fermi-Dirac function. The expression
for the screening Geld are given in their most general
form for the degeneracies of interest. The main features
of the results are discussed and compared with previous
work.

II. THEORY OF LONG-RANGE CHARGE
SCREENING IN AN ELECTRON GAS

A. Density of Screening Charge Cloud.

The density of the screening charge cloud 6p(r)
around a localized point charge in a inoninteracting
Fermi-Dirac"electron gas is given by

8p(r) =
4z'

where p is the perturbed wave function of the charge
carrier, F(k) is the Fermi-Dirac distribution function
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1jexpLb'(2m*keT) '(k' —kr')], with ke denoting the
Boltzmann constant; T is the absolute temperature,
m* is the effective mass of the carrier, k is a wave
number, and k~ is the Fermi-Dirac normalization con-
stant at temperature T. In the region where the effec-
tive potential of the localized charge is negligible, the
perturbed wave function is given by" bp(r) = — Im

7r2r2

B„-
dk J (k) e"""P ~ ji, (3)

O &m &m

where jL and nL are the spherical Bessel and Neumann
functions, respectively, I'L is a Legendre polynomial,
and qL is the lth-order phase shift for wave number k.

On substituting for f in Eq. (1), it can be shown that

f=P (2lj1)i' exp(i'&)Lcosrl& j&(kr) —sing& e&(kr)$
L=O where A and 8 are functions of k. The coefficients

XP&(cos(k,r)), (2) A and B are given by the following expressions":

A,„=2 '(2k) '" Q (—1)'(21j1)sin2rlr C(l, 2n),
L=O

A,„+,——2(2k)—'"—' g (—1)'(2l+1) sin'rl~ (l, 2ej1),
L=O

B,„=(2k)—'" p (—1)'(2l+1) sin'rl( C(l,2e),
L=O

where

Bs„+r——(2k) '" ' P (—1)'(2l+1) sin(2m~) Z(l, 2eji);
L=O

(4)

(lj2p)!(lj2n —2p)!n

C(l, 2e) =(—1)"Q
~=& (2p)!(2e—2p)!(l—2p)!(l—2e j2p)!

and

(lj2p j1)!(lj2e—2y —1)!
+(—1)" Z

~=o (2p +1)!(2e—2p —1)!(l—2q —1)!(l 2n +2—q j1)!
(lj2p)!(lj2n 2p j1—)!

(l, 2N+1) =(—1)" Q
s =& (2p)!(2n —2p j1)!(l—2p)!(l—2n j2p —1)!

(In evaluating A and B, it should be noted that terms
containing the factorial of a negative integer in the
denominator vanish. ) The more important coeKcients
are given by the following expressions:

A, =P (—1)'2 '(2l+1) sin2gg,
L=O

Bs——Q (—1)'(2l+1) sin'rl)
L=O

(2lj1)(l+1)!
Ar ———P (—1)'— Sln /LE

(l—1)!

(2l+1)(lj1)!
Br=2 (—1)'— k sln2gL q

t o=2(l—1)!

As = —Q (—1)'s(2l+1)
L=O

-(lj2)! &(lj1)t~-
+I [ k sin2vt,

(l—2)! i(l—1)!1
» N. F. Mott and H. S. W. Massey, The Theory of Atomic

Collisions (Clarendon Press, Oxford, 1965), 3rd ed. , p. 35.

B = —2 (—1)'-'(2l+1)
L=O

-(l+2)! l'(l ji)!q'-
X — j~ — — —

~

k ' sin'rl(. (5)
(l—2)! ((/ —1)!J

If one now makes the assumption that A and 8
can be expanded in a Taylor's series about some ap-
propriate point $ in the range of integration, Eq. (3)
can be expressed as

e"&"(8"A '8"B
3p(r)=x sIm Z 2 r ~

I ji
=o ~=o e! E Bk~ Bk~

(1 )Tk r!% 00

X~ —
~

dk J'(k) expL2i(k —$)rj. (6)
&2i) ar"

The integral over k in Eq. (6) can be carried out for the
four degeneracies of interest, leading to the following
results:

'4 Handbook of Mathematica/ Func/ions, edited by M. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1965), Appl. Math.
Ser. 55.
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Slight degeneracy. When P'kr'&~0, where
P'= t't'/(2nt*keT), F(k) can be expanded in powers of
exp+'(k —kr')) in the range k'&kz', and in powers of

exPL —P'(k' —kr') j in the range k') kr'. It can then'be
shown that

00 i m 1(sr) /2 1
dk F(k)e 's'= ——e '"&" i/2r+g (—1)"—

l

—
l

2r & t 2(X) P

&(l exp(pq') erfc(oq)+i exp(ioq') erfc(top) iW—yJ, (7)

(9) can equally well be obtained by replacing $ by kr
in Eq. (6).'r The derivation tends, however, to be more
laborious than when )=0.] Expressions (6b) of Flynn
and Odle' and (5.5) of Adawit can be immediately
related to the 6rst term of Eq. (9) (i.e., when nt and n
are equated to zero) with the appropriate values given
to Ap and Bp.

Within the range r &P'kr, an expansion of
csch(srr/P'kr) in powers of T can be utilized to express
Eq. (9) in a very useful form

where uq=X"'Pkr X"'i—jP 'r co=/X ' 'P 'r X' 'iP—kr
erfc denotes an error function, '4 and

W), ——exp(io)p) erfcp —'/'p-'r) .
In the limit pkz))1, Eq. (7) can be shown to reduce to
the relation

@(r)=—

where

1 (Cq cos(2kr+P&, )zl
2z' ~=o 4 r'+'

lDy cos(2kt'+ l y)—QT2 +O(T)" I, (10)
rX+1 )

$ cc

dk F(k)esisr — +lsrl/2 esisrt Q ( 1)xy—
1/sabir

0 p

(8'&Aq &„1tl'&+'8&, s„ t)
C.- ~.=Z (—:)

I

„=o E tlksn 2 r!ksn+t )

e2"&"csch
2Psk, Psk,

1 it'"+'A x so r'l—-
C sin%=2 ( e)"I +-

~n (8) Bk'o 2 Bk'n+'

bp(r) =—

where

00 o0

Z 2(—')"
2srPskz, m=o n=o

cos(2kr+o „), (9)
rm+2

$2+A $2nX

Qmn cos'vmn =
l

((2n)! ilk» t/r»

$2n+lg $2n+1Xq

2(2n+1)! Qk2n+t tlr2n+t)
&

( 1 8'n8 O'"X
Qmn s&nt'mn =

l

((2n)|
$2n+lg $2n+lg

2(2n+1)! Bk2n+1 Brsn+1

It is convenient at this stage to replace $ by 0. On
substituting for the integral in Eq. (6) from Eq. (8)'and
invoking the property that for k small A and 8 can
be expressed in odd and in even powers of k, respc-
tively, " the term i/2r and terms containing W&,

disappear. One obtains then through a Taylor's expan-
sion the result

D), cos|) =Ax+stlA, r/&k,

Dq sini q=Bq —-,'cjA&, t/Bk,

and
0=-'(srm*k tt) '/A4kr'.

In evaluating Eq. (10), A„, 8„, and their derivatives
are equated to zero when the integer subscript v is
negative.

Z. Cornptete degeneracy. For a completely degenerate
electron gas (i.e., Pkr ~co) it can be shown that

(7r/P'kr) csch(err/P'kr) —& 1/r

The density, as given by Eq. (9), reduces in this case to
the expression

00 00

gp(r) p Q ( r)nr —m—sn—8

2~2 tn=p n=p

(tl'"A„1 rl'"+'B„i
X (cos2kr)l

gk2n 2r Qksn+1

$2ng ] $2n+1+
—(sin 2kr) —+—— . (12)

$$2n+1

00

Bp(r) = — P Cyr
—" ' cos(2kr+Pq),

2~2 ) =0

X=csch(z-r/P'kr), kr ——ko —hk, with ko denoting the
F '

b t b o1 t o, d hk= '/ This equation can bewrittenin themore compact form

(24P4ko') is the blurring of the Fermi level due to ther-
mal excitations. " LIt should be pointed out that Eq.

"N. F. Mott and H. S. M. Massey, The Theory of Atomic
Collisions (Clarendon Press, Oxford, 1965), 3rd ed. , p. 45."F.Seitz, hto/tern Theory of Sottds (McGraw-Hill Book Co.,
New York, 1960), p. 149.

"A. Sommerfeld and H. Bethe, in Handblch der Physik,
edited by H. Geiger and K. Scheel (Springer-Verlag, Berlin
1934), Vol. XXIV.
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where C1 and p1, are defined in Eq. (10), and k= kp. It
is again of interest to point out that, the first two terms
of Eq. (13) correspond to Eq. (4)",of Alfred and Van
Ostenburgp with Ap, Bp, A1, and 81 defined in Eq. (5).
Friedel's' Eq. (11) for a thin spherical well is obtained
when Ci/Cp=2kp, pp=0, and g1=2r/2.

3. Intermediate degeneracy. By utilizing a series
representation for the error function, Eq. (7) can be
expressed as'

i i ( - 1(~q't2
dk F(k)e2'2"= + e2'2—T'"I Z— ( 1)"

I I
W

2r p 4=1 2 (Xl

4. Nondegeneraey. When ppkT2 is negative, it can be
shown that

00

dk F(k)e"'"= P (—1)~+'
2(+p)P

—zr
Xe»'"' ""»'erfc—— . (17)

(V'p)P

On substituting this result in Eq. (6) one obtains for
the long-range screening density in a nondegenerate
electron gas the expression

00 i" (j2p
00 00 00

(y" csch2ry), (14) Bp(r) = g g p r " ' exp(ip1'k 'Tr'/pp—')
~=p 12!(2pkT)2&+' By'" 3/2 m=o x=0 p=l

where y= r/p k2TOn substituting the above expression
for the integral in Eq. (6), one obtains the result

00 00

Bp(r) Im P P ( 1)nP n 1r —m —2——
m=o n=o

e2i7o2r Bng Bng
x — +i

n! Bk" Bk" /2T

$2@,+n

X Q — (y& cschvry), (15)
p p )(2Pk )2y+n+1 By2p+n

where $ has been replaced by 0. The term i/2r and terms
containing Wq do not appear (see the case of slight
degeneracy above) in Eq. (15).

The expansion of cschxy in powers of e & can now be
used to establish the following relation:

(j8 00

(y& CSCh2ry) =2(—m.) &p! p (21 +1)
()y8 v=o

Xe—~2"+'»L„&L(21+1)2ryg, (16)

q»+2 B2+'g
X(-1)"

(2!I,+1) l (2(Q&)p/ Bk»+1 f &

)21+1

Xa»+1I I+
k(Q„)P) (2X)! 2(/p)P)

(B21+xl,„ I &I I, (»)
& Bk'" f2=p E(/p)PJ

r—m—1

-BA B28„(1 r+, I

——— (19)
Bk Bk' (4r 2/2 2=p

where the dominant term is effectively„Coulombic.
(b) For r&2p' T&1000'K, and

I
p'kT'

I large,

where H„den toes a Hermite polynomial, "and $ has
been equated to 0.

Equation (18) reduces to a simple form in the follow-
ing special cases:

(a) For r/P small, and IP'kT'I large,

pp(r) (22rp/2P2) —1 exp(P2kT2 r2/P2)

where s&p, and I.„ I" is an associated Laguerre poly-
nomial. '4 With the help of Eq. (16) the derivatives of
y& cschpry appearing in Eq. (15) can be replaced by more
tractable expressions. Thus for y))1 the first term of the
summation in Eq. (16) is a good approximation. When

y is not large, however, higher-order terms of the sum-
mation have to be considered. When PkT) 1, the right-
hand side of Eq. (15) can be treated as a series in
inverse powers of pkT, fewer terms of the series need to
be considered as pkT gets larger. In the limit of pkT))1,
which corresponds to the case of screening in a slightly
degenerate electron gas, Eq. (15) reduces to Eq. (9),
as expected.

It is of interest to point out that Eq. (6a) of Flynn
and OdleP can be obtained from Eqs. (15) and (16),
when m=O, n=0, y))l, and assuming that terms of
order &p can be neglected in I.„"(pry).

lBAp
Bp(r)=(22r'i'p') ' r ' expI p'kT' r'/3'

I y
(—20)

Bk

which corresponds to Eq. (5) of Kochelaev' when the
approximation qo ~ k is employed to determine Ao.

(c) For r)2p2 and IppkT2I large, the higher terms
with index X and n2 in Eq. (18) are important, as
H (x) ~ x" for x))1.The number of terms in the series
will be small if the higher derivatives of A and of
8 at k= 0 are negligible.

B. Screening Potential around a Localized
Point Charge

The self-consistent potential V(r), corresponding to
the densitygin'~~the four degeneracy cases considered
above, can be derived from the integral form of Poisson's
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Eq. (21) to r=P'kr. Also, since p(r) and V(r) are well-
behaved functions for r~~, Ci ~ and Si ~ denote
values of the integral at the lower limit of integration.

In the case of screening in a completely degenerate
electron gas the potential can be obtained from Eq. (22)
by retaining the first term in the large parentheses and
replacing kz by ko. For the other degeneracies the ex-
pression for the potential is rather cumbersome. There
is not much point in presenting their explicit form
since, as indicated above, they can be obtained with-
out difficulty.

III. DISCUSSION

I I I

4Q 5Q 6Q 70 8,0 ' 9 0 IQLO

Fro. 1. Density of the screening charge cloud sp(r) around an
impurity atom in Cu at 1000'C. Dashed line, Friedel wiggle;
solid line calculated from Eq. (10) and from Ref. 5. Arrows
indicate position of nearest neighbors. Atomic units are used.

Kr K

where K is the dielectric constant, e, is the charge of a
carrier, and bp(r) is the appropriate carrier-density
expression. The integrals in Eq. (21) can be evaluated
quite conveniently by parts, treating the circular
functions as the integrable part of the integrand when

8p(r) is given by Eqs. (9), (10), (13), and (15), and the
inverse power of r as the differentiable part when it is
given by Eq. (18).In the important case of screening in
a slightly degenerate gas Lcorresponding to Eq. (10)j,
the potential is given by

2e. fC),U),
U(r) = —E I cos(a~+0~)

hrhr ~-o ( rh+'

lDgY), g—QT' —cos(ah, s+f'&,)+O(T4) ~ ~ - i, (22)
f" ' ~k kr

where

T„cosa„=Ci„+q(2kr) —Ci~s(2kr),
Ir. sina„= Si~r(2kr) —Si„+s(2kr),

Ci„and Si„are generalized cosine and sine integrals, '
respectively; v and p denote integers. In expressing the
result in terms of the generalized cosine and sine inte-
grals it has been assumed that there is no significant
error in changing the upper limit of the integrals in

's R. B. Dingle, Appl. Sci. Res. B4, 411 (1955).

equation:

4xe, 4xe.
U(r) =— red(r)Ck+ re(r)Cr, (21)

In the case of screening in a slightly degenerate
electron gas, it is of interest to compare the screening
density, as given by Eq. (9) or (10), with that given by
the Friedel wiggle (r ' term). For impurity screening
in copper at 1000'C, it is found that the deviations from
the expression of Friedel are of the order of 10%%uo at the
first neighbors, when the erst-order perturbation
result's: As~As(1+2hrk, ) ' is adopted. The deviations
are much greater (see Fig. 1) when phase shifts obtained
from a semiempirical scheme' " or a square-well
potentiaP' are utilized in Eq. (4). In general, it is found
that the asymptotic screening 6eld in a slightly de-
generate electron gas, as given by Eq. (9) or (10), oscil-
lates in a much more complex way than suggested by
the Friedel form. In fact, it can be shown that the
elementary expression in r ' is applicable only at very
large values of r in a completely degenerate electron
gas. For all other situations it is a rough approximation.
The main corrections to the Friedel expression are
found to arise from terms in higher powers of r ' at
ordinary lattice temperatures. Since Ak is usually small
for T&10 'K, corrections due to temperature only are
almost negligible within that temperature range.

By merely inspecting the functional form of Eq. (9),
one can see that the temperature enters the screening
field in the slightly degenerate electron gas through
factors of the form p 'kr 'csch(hrp 'kr 'r) and its
derivatives with respect to r. It can also be noted that at
absolute zero the field reduces to the product of a
circular function and of a series in inverse powers of r;
the erst term of that series corresponding to the Friedel
wiggle. One should be cautioned, however, against
attempting to determine by inspection the relative
importance of the terms in Eqs. (9) or (10) at the first-
and second-neighbor distance. Since the higher deriva-
tives of the phase shifts or of A and 8 can get quite
large, higher-order terms in the series may turn out to
be of comparable magnitude to the Friedel oscillations.

Apart from sinusoidal-type oscillations, there are no
outstanding features in the screening Geld for the elec-
tron gas of intermediate degeneracy. The expression

~9L. C. R. Alfred and D. 0. Van Ostenburg, Phys. Rev. 161,
569 (196'7).

's F. J. Blatt, Phys. Rev. 108, 285 (195'7).
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for the screening charge density is slightly more compli-
cated in this case than it is in the slightly degenerate
electron gas. The temperature dependence, which is
significant here, shows up as factors of the form
P '(Pk&) '& ' expL —(2i+1)my)1.„"P(2u+1)aryan, where
p, and v are integers, and its derivatives with respect
to r. For very large values of r the field keeps oscillating
and drops o8 roughly6 as the product of a circular
function with argument (2+~'/4P'kz4)kryo, of e ~&, and
of a series in inverse powers of r. An expression corre-
sponding to the Friedel wiggle is always present in the
screening field for the intermediate-degeneracy case. It
is only in the high degeneracy limit, however, that it
becomes an important term.

One of the interesting characteristics in the asymp-
totic form of the screening field in the nondegenerate
electron gas is the absence of the sinusoidal-type oscil-
lations observed in the degenerate cases. This has been
attributed~ to the blurring of the Fermi surface. In the
present analysis the oscillations vanish because the
circular terms in Eqs. (9), (13), and (15) arise from an
integration over a range 0&k& RePkr, which is non-
existent in the nondegenerate electron gas. Some
waviness in the screening Geld will be observed, however,
in the range r&2P, on account of the dependence on
Hermite polynomials. Although the screening field in
the nondegenerate gas does not display the spectacular
features found in the degenerate cases, its functional
variation with distance and temperature is just as
complex. Simple function forms are obtainable only in
some limiting cases. Thus, a Gaussian dependence with
argument P 'r is valid in the range r &2P'; T& 1000'K.
A Coulornbic dominant term in the screening Geld can
also be obtained when the conditions r&P, ~P'ki'~))1
are satisfied. No relationship to the Brooks-Herring
screened Coulomb is indicated, however, at any dis-
tance or temperature range for the nondegenerate case
in the present scheme.

It is of interest to compare the results obtained for
long-range screening in an electron gas by the present
method with results of previous work. Since the present
approach is an extension of that utilized by Flynn and
Odle, there are many points of similarity in the expres-
sions derived in the two investigations. The results
presented here, however, are in a much more general
form and have a broader scope than those of the above-
mentioned authors. The screening Gelds obtained by
Adawi and others' ' through inversion of the Hartree
dielectric constant are severely restricted by the ap-
proximations that must be made to obtain analytical
solutions. It is also well known that important details of
the fine structure of the screening Geld cannot be re-
solved in a Grst-order-perturbation approach. Further-
more, the results of Langer and Vosko, "unlike those of
the present investigation, cannot be utilized in higher-
order approximations or with semiempirical parameters.

A very plain framework has been considered in the
present investigation, and it is appropriate to comment

brieRy on the main shortcomings of the model and on
the refinements that should be considered for a more
rigorous treatment. One of the simpler corrections
pertains to the deviation of the actual wave function
f, in Eq. (1), from the simple form given by Eq. (2).
This refinement could be significant in the immediate
neighborhood of the potential cutoff, i.e., at the first
few'neighbors in common metal lattices. The present
scheme LEq. (1)j can be utilized for this modification
provided the deviations of the wave functions are
known. Next, one must consider the standard refine-
ments to the primitive free-electron scheme. The most
important of these involve taking proper account of the
Koch character of the charge carriers, of exchange, and
of phonon interaction. These three modifications, how-
ever, unlike the one discussed above, cannot be incor-
porated readily within the present scheme and are meant
for more powerful many-body and band-structure tech-
niques. Other important corrections relate to nonspheri-
cal Fermi surfaces and realistic ionic cores. These two
refinements are known to be quite complex even at
absolute zero. Introducing them in the screening scheme
for arbitrary temperatures will clearly present major
difhculties.

IV. CONCLUSIONS

The main conclusions emerging from the present
investigation are the following.

(1) In the case of screening in a slightly degenerate
or completely degenerate electron gas, higher-order
corrections in powers of r ' to the Friedel oscillations are
very important and cannot be neglected in discussing
short range interaction between an impurity atom and
the matrix, or in constructing a pair potential in liquid
metals.

(2) Since the blurring of the Fermi surface dk due
to thermal excitations is small at temperatures of the
order of 1000'C, corrections to ko and to the phase
shifts due to temperature only are not significant in the
common metals up to temperatures well past the melting
point. Consequently, there is no significant error in
evaluating the screening field over that temperature
range with parameters obtained at absolute zero. There
is also complete agreement with the observation of
Flynn and Odle' to the eGect that, within the limitations
of the present model, many physical properties of dilute
alloys should be temperature-invariant.

(3) In the case of screening in a nondegenerate elec-
tron gas the sinusoidal-type oscillations observed in the
degenerate cases are absent. The Geld varies with dis-
tance, temperature, and the Fermi-Dirac normalizing
parameter in a very complex way. Simple forms like a
Gaussian or a Coulomb dependence are obtainable as
limiting cases and they can be utilized only within their
range of validity.

(4) Since the expressions obtained for the screening
field are presented here in their IIiopt general form, they
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tend to appear cumbersome and inconvenient for practi-
cal applications. In practice, however, only the first
few terms in the summations will be signi6cant. The
number of these terms will clearly vary with the dis-
tance and temperature range under consideration and
also with the convergence pattern of the coefficients' in
the series.

(5) The results of the present investigation give a

more comprehensive and unified picture of some aspects
of the charge-screening problem in an electron gas than
has yet been presented. They should be extremely
useful in a wide range of problems, particularly those
where elementary asymptotic field, such as the Friedel
wiggle, are being employed. They should also serve as a
useful first approximation in more sophisticated treat-
ments of long-range charge screening in an electron gas.
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Specific Heat of n- and p-Type Bi,Tes from 1.4 to 90'K~
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The specific heats of n-type bismuth telluride with carrier concentrations ranging between 2.2)&10'8 and
8.3)&10"cm 3, p-type Bi2Tee with a carrier concentration of 1.3)&10' cm ', and bismuth selenide have been
measured from 1.3 to 90'K. At low temperatures, there are measurable differences in the electronic specific
heat of n-type Bi2Te3 as a function of carrier concentration. These differences can be explained on the basis
of a conduction band consisting of six ellipsoidal minima and an additional heavy-mass band lying approxi-
mately 30 meV above them. The electronic specific heat of P-type Bi2Te3 is consistent with a six-ellipsoid
model. For both n- and p-type Bi2Te3, as well as Bi&See, departure of the lattice specific heat from the Debye
T' approximation begins well below the lowest temperatures measured. The extrapolated Debye tempera-
ture at absolute zero is (162+3)'K for BisTee, which agrees well with the value of (165&2)'K obtained from
the low-temperature elastic constants. Bi2Se3 has been found to have a limiting Debye temperature of
(182+3)'K.

I. INTRODUCTION

ITHIN the last ten years, a significant amount
of progress has been made towards an under-

standing of the transport properties of Bi~Te3 in terms
of an ellipsoidal multivalley model for its conduction
and valence bands. '' Recent de Bass—van Alphen
studies, ' 4 together with related transport measurements
on e-type Bi2Te3,' have led to the postulates of an
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additional heavy-mass low-mobility conduction band
lying at a slightly higher energy than the ellipsoidal
minima. The existence of such a band can be checked
directly by examining the behavior of the electronic
specific heat. Although specific-heat measurements have
been made previously on Bi2Te3, none have been
obtained for e-type material and indeed the electronic
specific heat of p-type Bi~Tes appears to be in serious
disagreement with that calculated from the results of
de Haas —van Alphen (dHvA) measurements. This
work then is primarily concerned with an experimental
determination of the specific heat of e-type Bi&Te3 to
deduce information concerning the second band, and
with a remeasurement of the electronic heat capacity of
p-type material. Of interest, too, is the limiting Debye
temperature 0'e, which can be compared with 0's calcu-
lated from elastic constants, and the variation of the
lattice heat capacity with temperature and doping irn-
purities. The specific heat of bismuth selenide has also
been measured to observe the difference in lattice heat
capacity caused by the substitution of selenium for
tellurium.

6, 26 (1959); P, A„Walker, Proc. Phys. Soc. (London) 76, 113
(1960).


