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While point-multiple models provide approximate agreement with observed field gradients in alkali-
halide solid solutions, there are still quantitative discrepancies. In an attempt to understand the source of
disagreement, we have analyzed the influence of the finite extent of the ions, taking into account contribu-
tions due to the electronic orbitals both on the solvent nuclei where the field gradients are measured and on
adjacent ions. These electronic contributions are comparable to that from the point-multipole model for ions
neighboring the solute and are, in the proper direction to improve agreement with experiment for the posi-
tive-ion nuclei, but their inclusion worsens agreement with experiment for negative-ion nuclei. Possible
implications of these results concerning the overlapping-ion model for the solid solutions are discussed.

I. INTRODUCTION

ECENTLY there has been considerable interest in
theoretical and experimental studies concerning
microscopic properties of solid solutions of ionic crys-
tals.}~15 In contrast to defects with a net charge such as
vacancies or interstitial ions which polarize the lattice
over a large region, an impurity ion in dilute solid solu-
tion alters the perfect crystal structure in a region close
to itself, and allows one to treat localized properties
quantitatively without requiring a detailed investiga-
tion of an extensive region of the crystal.

Theoretical investigations of this type have been
carried out in the past in dilute alkali-halide solid solu-
tions using the semiempirical Born-Mayer model. These
investigations yielded displacements of ions surrounding
the impurity and also the electric dipole moments in-
duced in the displaced ions, thus permitting the investi-
gation of a localized microscopic effect, namely the field
gradients (FG) at the nuclei of displaced ions. For
example, pure NaCl is a cubic lattice with the Na?! and
CI3%:37 nuclei occupying sites of zero FG. However, if
a solid solution is formed by substitution of, for example,
a Brion, the displacements of the ionic charges and the
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induced moments on the ions destroy the cubic sym-
metry at lattice sites in the neighborhood of the im-
purity and yield a measurable FG. A number of experi-
mental results are now available3—11:16 for the interaction
of this FG with the nuclear quadrupole moment from
NMR experiments at a variety of sites around the
impurity and in a number of solid solutions. Das and
Dick!'? have calculated the FG using a point charge-
point dipole model and obtained results in order-of-
magnitude agreement with experiment. Fukai?:4 has also
analyzed this problem using a somewhat different model
involving elastic displacements and excluding induced
dipole effects.

Additional contributions to the FG from the lattice
distortion around the solute ion could arise if we con-
sider the ions not as point charges but as having a finite
size. One such contribution would arise from the defor-
mation of the charge density from cubic symmetry by
the differing overlap from the various neighbors of the
ion under study. This overlap distortion is due to the
Pauli exclusion principle which must be taken into ac-
count when the ion cores overlap each other. The situa-
tion here is similar to that which arises in consideration
of the chemical shifts of alkali and halide ions in different
crystals, which is a consequence of the differential over-
lap of an ion in going from one crystal to another (for
example, a Br~ion in NaBr and KBr). For the FG in
solid solutions, we are interested in the tensor character
of the differential overlap caused by nonsimilar neigh-
boring ions in a distorted crystal. Thus, while a cubic
deformation is adequate for producing a finite para-
magnetic shielding of the nuclei, a deformation less
than cubic, namely, axial or rhombic, is necessary for
finite FG.

The motivation of our study here as well as for the
chemical shift is to determine whether the simple model
of an ideal ionic crystal distorted only by considerations
of overlap is capable of describing microscopic proper-
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ties which emphasize certain limited regions of phase
space. This model has been successful in calculation of
the cohesive energy by Léwdin,!” which lends encourage-
ment to this study. However, a macroscopic property,
such as energy, takes into account all regions of phase
space and may be seriously wrong in a limited region.

We would like to investigate whether the agreement
with experiment for the chemical shifts!®=*! of positive
ions and lack of consistent agreement for negative ions
is also common to FG calculations in alkali-halide solid
solutions. Our general approach to determining the
electronic structure of the ionic crystal is to proceed one
step at a time learning what we can from each step. After
determining the effect of including overlap in the wave
function, we will consider other effects such as charge
transfer covalency, in which some atomic states are
admixed into the pure ionic state, and electrostatic
polarization, which amounts to admixture of excited
states of the ions. In this paper we shall also consider
the FG at sites other than the nearest neighbor and
compare the relative importance of the point-charge-
point-dipole model and the electronic overlap model, as
we move to nuclei further from the impurity ion. Such
a study can lead to information concerning under what
conditions each mechanism contributes strongly to the
FG.

The influence of overlap effects on nuclear quadrupole
interactions has been studied earlier for the KCl mole-
cule?? and in two instances in ionic crystals. Of the latter,
one is in uniaxially strained sodium halides by Marsh
and Casabella,® the other is on some alakli- and silver-
halide solid solutions by Fukai.’ In Fukai’s analysis,
FG at ions farily distant from the impurity ion were
considered, using a continuum elastic model for dis-
placements. In our analysis, we shall, on the other hand,
confine ourselves to the FG at ions in the immediate
neighborhood of the impurity ion, the displacements of
and around which, are obtained by a minimization of
crystal energy. In addition, both Marsh and Casabella
and Fukai considered only the “local” term arising out
of the noncubic overlap distortion of the ion containing
the nucleus in question. We shall follow broadly the
procedure utilized in the work on quadrupole interac-
tion on KCl molecule and the chemical shifts in alkali
halides to study the relative contributions of the
“local,” “nonlocal,” and distant terms to the FG in
solid solutions.

Formulation of the expression for the overlap con-
tribution to the FG is given in Sec. II. In Sec. III, we
present the results and comparison of the relative con-
tribution arising from the point-charge-point-dipole
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model and the electron overlap distortion model at the
various lattice sites. Further, we discuss implications
concerning the Sternheimer antishielding factor in
solids brought out by a comparison between theory and
experiment. Section IV contains a summary of the FG
results and of the validity of the overlapping-ion model
in light of these results and earlier work on the chemical
shift.

II. THEORY

In this section, we shall concern ourselves with the
formalism necessary to calculate the electronic-overlap
contribution to the FG which couples to the quadrupole
moment of the nucleus #, imbedded in ion 4. As an ex-
ample of how the overlap can contribute to the FG, let
us consider the 001 site in NaCl with a K+ impurity ion
at 000. The charge density of the 001 Cl~ ion is not
spherically symmetric, but is distorted from the overlap
of its electron shell with the neighboring Nat and K+
shells. The distortion is due to the Pauli exclusion prin-
ciple, which demands that the wave functions of the
electrons of the same spin on different ions rearrange
themselves so as not to occupy the same states when
they overlap. However, there still would be no FG if the
overlap distortion was cubically symmetric. The neigh-
bors of the CI~ ion are not equidistant, since they are
displaced unevenly from their cubic lattice sites by the
presence of the K* impurity. Thus, since different
neighbors produce varying distortions, a nonvanishing
FG arises at the CI~ nucleus. The 001 ion has to be
treated as a special case since not only is there an over-
lap contribution to the FG from the unequal displace-
ment of neighbors, but FG can also arise from overlap
owing to unlike neighbors. In our example, the 001 Cl—
has six nearest neighbors of which five are Na* and one
is the K* impurity, and again owing to the tensor char-
actor of the FG operator, we will obtain a nonvanishing
result. We shall refer to both of these effects as due to
differential overlap.

It is illustrative to compare the situation in the solid
solutions to the ionic diatomic molecules, for example,
NaCl. If we were investigating the FG at the CI~ nu-
cleus, we see immediately that the Cl~ is at a site in the
molecule of less than cubic symmetry. Hence, there
would be a net FG which would not depend too sensi-
tively on small changes in the internuclear separation.
In the solid solution, a net FG is made possibly only by
change from the cubic symmetry which is already pres-
ent in the undistorted crystal. The destruction of cubic
symmetry is accomplished when the ions displace from
these perfect crystal positions due to effects of the mis-
match in size between solute and solvent ions. Thus, we
must have an accurate knowledge of the displacements
on all sides of the ion under study. This consideration
makes it mandatory that we concentrate only on the
near neighbors of the impurity ion, where we know the
displacement of at least the nearest neighbors of the ion
under study. Since, from Dick, we know the displace-
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ments of the five nearest shells of ions, we know the
displacements of the nearest neighbors to the 001 and
101 ions. Further, if we consider the 003 ion displace-
ment to be small, we can consider that we know the
displacements of nearest neighbors (nn) of the 002 site.
There are experimental results available at all these sites
as well as the point-charge-point-dipole calculations.
Recently, Douglas!® has calculated the displacements of
ions in the first ten shells surrounding the impurity for
a large number of alkali-halide solid solutions. We could
have used these displacements, but in order to be con-
sistent, we wanted to use the same displacements of the
ions as were used for the point charge FG calculations,
and hence we have used Dick’s.

To determine FG at nucleus #» imbedded in ion 7, we
take the expectation value of the FG operator centered
at # as defined by

(=VE)i=8V/dx,dx;=V.j, ©)

where ¢ and 7 stand for the Cartesian axes «, y, and z.
We will be interested in the FG in the z direction

(3 cos6;—1)
Vee=2(—)eit————, (2)
i 73
where et=1 represents a positive charge and e~= —1

stands for a negative charge, and 6; and r; have their
origin at the nucleus # under investigation. In the prin-
cipal-axis system (x/,3",2"), the off-diagonal components
of the FG tensor are 0.

Vary=Vyo=Var=0.

As is the usual convention, we choose the principal axis
according to the convention

[Ver| 21 Vyy| 2| Vaul.
Laplace’s equation demands that
Vx’='+ Vy':/’+ Vz'z’ =0 y

and we may specify all the information about the FG
from the direction of the principal axes and the two
quantities ¢ and 7 defined as follows:

q=Vaw, n=| Vv'v’_Vr’z'l/I Vil

When we have axial symmetry such as at the 001 site,
7 is zero. The contribution to ¢ from point charges is
found by carrying out the sum in Eq. (2) over negative
and positive ions. Usually, one can correctly approxi-
mate the inner core electrons of neighboring ions as
point charges centered at the nucleus; in effect one core
electron cancels one proton. For the outer orbitals, we
must take the expectation value of V,,:

(3 cos?0;,—1)
=(%|(H)Z TI Vo). 3)
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Our model for the crystal is specified by the wave
function ¥ that we use in (3). The most straightforward
way to include overlap distortion due to the Pauli prin-
ciple is to use an orthogonal basis set for the crystal
orbitals comprising ¥. That is, ¥ is a many-electron
wave function and for purposes of quantitative calcula-
tion, we have to expand it out in terms of one-electron
wave functions. Since for the alkali-halide solid solution
we have a diamagnetic system with doubly occupied
states, ¥y can be expressed in the form of a single deter-
minant in the Hartree-Fock approximation as in (4):

Vo= 2n))12 | Oy @+ - -y, Cm)] 4)

where ¢, are the one-electron wave functions. Substitut-
ing (4) into (3), we obtain the FG in terms of one-
electron functions:

(3 cos?;—1)
P Gy, )

¥i

In energy-band language, this would correspond to a
tight-binding approximation and the ¢; to Wannier
functions. Since the valence bands are completely filled
in our model of the alkali halides, it can be shown?? that
(4) is equivalent to the Heitler-London wave function,
where the ¥, correspond to localized atomic orbitals.

Now if we choose a set of orthogonalized atomic orbi-
tals (OAO) for the one-electron wave functions ¥;, we
have automatically used a model in which the distortion
to the fictitous ideal crystal is caused solely by the over-
lap of the ions. The Pauli exclusion principle is auto-
matically taken into account once we use a determinan-
tal function, and the final results are equivalent no
matter what orthogonalization scheme we use. It is just
a matter of convenience which choice we take and, in
fact, we could have used nonorthogonal orbitals. There
are two choices commonly made for the OAQ’s. The
first choice is the symmetric orthogonalization procedure
which Lowdin used in cohesive energy calculations. In
this formalism, the orbitals are all treated on an equi-
valent footing, and hence preserve the symmetry of the
crystal, which is important for properties such as the
cohesive energy. Formally, they are

Yu= Za: Pa(14S)au™112
or for our case
Yoi=0oi—3 Za: Z, Soa*¢aj
+3 § ; % % Soa'iSas ppr, (6)
where Soa*= (¢0i| ¢a;), @ and 8 denote the ion sites, and
¢ and j the orbitals. A second procedure would be

Schmidt orthogonalization, which turns out to reduce
the algebra involved in most calculations on a local

B3 F, Seité, Modern Theory of Solids (McGraw-Hill Book Co.,
New York, 1940).
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microscopic level. Here the orbital on the nearest neigh-
bor to the ion 0 which is under investigation is not per-
turbed, but is simply the atomic function for an ion,

©aj- The wave function ¢o; is then orthogonalized to the

Paj-
Ya= @aj,
Yor=(00i— L T Soatieas)/(1=2 X | Soa| ),

where 0 represents the ion under study, « the site of the
neighboring ions, and 7 and j the orbitals of these ions.
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Of course, the orbitals on ion 0 are now not orthogonal to
each other and we must repeat the process to completely
orthogonalize these functions. The equivalence of (6)
and (7) would only be valid up to terms linear in .S if we
did not carry out the further iterations. For our local-
ized property, it is sufficient to obtain results correct to
second order in overlap, which means we need only one
extra cycle of orthogonalization.

Upon substituting ¥: from (7) into the expression for
¢! in (5), we obtain the following expression which we
have divided into three types of terms:

3 cos;—1
G = X 5 (1] S0a52)711: [ (ol ) (local)
5 7i
3 cos?0; 3 cos?0;—1
+(1 '—'Yw)[((‘;om ! '—C?‘S’:——‘ ‘Paz) '—'“—>+ l SOa”l 2<‘Pm l ———713———_‘ ‘Pa{)] (distant)
3 cos?0;—1
—(1=7.")(2)S0a** poi| —| @aj) J (nonlocal) 8)

1

Similar expressions hold for other components using the
appropriate operator V;;. The designation local, non-
local, and distant signifies whether respectlvely two,
one, or zero wave functions ¢, are involved in the one-
electron matrix elements (¢|(3 cos?6;—1)/r| ¢). The
local terms that contribute to ¢°! will be second order in
overlap and come from the normalization constant
(1—]S0a*7|2)~1/2. The distant integrals are of two types.
The first distant contribution on the right-hand side of
(8) is a result of the diffuseness of the negative-ion elec-
tron distribution of the neighboring ions compared to
the point-charge-like contribution of the corresponding
positive nuclear charge, represented by the terms
e;+/R3. The second contribution to ¢°! from distant inte-
grals in (8) is from the Pauli principle manifested
through overlap. The nonlocal term might be described
as arising from orthogonalization effects. Both Fukai
and Marsh and Casabella used a local approximation
and discarded integrals in which one or both orbitals are
on an ion other than the ion at which the FG is being
calculated. Whereas we have found that in chemical
shift calculation this is justified, it is not at all obvious
that this will be the case here, since these integrals must
be modified by the Sternheimer antishielding effect. Tt
arises from the deformation of the electronic orbitals of
the ion within which the nucleus is imbedded and this
deformation is produced by the FG due to the external
charge distribution. In effect, it amplifies the FG due to
the external charge by one or two orders of magni-
tude.24:25 The distant terms with most of their charge
density completely external to ion 0, in a first approxi-

( ;5 R) M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
1956,
25 E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958).

mation can be hkened to a point charge placed at the
internuclear distance. In this case, the field gradient ¢
is enhanced one or two orders of magnitude by the anti-
shielding effect, and we multiply the distant terms by
1—v,, where v, is the antishielding factor due to a
point charge far removed from the ion. The nonlocal
term has its charge neither wholly internal or external
to the charge density of ion 0, since it is a product ¢o;@a:-
In Sec. I11, we will discuss how we handle the antishield-
ing for the nonlocal term for each of the crystals con-
sidered. For the local term 1—+(r)~1, since here most
all of the charge density is within the atom and the
antishielding factor is approximately zero inside the ion.

As an example, we will present the expression for ¢°!
for a 001 ion, with respect to the impurity as shown in
the figure. The FG at the 001 site is the difference of FG
due to the influence of the ions along the 2z axis and those
perpendicular to it, and would add to zero in the perfect
crystal.

We have chosen the determinant to be made up of the
OAOQ’s in (9):

Yor=Noz(@or—S0s°° @30~
You=Noy(ou—
Yo:= Noc[ 0. =805 ¢5:— S0 ¢6:— S 05" @55 — S 06" P
+ (S067°S06° "+ S057°S05*%) @os | ,
Vie=¢1z, ¥1:= @1z, ¥Y1s=
Y1,=N1u(e15—S0* ¢os)
Vay=Noy(02y—S02° ¢0s) ,
¥5:= Ns:(05:—S05* 00s)
Vo= No:(06:—S06*  00s)
V3o=N3z(03:—S0s° ¢os)

S04 ar—S03" 35— S04 Pus)
S01°7 @1, —=S027 02y =S 01" 01:—S027° 02s)

Pls,

©)

¢4x N4z(¢4x—504 ‘POs))



184

where the normalization factors are defined as Ng:
=(1—Za.i lSaaz‘j,z)—lﬂ_ Qai Are the ion bz Dy D2 ?I’
s-wave functions on center « directed as shown in
Fig. 1, and So;°= {¢0.| ¢:.) when the z axes are aligned
along the line connecting 0 and 7. Here we have neglected
m-m—-type overlaps since they are usually about one-
quarter of the o overlap, and we only have a nonzero
contribution proportional to overlap squared. We
checked this by considering the contribution of | So;* 7|2
X(r¢~3), to the local term and indeed found it to be neg-
ligible. We do not have any cross terms like So;7%S0;™ 7,
which arose in the chemical shift calculations.

However, we must include the distant integrals of
both ¢ and = type that do not involve overlap. Here a
partial cancellation takes place between o-type inte-
grals like (e:|V..|¢e:) and w-type integrals like
(¢ez| V22| @ez). This can be seen by considering the
product wave functions

Pe:¥96z= [¢>sz(f) YIOJZ
= @ (N{(4m) " [ Yo"+ (2//5)V:"]},

CezPoz= [‘PG:(T) Y11]2
= o (N{(4m) 2LV —(1/4/5)V9)}.

Since there are twice as many =-type integrals as o
type, the /=2 terms effectively cancel except for modifi-
cation due to normalization. The fact that these terms
are amplified by 1—+,, and that the ¥° contribution is

q°‘= (8/5){ IS%u|2+ 1505”]2+ ]SOGVGJZ+ ,S‘)sas!2_2]501”,2_21501.”,2}(1/,03>p
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Fic. 1. Labeling the nearest neighbors of ion 0 containing the
nucleus where the FG is calculated for the 001 site. (Ref. 5) is the
impurity.

mostly cancelled by the positive nuclear charge, makes
this point very important.

Taking into account the above considerations, and
substituting the determinantal wave function made ud
of the OAO’s in (9), and after some simplification, we
obtain (10) for ¢!

(local)

F2(1 =y ) {4V X 1ol €10)+4/Ri*+ N 5.2 03] 5. —2/R5*+ N .2(36.|| 06:) —2/Rs*
+4<€011” ‘Plz>+4<¢’12” ¢12>+8/R13+2<¢51” ‘P5x>-4/R53+ 2<<Psx” ‘/’61:) "‘4/R63
F4N o[ Sor”| X oyl 1)+ | S0 | 2 01| ?15)+2801°°S01°* (p1a]| 01,) ]
+No:2[|S0577 [ 2(0sz]| @52)+ | S05® | 2{ 05| 05s)+ [S067% ] 2(p6el| @)+ | S067* | 2 6a]| 065

+ 2805775 057*(@5e| @52)+ 250675 06" s | ®62) 1}

—4(1 =75 ) {No,2 (4S50 ( oy || 012)+ 4501 00y | 01.))

(distant)

+No:2[S057( @oz|| 05:)F S057*(pos|| 56)+ S06”poz|| @6:)+ S067*poz|| 06e) ]

F4N 1 Sor (o1l @oe)+ V52505 @5al] €0e) N 620 { 06| 004}

The operator (3 cos?0;—1)/r® is represented by ||
in all the above expectation values. We have used
Clementi’s?® ion wave functions for the ¢a,’s, and have
evaluated the necessary two-center integrals using
Lowdin’s a-function'” technique. For calculation in
which we use a local approximation and neglect non-
local and distant terms, the only two-center integrals in-
volved are overlap integrals, and such integrals may be
expressed as Ae~%/7, where 4 and p are constants, and
R is the distance between centers. Hafemeister and
Flygare*” have made a tabulation of the overlap inte-

% Enrico Clementi, IBM J. Res. Devel. 9, 2 (1965).
¥ D. W. Hafemeister and W. H. Flygare, J. Chem. Phys. 43,
795 (1965). The values of 4 for NaCl are incorrect in this reference,

(nonlocal) (10)

grals in this form, and for convenience we have used
their results when using the local approximation requir-
ing only overlaps.

III. RESULTS

We have applied the theory of Sec. II to the solid
solutions NaCl:Br, NaCl:K, and KBr:Na, for which
Dick has calculated the ion displacements and the ionic
contribution to the FG. We have used (10) for a com-
plete study of ions at the 001 site and further calculated
results for these and several other solid solutions for
ions located at the 001, 101, and 002 lattice sites using

and D. W. Hafemeister has kindly communicated the correct
results.
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a local approximation for the electronic contribution.
These latter results will allow us to compare the con-
tributions of g¢i°ri¢ and ¢! for more distant ions than
the nearest neighbor of the impurity, since we shall
show, from analysis of the (001) ion, that the local
approximation is valid for a qualitative understanding.
Comparison of our findings with experiment will enable
us to comment on the validity of the simple overlapping-
ion model.

We relate the calculated FG to experimental results
for the quadrupole coupling constant e?¢Q/k, which in-
volves the product of the FG, ¢, and the nuclear quad-
rupole moment Q, and hence the FG derived from ex-
periment is known to the same accuracy as Q. Currently,
there are two main techniques for studying the coupling
constant e2¢Q/k. One involves measurement by resonant
NMR technique, the shift of the (3 <> —3%) nuclear
resonance lines in high magnetic field caused by quad-
rupole interactions (and the splitting of higher m lines
wherever possible). This shift in resonance frequency is
different for nuclei at different distances from the im-
purity. (From measurements of the NMR patterns in
single crystals as a function of rotation, one can make
assignments of FG tensors to respective nuclei.) The
second method uses sensitive NMR double-resonance
techniques to measure the value of €2¢Q/% in essentially
zero field. The quadrupole resonance is measured in
terms of a change in the prepared magnetic order of an
abundant spin system with a long relaxation time, to
which the rare nuclei are dipolar coupled. A small rf
field is swept over a frequency range and when on reso-
nance, causes quadrupole transition of the rare spins,
which in turn influence the states of the abundant spin
system. The double-resonance technique is more sensi-
tive than the high-field experiment, and allows determi-
nation of smaller quadrupolar frequencies. However, it
has the disadvantage compared to high field work that
it may sometimes lead to difficulties in the assignment
of resonance lines to particular displaced ions. Thus, two
or more displaced ions involving different nuclei could
have nearly the same €*¢Q/k, and thus have the same
effect on the abundant spin species, and hence would not
be resolved. In high field, the resonances of two different
nuclei would be widely separated by virtue of their
varying magnetogyric ratios, and so their quadrupole
effects can be resolved.

In fact, we believe such a situation exists for the re-
sults of Na? at the 001 site in NaCl: Br solid solution.
It has been pointed out that Andersson’s'® high-field
experimental result for Na?® at the 001 site in NaCl: Br
solid solutions is not consistent with results obtained by
Slusher and Hahn using the sensitive double-resonance
technique. Slusher and Hahn were not able to associate
the resonance lines that they obtained for NaCl:Br
with particular nuclei or sites, but it appeared from their
results that there was no line with the proper resonant
structure that would correspond to Anderson’s results
for Na? at 001, i.e., €>¢Q/h=0.654=£0.02 Mc/sec. There
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is now enough information available to remove this
discrepancy. Satoh, Spencer, and Slichter,? using the
high-field technique, have independently measured for
CI35 at the 110 site in NaCl: Br, €2¢Q/k=0.650 Mc/sec.
This turns out to be nearly identical to Anderson’s
result for Na?® at the 001 site, €¢Q/k=0.65420.02
Mc/sec. Slusher and Hahn attempted to obtain
e2gQ/h for Na?” and CI* surrounding the Br— impurity
in NaCl:Br by observing the effect of these two nuclei
on the resonance of the abundant Na?? spin system in
zero field. They observed a line at e2qQ/h=0.657
Mc/sec., but concluded it could not be positively iden-
tified as either a 001 Na?? or a 110 CI3% because of the
shape of its resonance spectrum, which did not resemble
the situation in NaCl: K where the resonances were well
understood. However, from Anderson and Satoh et al.,
we see that these two resonances lie very close together,
and hence may not be resolvable by the double-
resonance technique, and in fact may cause the peculiar
structure which Slusher and Hahn observed for this
case. In the high-field NMR experiments, these two
resonances are well separated since the magnetogyric
ratios of Na?? and CI% nuclei are rather different, lead-
ing to a quite different Larmor precession in the mag-
netic field. This is the only result for a positive ion which
is a nearest neighbor to the solute ion that has both been
measured experimentally, and for which the ion dis-
placements have been calculated by Dick. Thus, a cor-
rect interpretation of this experimental datum is crucial
to our study.

We shall begin consideration of the theoretical re-
sults by analyzing the FG at the 001 site using the full
expression (10), which keeps all local, nonlocal, and
distant terms that are second order in two-centeredness.
That is, an overlap integral is one order, and a integral
like (@ai| V.| ¢o:) is also one order, while {@a;| Ve | @ai)
is second order, and (¢o| V.| ¢o) is zero order. Here we
have assumed that V.. is centered at site 0. The per-
tinent integrals are tabulated in Table I for the 001 site
in NaCl:K solid solution as an example of how the
various terms contribute. For easy reference, we have
also included the +,, values for all the ions which we will
consider. For v, we have used the theoretical values
calculated by Sternheimer,?* who used a differential
equation approach, and by Wikner and Das,? who used
a variational theory. Results obtained by these two
methods are in reasonable agreement, and include all
the ions under study here. Some results for a few ions
are available using different approaches or further re-
finements, and values of ., vary somewhat by including
such effects. For example, Watson and Freeman?® cal-
culated 7v,(Cl™) self-consistently, including exchange
effects, and obtained a result 509, larger than Wikner
and Das. However, in order to be consistent in consid-
ering results of different ions, we wanted values of 7,
for all ions calculated using essentially the same ap-

# R. E. Watson and A. J. Freeman, Phys. Rev. 131, 250 (1963).
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Tasce L. List of the two-center integrals and antishielding factors necessary for evaluation of the FG at 001 C1* in NaCl:K.

Local overlap integrals

Ro*=15.59a, Ros=S5.14a, Ro1=5.39a0
Seec1- xt —0.087206 Sci-,Nat —0.043013 Scim, Na* —0.036009
S5 x+ 0.074847 Scim,Na* 0.052908 ScimNa* 0.043845
Distant integrals
{pos| Viee| 0oa)b  —0.004732 (@s:| Vaz] 05s)  —0.003831 (o1 Vel 010 +0.001584
{poz| Vzz| @62) 0.013570 (ps:V 22| 5:) 0.015824 (o1y| Vel 1) —0.006818
(@oz| Vzz| oz) 0.010385 {psz| Vel 052) 0.014180 e1z| Veel @r2) {0y | Vizl @)1 —0.006170
(¢p5,| V,,l qoc,) 0.011449 <(P53' szl (05«) 0.014728 <¢la| szl (01‘) —0.006386
Nonlocal integrals
(’100:' szl (Pﬁz) —0.004040 (wo:i szl ‘PBZ) —0.002065 <¢Dlll I’"‘ ‘Ply) 0.000741
(wo«l V"l §061> —0.002090 (lPOal szl 905:) —0.000938 <¢°3l V"l ¢lu> 0.000315
oz | V22| @6s) 0.001839 (poz| Vz| 5s) 0.001171 (poy| Vzzl @10 —0.000413
Antishielding factors
Nucleus (1=vx)°
Na2 5.53
K3 13.8
Cl3s 50.3
Br?® 100
1127 180

s Roq represents the internuclear distance from Na? under study to the » ion defined in the figure.

b V.. is the FG operator defined in Eq. (2) and is centered at 0.

¢ Quadrupole antishielding factors are from T. P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956), and Ref. 25.

proximation. The results of the theoretical and experi-
mental FG are presented in Table II for the three cases
NaCl:Br, NaCl:K, and KBr:Na. ¢! is calculated
using Eq. (10), and giorie is taken from Dick. We have
presented the results in units of 10’2 esu/cm?.

Let us first consider the case NaCl:Br, where we are
studying the FG at the 001 Na?? nucleus. From Table
1T, we can see that the local term is definitely larger than
either the nonlocal or distant. As was discussed in Sec.
11, the local term arises solely from the distortion of the
orbitals of ion %, in which the nucleus under study is
imbedded due to overlap with its neighbors. In the
particular case under study here, 001 Na?3, the distant
contributions come not from overlap distortion, but
from the failure of the diffuse outer negative-ion orbitals
of the neighboring Br~ and Cl~ ion to cancel the effect
from the corresponding compact nuclear charge. It was
pointed out in Sec. II that there is some uncertainty in
including the Sternheimer antishielding effect for the
nonlocal integral, Inoniocal= (@oi| V::| ¢ai), since the

charge distribution ¢g;¢4: is neither completely internal
or external to the ion 0. To obtain an estimate of this
effect, we plotted the value of I(#)nonlecal Versus r and
compared this with a plot of 1—v(r) calculated by Foley,
Sternheimer, and Tycko?® from a point-ion model using
the Foley-Sternheimer procedure. Of course, the use of
a point-charge model is not a rigorous representation
for solids, but it allows us to estimate the factor by
which we must multiply v, for the nonlocal integrals.
For the case of the FG at positive ion nuclei, we find
that most all of the contribution to Inenieeal is in the
region 0<r<2ay and in this region 1—v(r)=21 which,
therefore, we have used for positive ions. For the nega-
tive ions, the situation is quite different, with a signifi-
cant contribution coming from the larger region
0<7r<Say, and an appropriate value for 1—v,’ for
negative ion appears to be 1—37.,.

From Table I we see that the total electronic con-
tribution, 33X 10'? esu/cm?, is of the same order as that
arising from the ionic model, 19X 102 esu/cm3. The

TasLe I1. Field gradients at the 001 site.

Solid Ion® el
solution under study ionic® local  nonlocal distant Jer™nR q Qoxpt®
NaCl:Br Na2 19 52 -8 —11 1073 52 90
NaCl:K CJ3s —246 337 —180 73 -20 —36 410
KBr:Na Br?® 264 —457 223 —84 60 6 567

= Field gradient at the 001 site in units of 102 esu/cms3.
b From Ref. 2 using TKS polarizabilities and the shell model.

¢ The Na2 and Br? results are from Andersson and CI3 is from Slusher and Hahn.

2 H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev. 93, 734 (1954).
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ionic result is quoted from Dick for the case using elec-
tronic polarizabilities of Tessman, Kahn, and Shockley?®®
(TKS) and the shell model, and we will use this case
throughout to be consistent in comparing with Dick’s
results. This was the choice that Dick believed should be
the most realistic and yield the most reliable ionic
results. The experimental result of Andersson is 90X 10'?
esu/cm?, and hence we see that the electronic contribu-
tion substantially improves agreement between theory
and experiment. As for the remaining discrepancy, it
should be mentioned that the magnitude of both gionic
and the ion displacements are quite sensitive to the
choice of electronic polarizabilities used. For example,
Dick’s value of gionie is 51X 10" esu/cm?, calculated
using Sternheimer?! polarizabilities without considera-
tion of the shell model, is quite different from the results
above using TKS polarizabilities. A recalculation of ¢°!
using displacements calculated from use of Sternheimer
polarizabilities yields ¢g°!= 41X 10'? esu/cm3. A combina-
tion of ¢e'4-gionie=g, for this case, gives ¢=92X101
esu/cm?, in excellent agreement with ¢=*rt=90X10!?
esu/cm®. Ordinarily, g°ric does not vary nearly as
radically as for this case of the 001 site for NaCl:Br,
and the question of what polarizabilities to use is not as
important.

A quantitative treatment of y(r) in the solid solution
might alter the above results somewhat, but not the
general conclusion that ¢°! is of the same order of mag-
nitude as g'°"i¢ and additive with it. This is mainly due
to the fact that the main contribution to ¢°! is from the
local term where y(r)~O0.

In contrast to the rather consistent picture presented
above for the positive ions, Nat in NaCl:Br, the nega-
tive ions at the 001 site present quite a different story.
Again, the local term is larger than the nonlocal or dis-
tant, but the nonlocal is quite significant. In this case,
the distant term arises from Pauli distortion overlap,
and the diffusness contribution is quite small as we
would suspect, since the neighboring ions are the more
compact positive ions. We have also considered the con-
tribution of next nearest neighbors (nnn), since the
overlap between these two diffuse negative ions is almost
as large as the nearest-neighbor (nn) positive-ion—
negative-ion overlap, despite the greater distance. As
can be seen from Table II, the contribution of the nnn
ions is an order of magnitude smaller than that due to
nn. This is understandable since ¢°! is due to the differ-
tial overlap and the relative displacements of the nnn
ions are not as large as those of the nn ones which lie
along the 001 direction.

For the nn negative ions, ¢°! is of opposite sign to
g'orie calculated from the point-charge model. The latter
results are already smaller than the experimental result
by a factor of 2 for the cases of a 001 negative ion in

% J. R. Tessman, A. K. Kahn, and W. Shockley, Phys. Rev.
92, 890 (1953).
( ;15 % M. Sternheimer, Phys. Rev. 90, 951 (1954); 107, 1565
1957).
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TasLe III. Field gradients at the 001, 101, and 002 sites
using the local approximation.

Solid Site  Nucleus*

solution  observed observed  gionic® ge1(local Gexpt®
NaCl:Br 001 Na? 19 52 90
KBr:Na 001 Br™® 264 —457 564
NaCl:K 001 Cl% —246 337 410
KI:Rb 001 n —140 351 314
KBr:Cl 001 K3® —20 —102 e
NaCl:Br 101 CIs 176 1.9 123
KBr:Na 101 K3 —49 9 ‘e
NaCl:K 101 Na? 36 2.6 99
KI:Rb 101 K39 16 —-0.3 s
KBr:Cl 101 Br?® 172 2.6 99
NaCl:Br 002 CI- 186 23 e
KBr:Na 002 K+ 58 —100

NaCl:K 002 Na* —40 63

KI:Rb 002 K+ —18 50 e
KBr:Cl 002 Br~ —206 —78 41

2 FG is in units of 102 esu/cms3. .

b gionie is from Ref. 2 with TKS polarizabilities and the shell model.

o Experimental results for NaCl: K are from Slusher and Hahn, NaCl: Br
(101) is from Satoh et al. and the remaining values are from Andersson.

NaCl:K and KBr:Na. Thus, the electronic contribu-
tion drastically worsens agreement with experiment,
and no matter what values one takes for the electronic
polarizability, agreement with experiment is very poor.*?

¢! is larger than gi°ric for the three cases we have
studied above, and before commenting on the results,
it would be interesting to compare the relative contri-
butions at points more distant from the impurity. As
can be seen from Table II, the local term is the largest
contributor to ¢°! in all three cases, and hence we can
get a qualitative understanding of more distant ions by
considering the local term only. Further, this is within
the spirit of our calculation; since the displacement of
the ions more distant to the impurity ion are less ac-
curately known, we may not obtain as quantitative a
result as for the 001 site. In Table I1I, we present several
results for 101 and 002 ions in solid solution, where
Dick has calculated the displacements. For comparison,
we have also included the results for the 001 site using
the local approximation. It should be pointed out that
in general, the local approximation seems to give a
larger ¢°! than does full application of Eq. (10).

For the 101 site, ¢*! is almost negligible compared
both to ¢=**t and to gi°nie, This is what is expected when
we consider that ¢°! is due to differential overlap that is
exponential in character, while in comparison, the
point-charge-point-dipole nature of g*°"i¢ is more of a
long-range effect. While the main contribution of ¢! of
an ion comes from the differential overlap with its nn,
the contribution to ¢'°® comes from other neighbors

3 The point-multipole results of Das and Dick, and Dick,
should be of opposite sign to the quoted results. Equation (4) in
Ref. 1is correct, but Eq. (5) should be reversed in sign if the con-
ventions for the dipole moment in Eq. (3) of that paper are used.
The sign of the FG did not matter in Ref. 1 since the sign of the
experimental result that was being compared is unknown. How-
ever, the signs of the calculated field gradients, both ionic and
electronic, are very important in this paper, since we combine our
electronic results and Dick’s for comparison with experiment.
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other than just the nearest. It appears like any im-
provements with experiment for this site will have to
come from gionie,

For the 002 site, the displacement of the nn 003 ion
is unknown, and we shall assume its displacement to be
zero. Of course in actual fact, it does have some dis-
placement, and this tends to make our results somewhat
less reliable than for 001 and 101. From Table II, we
see that ¢°! is comparable to g'°i°. The larger ratio of
¢'/ g for the 002 site than for 101 is due to the tensor
nature of the FG operator. The nn along the z direction
have large displacement relative to those perpendicular
to the z direction, and we have a sizeable contribution
to ¢°. In general, it appears like ¢°!/g*°*** decreased in
going from 001 to 002 to 101, or in going from ions whose
nn have large relative displacements to those ions whose
nn have small displacement relative to each other. From
an analysis of Dick’s results for 001, 101, 111, 002, and
102, it appears that gi°»ic remains the same order of
magnitude in going from 001 to 102 and hence for more
distant ions than 002, gi°mi¢ will most likely dominate
over ¢°. However, for 001, both ¢! and gi°» must be
taken into account.

Let us now compare theory and experiment for the
101 and 002 ions. For the one positive ion at a 101 site
where experimental data is available, Na% (101) in
NaCl, ¢! is smaller than the value determined by
Slusher and Hahn by about a factor of three. When we
consider the fact that the 001 NaCl: Br result was also
smaller than Andersson’s result using the “best” point-
multipole model, it appears that in general an increase
in 1—v, in the crystal compared to the free ion would
improve agreement between theory and experiment. In
contrast, for the 001 negative ions, a reduction of 1—v,,
in the crystal would improve agreement. A severe reduc-
tion in v, would have the effect of reducing gi°»ic and
the nonlocal and distant terms of ¢°!, while leaving the
local contribution to ¢! unchanged. The over-all effect
on g would be to sharply increase its value much more
in line with experiment. Consideration of Br— at the 101
site in KBr: Cl shows that ¢°'<<g'°"ie, and again a reduc-
tion of 1—v, would decrease g¢i°i, bringing theory
closer to experiment. A calculation of 1—+(r) in the
crystal rather than for the free ion would be most help-
ful in the interpretation of our results.

For the 002 site, no experimental results are available
for comparison for positive ions, but there is one nega-
tive-ion result available from Andersson, namely KBr:
Cl. From Table ITII, we find that ¢°! is 339, of gi°™i¢, and
again worsens agreement with experiment this time,
adding to an already too large gi°»'e, however.

Interpretation of the results of this section would be
greatly facilitated if we knew the sign of the experi-
mental coupling constant, for this would tell us whether
the electronic contribution was of proper sign to im-
prove agreement with experiment. If it was, this might
argue for a significant reduction of v,, for a negative ion
in a crystal, since the local term in ¢°!, which is not multi-
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plied by any antishielding factor, is nearly in agreement
with experiment. If the point-charge result and the non-
local and distant terms were reduced by an order of
magnitude, the final result for ¢ would be in fair agree-
ment with experiment.

There is some reason to believe that this is what
actually happens. The ion charge distribution is con-
tracted in the solid in comparison to the free ion where
7« have been calculated. The more compact distribution
would lead to a smaller value of v, as was shown by
Burns. However, it does not necessarily follow that
must be decreased for both positive and negative ions
if charge transfer covalency is present. With some
charge transferred away from the negative ion, its
charge distribution would become even more compact
than in the free ion; but the opposite would occur for
the positive ion, which now gains some charge and be-
comes more neutral. It should also be stressed, as was
done by Fukai, that if charge transfer covalency is
present, ¢°! for negative ion would be quite different.
Then, we would have to mix some atomic states into
the pure ionic model, and in effect this would leave a
hole in the p shell of the negative ion leading to an ap-
preciable contribution to ¢¢l. At the present time, we do
not know how much charge transfer covalency is pres-
ent, since we do not have the appropriate wave func-
tions in the crystal.

One method of determining the answer to this ques-
tion is to calculate the total energy using a Hartree-
Fock formalism with a basis set that included the
atomic configuration for the crystal as well as the ionic.
The atomic character could be represented by a varia-
tional parameter, which would be determined by mini-
mizing the total energy with respect to the charge-
transfer covalency parameter.

Another improvement would be to allow for electro-
static polarization of the ions by including both some
excited states of the ion and the possibility of radial
deformation. That is, first include in the total energy
calculation some excited states with a variational pa-
rameter to be determined by energy minimization, for
example, for NaCl crystal, some Na*t(2s22p53s) and
Cl~(3s23p4s) states. Next, allow in a similar mannerfor
radial deformation, in particular, contraction for the
negative ions which would give us an answer to whether
1—7, is less in the crystal than for the free ion, as our
results have suggested.

Finally, we should really determine the ion displace-
ments by a first-principle calculation that obviated use
of the semiempirical Born-Mayer potential. Although
it is true that this potential may be adequate for energy
calculation, to be self-consistent, we should determine
the ion displacements from the same model we use in
calculation the FG. With these improvements, and a
calculation of 1—v(7) in the crystal, we would indeed
gain a great deal of insight concerning the charge distri-
bution of ionic crystal by comparison between experi-
mental and theoretical FG.
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The net results of these improvements would be to
have done a Hartree-Fock self-consistant-field calcula-
tion in which not only are the electronic orbitals allowed
to vary, but also the ions are allowed to relax from their
undistorted positions. It is evident that such a calcula-
tion would be an order of magnitude more elaborate
than the analogous treatment of molecules. Recently,
Matcha3® has carried out variational Hartree-Fock
wave-function calculations for alkali-halide molecules
and has determined quite successfully the FG at the
nuclei of these molecules. It would be interesting to
carry out a detailed comparison between Matcha’s cal-
culations and those involving separated overlapping ions
in the molecule, as were also used in the present problem.
Such a comparison would throw some light on the role
of antishielding effects which have to be introduced
explicitly in the distinct-ion model, but which occur
indirectly through the polarization of atomic orbitals
that occur in the molecular-orbital Hartree-Fock theory
using linear combinations of atomic orbitals. However,
the bearing of such a comparison in molecules on the
relationship between overlap and Hartree-Fock calcula-
tions in solid solutions is somewhat tenuous, because of
the sensitive dependence of the FG on internuclear dis-
tance, which is quite different for molecules and ionic
crystals.

IV. SUMMARY

We have calculated the electronic contribution to the
FG of ions surrounding the impurities in alkali-halide
solid solutions using a model which differs from the
extreme ionic model by inclusion of Pauli overlap dis-
tortion. In general, we have found the magnitude of the
electronic contribution to be larger than that from a
point-ion calculation that also takes into account the
polarizability of the ions, for the nn to the solute and of
comparable order for 002 sites. For neighbors at the 101
site, for which the relative displacements of the sur-
rounding ions are less, it appears that the electronic por-
tion of the FG is quite small compared to experiment
and point-charge results. For the one case where the FG
at a positive ion was available from experiment, for a
nn ion, the electronic FG combined with the point-
charge result to improve agreement with experiments
and tended to indicate the validity of our model for the
positive ions. For the negative ions, where more experi-
mental data was available, the situation was just the
reverse, with the electronic contributions tending to
severely worsen agreement between experiment and
the point-charge results calculated by Dick. The situa-
tion here is quite similar to the results found for the

33 R. L. Matcha, J. Chem. Phys. 47, 4595 (1967); 47, 5294
(1967); 48, 335 (1968).
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chemical shift of alkali and halogen ions in going from
one crystal to another. The chemical shift of the positive
ions calculated from the simple model of overlapping
ions was consistent with the experimental results, while
the negative-ion calculations were not. Although there
were approximations made in the calculations of both
the FG and the chemical shift, it would appear from the
general nature of the results that we must use a more
realistic model for the ionic crystal if we wish to find
agreement with experiment for such properties that de-
pend very sensitively on the wave function chosen. As
was discussed in Sec. III, one obvious improvement
would be to allow for charge transfer covalency in which
some atomic character is admitted in the pure ionic wave
function. This would leave a hole in the previously filled
p shell of the halogen ions, and would lead to additional
contributions to the FG and the chemical shift, since
both properties depend sensitively on the amount of
non-s character in the wave functions. Furthermore,
charge-transfer covalency would have little effect on
the positive-ion results since alkali ions add on s char-
acter. Unfortunately, at present, such wave functions
are not available with which we could make a first-
principle calculations, since we do not know how much
charge-transfer covalency is present in the crystal. Even
when such wave functions are available, in order to com-
pare theoretical FG with experiment, it appears from
this study that we really should calculate Sternheimer
antishielding factors, not for a free ion, but for an ion in
the solid state. Our results would be in tolerable agree-
ment, without involving charge-transfer covalency if
7. Was increased for positive ions and decreased sub-
stantially for negative ions. While there are important
differences in our analysis as compared to those of
Fukai and Casabella and Marsh, and refer to different
situations, all three investigations agree in terms of the
necessity for reduction in the antishielding factors for
negative-ion nuclei. As was mentioned in Sec. III, the
answer to this question would be clearer if a method
could be developed to determine the sign of the experi-
mental result for €?¢Q/% in these systems.
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