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resistivity does not continue increasing quadratically
as predicted by the %iedemann-Franz law and Eq.
(13a).The field dependence of e»' (41) would be smaller
than predicted from a p~ dependence. This would reduce
the theoretical amplitude predicted by Eq. (55).

The relatively good agreement between theory and
experiment supports the use of Eq. (38) and the assump-
tions leading to it. It also shows that the Horton free-
electron theory, and the assumption of randomly located
neutral point impurities were reasonably good.

VI. SUMMARY

The adiabatic Nernst-Kttingshausen coeScient e,„',
the thermoelectric coeKcient e»', and the thermal
transverse-even coeKcient e,„'are measured in magnetic
fields to 3.3 T (33 kG) and temperatures between 1.2
and 4.2 K. The results clearly demonstrate the effects
of Fermi-surface topology on ~,„'.

The held and temperature dependence for the adia-

batic coeScients are predicted by assuming the validity
of the %iedemann-Franz law and a theory for the iso-
thermal coeKcients. For closed-orbit directions, the
field dependence of e „' is AHs+BEP, in agreement with
predictions. The coeScients e»' and e,„' do not have
observable (nonoscillatory) field dependencies. This is
not in agreement with predictions. The coeKcient e,„
is independent of temperature below 1.6'K, in agree-
ment with predictions.

The adiabatic thermoelectric coeKcient e»' has
strong quantum oscillations originating from the sixth-
zone electron Fermi surface. The magnitude of these is
in reasonably good agreement with the amplitude pre-
dicted by theory.
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The lattice dynamics of Be is discussed within the framework. of the local pseudopotential approximation.
Calculations are made in the first instance using a basic pseudopotential computed from the orthogonalized-
plane-wave band-structure results of Loucks and Cutler. Comparison with experimental phonon dispersion
relations shows, however, poor agreement. Calculations are also made using Heine-Animalu modelpotentials
with similar results. Finally, the experimental data are inverted to obtain an experimental pseudopotential.
The latter is used to make a band-structure calculation, and the resulting Fermi surface is compared with
that derived from de Haas —van Alphen experiments.

I. INTRODUCTION

'N recent years, calculations of the phonon dispersion
~ - relations for a number of cubic metals have been re-
ported using the pseudopotential approach. The
method was erst extended to hcp metals by Roy and
Venkataraman, ' and explicit calculations were made
for Mg. Continuing this program, we present in this
paper similar results for Be. As in the case of our work
on Mg, calculations were made in the erst instance from
basic principles without any adjustable parameters,
using as input information some results from the orthog-
onalized-plane-wave (OPW) band-structure work of

' A. P. Roy and G. Venkataraman, Phys. Rev. 156, 769 (1967).
Unfortunately, the numerical results presented in this paper are
in error owing to a mistake in the formula for the Coulomb con-
tribution. Specifically, the expression for the Coulomb contribu-
tion from atoms in the same sublattice given in Kq. (7) of this
paper is valid only for cubic symmetry. Equation {8),which gives
the contribution from different sublattices is, however, valid for
all symmetries. The mistake in Eq. (7) was subsequently rectified
and the proper numerical results presented in an addendum
(unpublished).

I oucks and Cutler. 2 These calculations, when compared
with the experimental results of Schmunk et al.' showed-
only qualitative agreement except for the transverse
branches along the (00017 direction, where the agree-
ment was good. Dispersion relations were then ob-
tained using the results of Animalu4 based on the
Animalu-Heine model potential' which, it may be re-
called, has been used with fair success in computing
various electronic properties for a number of cubic
metals. These also showed only qualitative agreement
with experimental dispersion relations, the agreement
being in fact worse than that obtained in the 6rst-
principles work. Calculations were also made using a
model potential computed by Animalu' along the 1ines

' T. L. Loucks and P. H. Cutler, Phys. Rev. 133, A8l9 ($964).
3 R. K. Schmunk, R. M. Brugger, P. D. Randolph, and K. A.

Strong, Phys. Rev. 128, 562 (1962).
4 A. O. K. Animalu, Proc. Roy. Soc. (London) 4294, 376 (1966).
5 A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
6 A. O. K. Animalu (private communication). Ke are grateful

to Dr. Animalu for making available to us these unpublished
results.
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recently employed by Animalu et u/. ' in connection
with- their work on phonon spectra of cubic meta, ls, and
these too were found to be inadequate. Finally, we have
inverted the experimental phonon data to obtain an
"experimental pseudopotential" so as to provide a basis
for computing the various properties of Be. This was
in the same spirit as a similar program undertaken suc-
cessfully by Stoll and Schneider' for Mg. By way of
assessing the usefulness of our fitted potential, we have
carried out a band-structure calculation. A noteworthy
feature of this band structure is that it is more nearly
free-electron-like than those obtained from OPW2 and
(augmented plane wave) (APW)s calculations. In
passing we might remark that the basic and model po-
tentials also yield nearly free-electron-like band struc-
tures. We have also computed representative dimen-
sions of the Fermi surface using the experimental
pseudopotential and these have been compared with
those obtained from de Haas —van Alphen experiments. "
The results of the various calculations are presented in
the following sections.

II. BASIC CALCULATIONS

The pseudopotential approach to lattice dynamics has
been adequately discussed in the literature, " and does
not warrant any repetition here. It is sufhcient to recall
for our purposes that in this formalism, the vibrational
energy is made up essentially of three parts. The first
of these is due to Coulomb interaction of positive ions
immersed in a uniform compensating background of
electrons, and the corresponding contributions to the
elements of the dynamical matrix may be evaluated
using standard methods. "' The second contribution to
the vibrational energy arises from ion core repulsions
and is negligible in the case of Be since the size of the
core is very much smaller than the nearest-neighbor
distance. ' The final contribution to the energy is asso-
ciated with the response of the electrons to ionic
motions. For a lattice with a basis the corresponding
contributions to the dynamical matrix are given by"

2Z
D.e'(tl, kk) = El (~+tl).(~+tl)P(I~+el)

elf ~ —(~)-(~)eF(k)~(l ~ l)7, (&)

D-e'(a, kk') = Z(~+a). (~+ab&(l ~+el)
eM ~

)&e ir—r(a'a) (2)

In the above equations, e is the number of ions in the
primitive cell (=2 for Be),Z is the valency (= 2 for Be),
and 3f the mass of the ion (the crystal is assumed to be
monatomic). Further, ~ is a reciprocal-lattice vector and

r(k'k) = r(k') —r(k),
where r(k) and r(k') .denote, respectively, the equilib-
rium positions of the t|' and k'th ions in the primitive
cell. The quantity F(k) is given by

F(k) =P cosl ~ r(k'k)7.

The function E(q) contains all the information about
the electron behavior in the crystal, and in the local
pseudopotential approximation is given by"

&(q) = —FLU(q) 7'X(q)le(q) (3)

where U(q) is the Fourier transform of the bare local
pseudopotential and

3 (1 4k p' —q' q+2k p
~(q) =

I
-+ (4)

2E+ k2 8kzq q —2k~

kg and E~ being the free-electron Fermi wave vector
and Fermi energy, respectively. e(q) is the wave-
number-dependent dielectric function of the electron
gas for which several expressions have been proposed.
In the present paper we have adopted the following
formula:

4x-Ze' g2

(q) =&+ x(q)l & — (5)
q'Qs k 2 (q'+k p'+k, ')

given by Sham, ' which takes account of exchange
effects. The quantities k, and Qs in Eq. (5) denote the
screening length and atomic volume, respectively. The
values of the various parameters for Be are listed in
Table I.

The crux of the problem is to compute U(q) and this
was done in the present work using recently obtained
band-structure results, ' and the methods previously

fABLE I. Crystallographic and relevant parameters for Be.'

'A. O. E. Animalu, F. Bonsignori, and V. Bortolani, Nuovo
Cimento 44, 159 (1966).

E. Stoll and T. Schneider, Physik Kondensierten Materie 8,
58 (1968).' J. H. Terrel, Phys. Rev. 149, 526 (1966).' B. R. Watts, Phys. Letters 3, 284 (1963); Proc. Roy. Soc.
(London) A282, 521 (1964)."S. K. Joshi and A. K. Rajagopal, in Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic Press Inc. , New
York, 1968), Vol. 22, p. 159."E.W. Kellermann, Phil. Trans. Roy. Soc. (London) A238,
513 (1940).

"In addition to the addendum mentioned in Ref. 1, the correct
version of Eq. (7) of the paper of Roy and Venkataraman may be
found in Ref. 8.

'4 C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).
"Note that the equations given here difFer slightly from

Eqs. (13) and (14) of Ref. 1. We have exploited the inversion

Unit cell constants

Atomic volume
Free-electron Fermi momentum
Thomas —Fermi screening length
Mass of the ion
Charge on the ion
Free-electron Fermi energy
Atomic core energy level

a Taken from Ref. 2.

c
c/o

kg
k,
M

Ey
El@

4.3211 a.u. (2.286 A.)
6.7715 a.u. (3.583 ~)
1.5671

54.750 (a.u.)'
1.027 (a.u.) '
1.1137 kJ
1.4958&10 "g
2.0 Jef
1.0537 Ry—6.765 Ry

symmetry of the reciprocal lattice and avoided writing here the
terms involving (z—q).

~6 W. A. Harrison, Pseldopoterltials in the Theory of Metals
(W. A. Benjamin, Inc. , New York, 1966).

~ L. J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965).
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employed by Sham for his calculations on Na, i.e., in
his model A. ' "The details are described below.

We observe, first of all, that the pseudopotential is
really nonlocal and is, to some extent, arbitrary, as
pointed out by Cohen and Heine. "A convenient form
for the pseudopotential operator due to Austin et a/. ' is

U(r, r', R) = Uk(r —R)+g
~
gi(r —R))

t

~(4 k(r' —R)
I (~—Ei)

= Uk(r —R)+UB(r, r', R).

Here U(r, r', R) is the nonlocal pseudopotential operator
associated with an ion at R. Uk(r —R) is the bare po-
tential of the ion and is local, while UB(r,r', R) is the
nonlocal operator associated with the repulsive part of
the potential and depends on the core eigenfunctions

~ p&) and the core eigenvalues E&. T is the kinetic energy
operator.

What is required in the present calculations is

U (0)= U (0)+U (0)

where Uk(q) is the Fourier transform of Uk(r), and

UB(q) is a suitably averaged local repulsive potential.
I.et us consider the calculation of Ui, (q) first. Now

Uk(r) includ. es: (a) The potential due to the nucleus
and that due to the core electrons; (b) the potential
arising from correlations among the core electrons; and

(c) the potential due to exchange between core and con-
duction electrons.

These contributions have been evaluated by Loucks
and Cutlerm in their band-structure work. These authors
define a quantity h(r) related to the potential V(r) (per
ion) seen by an electron in the crystal by

h(r) = rV(r)—
and give in their Table II the contributions to h (r) from
various sources, including those mentioned above. The
contributions (a), (b), and (c) required at present are
available in columns 2, 3, and 4 of the table referred to.
The potential Uz(r) is therefore readily constructed,
and U&(q) derived from it by performing the Fourier
transform numerically.

Next we turn our attention to the repulsive part of
the potential. Following Sham, we may define the
average repulsive potential UB(q) as

1 e (k) —I(k+q)
UB(q) =

eX & El,—E),+q

1 ri(k) UB(k,q) —e(k+q)UB*(k+q, —q)
X

(6)

Here E is the number of unit cells in the crystal and
ii(k) is the occupation number of the state with wave

"We follow Sham in ignoring the effects arising from the
orthogonalization of plane waves to the core states.

"M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
'0 B.J. Ausin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276

(1962).

TABLE II. Parameters occurring in the analytical
form for 1s function.

2.94107
11.72750
0.00784

6.5
3.4
0.9

C;

0.6088—0.55901—0.00195

vector k. Further, Ek is the single-particle energy of the
state

~
k) and is taken to be the free-electron value. The

summation over k includes also a sum over spin states
of the electron. Further,

UB(k, q) =eN(k+q~ UB
~
k).

In other words, (nÃ) ' UB(k,q) is the matrix element of
the nonlocal operator U~ between plane-wave states
~k) and ~k+q). From the above, it is clear that the
problem of evaluating UB(q) consists essentially in
first determining Uz(k, q) and then performing the
average in (6). In the case of Be, these problems are, to
some extent, simplified by the fact that the core has
only 1s states.

For evaluating the matrix element and performing
the subsequent averages, it is useful to have an analyti-
cal form for the core eigenfunctions. Loucks and Cutler
have noted that the 1s function determined from their
self-consistent calculations agreed very closely with the
is function for neutral Be, as determined by Roothan,
Sachs, and Weiss."We have accordingly adopted the
analytical form given by the latter authors, which is

where
3

pik (r) —Q (pre B;r+'C r2e B,,r)— '—

Here r is measured in atomic units and the quantities
2;, 8;, and C; are constants and their values are listed
in Table II. Using the above form for the core function,
UB(k,q) becomes

UB(k,q) =—(E&—Ei,) pi, (r)e '«+~) 'dr
Qp

where

4x=—(Ek—Ei,)Pi, (k+q)8i, (k),
Qp

y„*(r)e'"'dr

"C.C. J. Roothan, L. M. Sachs, and A. W. Weiss, Rev. Mod
Phys. 32, 186 (1960).

2A,B, 2C, (38 2—k')
+

'= k(B'+k')' (8'+k')' )
The expressions given above may now be used to com-
pute UB(q) from Eq. (6). In doing this we note that
the curly bracket on the right-hand side of Eq. (6) may
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be written as

ti(k) &k+ql U~ I k& ti(k)&k —ql U~ lk)*
+Z

k Ek Ek+fi k Ek Ek—q

=I+II (say).

On converting the summation into an integration and
further choosing the Z axis along q, the quantity I
becomes

(k'+6.765)Pi, (k)Pi, (k+q) sin8d8k'dk

(q'+2kq cos8)

where we have set k=1, m (electron mass) =-,', and ex-
' ~pressed energy in rydbergs and wave vectors in inverse

atomic units. The factor 2 comes from the spin sum-
mation and —6.765 is the 1s level energy (in rydbergs),
as deduced by Loucks and Cutler (see Table I). The
angular integration in the above expression is straight-
forward to perform though somewhat lengthy, and we

shall merely give the anal result. But before doing so we

remark that II gives an identical result so that we

eventually obtain

A;y

(k'+6.765)Pi. (k)LX(k,q)/2qfkdk,

where
SA,B;kq 2A;B,d (k) 32BrsC; (B s+k'+q') kq

( sa)b(k)c(k) ) a(k)j' a(k)tb(k)c(k)j'

328 C,kq

La(k)]'b(k) c(k)

SB sC;d(k)

L~(k)]'

SC;kq 2C;d(k) )
a(k)b(k)c(k) Lu(k)j')

the quanties a(k), b(k), c(k), and d(k) being defined as
a(k)=B +k', b(k)=B;s+(k+q)', c(k)=B;s+(k—q)',
and d(k) =lnLc(k) (q+2k)/b(k) j—lnl q

—2kl.
The term in the square bracket on the right-hand side

of Eq. (6) may be simplified as usual to yield the resu t

e(k) —rs (k+q) = —X(q)Z,
Ek —Ek+~

so that we 6nally have

Uit(q) =
s-qx(q) o

(k'+6. '765)Pi, (k)X(k,q)kdk.
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The remaining integration, i.e., over, is
~ ~ b is done numeri-

cally in a computer. It is interesting to compare the
values of Uir(q) thus derived with those obtained for
Uz(k, q) when both k and k+q are restricted to lie on
the Fermi sphere. This is done in Fig. 1.For scatterings
confined to the Fermi surface, we obtain a constant
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from Ref. 16 and suitably damped; (c) local model potential con-
structed by Animalu using the methods of Ref. 7; (d) potential
derived from experimental phonon data.

30 50

value since the core contains just 1s electrons. From the
figure, we observe that there are fairly large differences
between the two results unlike the case of Na, '~ where
the difference did not exceed 3%.The screened pseudo-
potential

U'( )= IU ( )+U ( )j/ ( )

derived using the procedure described above, and the
dielectric function given in Eq. (5) is shown in Fig.
Vsing this pseudopotential, E(q) was calculated upto a
range of (q/k R) = 12 in steps ranging from 0.025 to 0.05
(in /k) ), depending upon the local rate of variation oof
the function. Intermediate values, when require,
in( p~ e

d were
obtained through suitable polynomial interpolation.
The electronic contribution to the dynamical matrix
was obtained through the use of Eqs. (1) and (2) and
the Coulombic contribution as mentioned earlier, and
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is somewhat disappointing especially when we recall

that the band-structure calculations on which our com-

putations were based were performed very carefully.
It is pertinent at this juncture to comment brieAy on

a calculation made by Koppel and Young'4 along simi-

lar lines, and using the results of I oucks and Cutler. In
our language, the potential entering Koppel and
Young's work is

~(q) = fop(q)

0.25 —. 005

00
0.5 10 1-5 20 2.5

Fzo. 3. G(q) function for Be.The curves marked (a)—(d) are de-
rived from the potentials with corresponding labels in Fig. 2.

the normal-mode frequencies computed in the usual
manner. In calculating the electronic contribution,
the summation in reciprocal space was extended over
900 reciprocal-lattice points to obtain satisfactory
convergence.

In Fig. 3, we plot a quantity G(q) which is related to
E(q) by"

G(q) = (——,'47rZe'/q'Qp) 'E(q) .

This G(q) function, Lwhich incidentally is more con-
venient to plot than the E(q) functionj is the same as
the g(q) function of Sham'r and of Animalu et at. r and
the G(q) function of Cochran. "

The results for the dispersion relations in the sym-
metry directions t 0001) and $0110j are shown in
Fig. 4 along with the experimental results of Schmunk
et a/. ' The agreement between theory and experiment
is of a qualitative nature only except for the transverse
branches along the $00011 direction. These, however,
are not much influenced by the behavior of the
electrons. '

The poor agreement between theory and experiment
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C$
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U
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I I I I

l0110]

tt LONG
a TRANS

I I I I

[0110]

0
0 2 4 6 810 0.2 4 .6 .810 0 .2 4 6 810

I/ lvxx

FIG. 4. Comparison of the theoretically computed dispersion
relations based on basic pseudopotential with the experimental
results of Schmunk et al.

"If the orthogonality eBects are considered then the relation-
ship between G(q) and E(q) is slightly different. See Ref. 4.

xs 1Vv. Cochran, Proc. Roy. Soc. (I,ondon) A276, 308 (1963).

III. CALCULATIONS BASED ON
ANIMALU'S MODEL POTENTIAL

In this section, we shall consider the calculations
based on the Animalu —Heine model potential. ' This is
an extension of the local model potential introduced
earlier by Heine and Aberenkov, ' and includes nonlocal
effects. The screened model potential for Be is available
in Harrison's book. ' A notable feature of this potential
is the rather long oscillatory tail which arises princi-
pally from a discontinuity in the model potential in real
space. The oscillations have been damped as suggested
by Animalu, 4 and the resulting potential is shown in
Fig. 2 as curve b. The G(q) function based on this po-
tential has been computed by Anirnalu4 and is shown as

lA
CL

O

Z
2

OX
hJ

lL
hJ

0

0
0 oo0

[0110]

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 -6 .8 10

'IllMAx

FIG. 5. Comparison of dispersion relations based on Animalu s
model potentials with experiment. The solid line refers to poten-
tial (b) of Fig. 2, while the dashed line refers to potential (c) of
the same figure.

'4 J. U. Koppel and J. A. Young, in 1Vemtron Thermalisation and
Reactor Spectra (International Atomic Energy Agency, Vienna,
1968), Vol. I, p. 333; see also J. U. Koppel and A. A. Maradudin,
Phys. Letters 24A, 224 (1967)."V. Heine and I. Aberenkov, Phil. Mag. 9, 451 (1964); 12, 529
(1965).

In other words, the repulsive part does not enter the
formulation of these authors. Further, only the contri-
butions (a) and (b) listed earlier are included in Up(q).
The dielectric function used is same as in the present
work. This calculation referred to in their paper as
plane-wave approximation, yielded curves whose over-
all agreement was roughly of the same quality as in

Fig. 4. We might also add that Koppel and Young
carried out another calculation using a dielectric matrix
based on a 23-OPW representation of the conduction-
electron wave function. Unfortunately, this yielded
poorer results than the plane-wave approximation.
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curve b in,Fig. 3. Animalu has also provided a tabula-
tion of the G(q) function in steps of 0.1 in (q/k r). In our
calculations, we require G(g) at intermediate points and
consequently we employed a polynomial interpolation
scheme for that purpose. The dispersion relations ob-
tained by us, using this G(q), are presented in Fig. 5 as
solid lines. In the calculation of the electronic contribu-
tion, it was found adequate to restrict the summation in
reciprocal space to 233 points. This was possible on
account of the more rapid decay of this G(q) function
at large q, as opposed to the one computed from first
principles. To be consistent with Animalu, we employed
the following lattice parameters used by him: u= 2.281
A, (c/a) = 1.5677.4 Turning to the figure, we observe that
the agreement with experiment is generally worse than
we had in Sec. II.

Recently, Animalu eI, a/. have had considerable
success in predicting the dispersion relations for a
number of cubic metals using a model potential which
is similar to the Heine —Aberenkov potential, but avoids
the difFiculties associated with the discontinuity in real
space referred to earlier. The screened model potential
U'(g) computed using this procedure, and the G(q)
function based on it have kindly been provided to us by
Animalu and they are displayed in Figs. 2 and 3 as
curves c. The dispersion relations obtained using this

G(g) are shown as dashed lines in Fig. 5, and we find
that the agreement with experiment has by no means
improved.

The Heine —Animalu potential has also been em-

ployed by Brovman, Eagan, and Holas" for calculating
the dispersion relations for Be. These authors believe
that the lack of agreement with experiment is due to the
presence of "nonpair" (i.e., noncentral) forces. Allow-

ance for the extra contribution to the dynamical matrix
arising from this source is made via the axially sym-
metric force-constant approach. The nonpair inter-
actions are restricted to the two nearest-neighbor atoms,
involving the use of three parameters whose values are
adjusted by comparison with experiment. The agree-
ment between theory and experiment is then considera-
bly improved over that of Fig. 4, but at the expense,
however, of three parameters.

The model potential scheme has also been employed
by Gilat, Rizzi, and Cubiotti'~ recently to calculate the
dispersion relations of the hcp metals Be, Mg, and Zn.
These authors use the so-called optimum model poten-
tial," which is an optimized variant of the Heine-
Aberenkov —Animalu potential. The dispersion curves
for Be calculated by Gilat et a/. are very similar to those
of Fig. 5 except perhaps that the upper branches are
somewhat lower. For example, at the zone center, the
longitudinal frequency computed by Gilat et a/. is

"E. G. Brovman, Yu. Eagan, and A. Bolas, in Eeltron In-
elastic Scattering (International Atomic Energy Agency, Vienna,
1968), Vol. I, p. 165.

"G. Gilat, G. Rizzi, and G. Cubiotti, Phys. Rev. (to be pub-
lished). We are grateful to Dr. Gilat for communicating these
results prior to publication.

ss R. W. Shaw, Jr., Phys. Rev. 174, 769 (1968).

3.15X10is cps as opposed to the value of 3.6)&10is
cps obtained in the present work.

TABLE III. Pseudopotential parameters for Be derived from
fitting to experimental phonon data.

rl
r2

P2

0.883 a.u.
0.298 a.u.
0.331 Ry
3.270 Ry

'9L. J. Sham and J. Ziman, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1963),
Vol. 15, p. 221.

ss W. Harrison, Phys. Rev. 139, A179 (1965)."T.Schneider and E. Stoll, Physik Kondensierten Materie 5,
331 (1966).» These are deduced in a manner somewhat similar to that em-
ployed in Ref. 1.

IV. DERIVATION OF POTENTIAL
FROM PHONON DATA

We consider 6nally the problem of deriving a poten-
tial from experimental data. This is usually done by
assuming a suitable and physically plausible form for
the (local) pseudopotential with a few adjustable
parameters which are then determined by fitting to the
experimental phonon data. The simplest among these
is the one-parameter Bardeen potential. "One can, how-
ever, hardly get a good fit with just one parameter and
so we shall not consider it any further. Next in the order
of complexity comes the two-parameter model potential
proposed by Harrison' and which was used in our
earlier work on Mg. An extended version of such a po-
tential involving more parameters has been used by
Schneider and Stoll in their analyses of data for the
alkali metals" and Mg. The form of the potential used
in this investigation is based on the Schneider and Stoll
expression, and is given by

4s.Ze' Pi ps(Vrs)'
U(v) = — + +, (7)

q'1lo L1+(p'i)'7' L1+ (mrs)'74

where Pi, P&, ri, and rs are adjustable Parameters. Z is
the valency of the ion and Qo the atomic volume.

With this form for the pseudopotential, we have a
nonlinear least-squares problem which is solved by a
standard technique. The method consists in starting
with some trial values for the parameters" and using
these, the pseudopotential and phonon frequencies are
computed. These frequencies are compared with the
experimental frequencies, and increments to the various
parameters are determined so as to minimize the
variance. The increments are then added to the parame-
ters and the cycle repeated till the process converges.
In our present work, convergence was obtained after
four cycles of refinement. As there is considerable scatter
in the data of Schmunk et a/. we have for the purpose
of 6tting, taken a smooth line through the experimental
points as giving the experimental frequencies. The anal
parameters derived by fitting are given in Table III.
The corresponding screened pseudopotential and G(t7)
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function are shown respectively in Figs. 2 and 3 as
curve d, while the fit achieved is indicated in Fig. 6.

Mention may also be made of the fit to experiment
made by Brovrnan, Eagan, and Bolas."These authors
use a two-parameter local model potential together

0.2 4 .6 810 0.2 4 6 810 0 2 4 6 810
9/'4xx

Fxe. 6. Fit achieved to the experimental phonon dispersion
relations using a potential of the form given in Eq. (7) with the
values of the parameters as in Table III.

with a three-parameter noncentral interaction. The
total number of parameters is thus five and the over-all
fit is of about the same quality as in Fig. 6. It is inter-
esting to note that the model potential of Brovman et al.
resembles closely the potential d of our Fig. 2, especially
in the strong tail beyond the first intersection of U'(q)
with the q axis.

The pseudopotential derived from experimental
phonon data should hopefully be useful in computing
the various other properties of Be, particularly the elec-
tronic properties. By way of examining the utility of
this potential, we have carried out a band-structure cal-
culation and also determined representative dimensions
of the Fermi surface. The band-structure calculations
were performed as follows: Now as is well known, the
conduction-electron energies E& in rydbergs may be ob-
tained from the coupled equations"

1
Z(L'(&+ )' —&.» +&'(I ' —~ I)-

e i(~~ rx )—x(k)' —jg'. Q (8)
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In this equation, C; is one of the coefficients occurring
in the expansion of the "pseudo-wave-function" in
terms of the plane waves ~k+~;), and (k+~,)' is the
diagonal matrix element

&1+~;iriky~, )

of the kinetic-energy operator T. In principle, the sum-
rnation over j in the second term on the left-hand side
of Eq. (8) extends over the whole of reciprocal space,
but in practice it is restricted to a few terms, leading
thereby to a truncated secular determinant. In our cal-
culations, we have included the 14 reciprocal-lattice
vectors nearest to the vector k in the Brillouin zone, and
the energy eigenvalues were obtained by diagonalizing
the resulting 14-dimensional matrix. The band-struc-
ture results thus obtained are displayed in part (iii) of
Fig. 7. Also shown for purposes of comparison are the
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FIG. 7. Band-structure results for Be. (i) OPW results of Loucks
and Cutler; (ii) based on basic pseudopotential; I',iii) based on
fitted pseudopotential.

FIG. 8. Representative sections of the Fermi surface of Be. The
solid lines are the results of present calculation while the dashed
lines are thase obtained by Watts (Ref. 10) from experiment.
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OPW results of Loucks and Cutler Q)art (i)j and the
band structure based on the basic pseudopotential
Lpart (ii)). A noteworthy feature of these results is that
both pseudopotentials yield very nearly free-electron-
like band structures as compared to the OPW calcula-
tions. As remarked earlier, the same result was also
found with the model potentials of Animalu.

The Fermi energy based on the band structure of
Fig. 7(iii) was calculated along the lines of Ref. 2 and
found to be 1.023 Ry. Representative sections of the
Fermi surface based on this potential and the above
value of Eg are shown as solid lines in Fig. 8. The dashed
lines in the Ggure show the corresponding sections as

deduced from experiment by Watts. "As can be seen,
the agreement between the computed and measured
Fermi surface is rather poor. In particular, the lens in
the third band is not seen in experiment. This lack of
agreement is in marked contrast to the situation in Mg
for which Stoll and Schneider' Gnd that the Gtted
pseudopotential is able to give a fairly good account of
the measured Fermi surface which, it must be pointed
out, is more nearly free-electron-like than that of Be.
It would appear, therefore, that unlike in the case of
Mg, it is not possible to obtain a unified description of
the properties of Be using the same (empirical) pseudo-
potential.
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Low-Field Hall Coefficient of Indiumt

JAMES C. GAELAND

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, Eevo Fork 14850
(Received 24 March 1969)

This paper reports measurements of the magnetic Geld and temperature dependence of the Hall coefh-
cient of both single-crystal and polycrystalline indium in the regime characterized by co,r&1. Measure-
ments were performed at temperatures below 4.5'K using the helicon-wave technique. The normally posi-
tive Hall coefficient was observed to reverse sign at Gelds below a few hundred gauss with the Geld H oriented
along the L100) and L111$ crystal axes. The magnitude of the "crossing field" IIv as well as the zero-field
coefficient R(0) was observed to decrease with increasing temperature. We have analyzed our results in
terms of a two-band model of the Hall coeKcient and have concluded that the ratio of the electron relaxa-
tion time to the hole relaxation time is less than unity and decreases with increasing temperature.

I. INTRODUCTION

HK Fermi surface of indium is thought to consist
of a large second-zone hole surface comprising

about 99% of the total number of carriers, and a small
third-zone electron surface which makes up the re-
mainder. ' At high fields, the traditional theory of the
Hall effect maintains that the Hall coefficient E should
be independent of magnetic Geld, and should reflect only
the relative carrier densities of the two types of
carriers, i.e.,

R= 1/ec(nl —ns),

where n& represents the hole density and n2 the electron
density. Thus, at high fields the Hall coefficient of
indium is positive, with a value of 1.6)&10 " V
cm/A Oe, corresponding to about 1.01 holes per atom
and to 0.01 electrons per atom. At lower Gelds, however,
when or,z is comparable to or less than unity for at least
one group of carriers, the Hall, coefficient is not only
Geld-dependent but also depends sensitively on the
scattering times and effective masses of the holes and

t Work supported by the U. S. Atomic Energy Commission,
under Contract No. AT(30-1)-2150, Technical Report No.
NY0-2150-52, and the Advanced Research Projects Agency
through the Materials Science Center at Cornell University,
MSC Report No. 1136.'¹W. Ashcroft and W. E. Lawrence, Phys. Rev. 175, 938
(1968l.

electrons. If we write El= 1/ntec, Its= 1/nsec, and let
01 and 0-2 represent the conductivities of the hole and
electron bands separately, then the two-band Hall
coefficient is given by'

trt ~1 cr2 ~2++ trl tr2 ~1+2(~2 Il 1)
(2)

(or+os)'+H' 1' 2'(El —R2)'

In the high-held limit this is seen immediately to reduce
to Eq. (1), while for H=O we obtain (after writing
a 1——n;esre/m;e)

1 (Tl/ml ) nl —(Ts/ms ) 'n2

R(0)=-
ec (nlr1/ml*+nsrs/ms*)

Although the applicability of Eq. (3) is limited to very
simple metals, it is reasonable to expect a more general
expression for E(0) to vary with crystal orientation and
to reQect the anisotropy of the carrier effective masses.
Furthermore, we have no guarantee that r1 and 7-2 are
the same for each band or that they are orientation-
independent, even though this is an assumption that is
customarily made. There is at present very little experi-
mental information on the anisotropy of scattering times
in metals, particularly on the differences in scattering

2 A. H. Wilson, The Theory of hfetals (Cambridge University
Press, Cambridge, England, 1958).


