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Thermodynamic properties of the rare-gas solids Ar, Kr, and Xe are calculated using phenomenological
two-body central potentials. The cubic and quartic anharmonic terms in the crystal Hamiltonian have been
included, using conventional perturbation theory. Although some definite discrepancies with experiment
exist for ' <§Tmelting, these simple models give a fair over-all account of both the volume and temperature
dependence of the Helmholtz energy. However, for 7> }Tme1ting (rms deviations greater than ~69, of the
nearest-neighbor distance), anharmonic contributions to the thermodynamic properties become unrealis-
tically large, indicating, we believe, the breakdown of perturbation theory to the order considered in this

work.

1. INTRODUCTION

OME years ago, quasiharmonic theories! of solid Ar

were stimulated by a new and precise measurement?
of the heat capacity. The comparison of theory with
experiments leads to some rather disappointing results.
Quite apart from the problem of the uncertainty in the
interatomic potential, assumed to take the familiar
Lennard-Jones form, the magnitude of the zero-tem-
perature Debye theta ®y° and the high-temperature
behavior of ®@¢(T) could not be properly understood,
and it was conjectured that anharmonic effects were
responsible.

At the same time a quantum version of the perturba-
tion theory of anharmonic phonon interactions, known
since the work of Born and Brody, was presented? and
further developed, especially by Maradudin and collab-
orators. In particular, the latter authors showed that
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explicit numerical calculations were feasible. The first
realistic anharmonic calculation for the inert-gas solids
was that of Barron and Klein® who studied the anhar-
monic contribution to ©¢. More recently, Simmons and
his co-worders® have produced a wealth of new and pre-
cise experimental data on the lattice constant and its
pressure dependence. To this was added more modern
specific-heat data by Finegold and Philips,” Serin and
collaborators.?? The present time, therefore, seems op-
portune for presenting rather complete calculations on
the temperature-dependent properties of Ar, Kr, and
Xe (the ideal inert-gas solids, hereafter called IGS)
based on model potentials and perturbation theory.
(We found quite early in our work that an attempt to
apply our ideas to Ne at finite temperatures was not
very meaningful because of the very large anharmonic
effects involved.) Perturbation theory including the
leading correction to the quasiharmonic theory is known
to be satisfactory for the ground-state energy® and,
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184 PERTURBATION
a priori, seemed applicable to IGS at finite tempera-
ture also.

In Sec. 2 we briefly review interatomic potentials for
inert-gas crystals. While there seems little doubt that
nonpairwise additive forces are present in these solids,
their exact nature is still somewhat speculative and con-
traversial. We have chosen, therefore, to use simple
effective pair interactions as a starting point for our
lattice-dynamical calculations. Although an oversimpli-
fication, this approximation is likely to work best for
the isotropic thermodynamic quantities considered in
this paper. For the most part we have chosen to work
with central two-body Mie-Lennard-Jones (m-6) poten-
tials, restricted to interact between nearest neighbors
(nn) only.

In Sec. 3 we indicate the methods used to obtain our
numerical results. In particular, we stress the role played
by six sums'® (specifying the anharmonic Helmholtz free
energy) whose temperature and volume dependence
yields the anharmonic contributions to the thermo-
dynamic properties that are presented in Sec. 4. We
show here that for IGS, perturbation theory does have
a useful range of validity. We also apply the lowest-
order ‘‘self-consistent phonon’ approximation to Ar
and compare the results with perturbation theory.

Section 5 concludes with some brief comments on
possible future work in this field.

2. INTERATOMIC POTENTIALS

About nine years ago, when the first quasihar
monic theories were presented,' the Mie-Lennard-Jones

potentials
6mer 1 /0\™ 1/0\"
O EOR Gl
m—06Lm\r 6\r

with m-12 or 13 were used as a starting point. Here, we
consider the question of whether it is possible to improve
on these potentials today.

There has been significant progress in carrying
through Hartree-Fock-type calculations for the elec-
tronic ground-state energy of Ne and Ar pairs.!! Un-
fortunately, the results are accurate only at small dis-
tances (r<2.5A) and may not be applicable to the
crystal. The effect of short-range many-body interac-
tions have been studied recently, especially by Jansen
and his collaborators.? However, it is generally be-
lieved!® that these interactions do not play a significant
role in the temperature-dependent properties of I1GS
at least for normal crystal densities.

Substantial progress has been made recently in eluci-
dating true pair potentials for these gases together with
corrections from the many-body long-range van der
Waals forces. The progress in the former* has been
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121, Jansen, Phys. Rev. 135A, 1292 (1964).
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possible in part as a result of accurate information on
low-density properties such as the second virial coeffi-
cients at low temperatures.’s In the neighborhood of the
minimum of the potential-energy curve, such empirical
studies still provide the best source of information about
the interatomic forces between these closed-shell
atoms.” Tt is surprising that our detailed knowledge of
the two-body interatomic potential in, say, Ar is still
confined to the asymptotic limits of small separations
(energies of the order several eV )and large separations.'
The situation may improve when the velocity depen-
dence of the total scattering cross section for Ar-Ar
collisions becomes available.'” For the present, we are
forced to give heavy weight to properties like the low-
temperature virial coefficient as a means of obtaining
information about the bowl of the two-body gas
potential.

It has been pointed out by Dymond, Rigby and
Smith!8 that the (18-6) potential accounts very well for
the second virial coefficient measurements of Ar in the
dilute gas. We illustrate this result in Fig. 1 and also
show that the Barker-Pompe potential® is just as satis-
factory. The same is true of the pair potential proposed
by Munn and Smith' and the Kihara potential with the
parameters fitted by Weir, Wynn-Jones, Rowlinson, and
Saville.!® Tt is, of course, well known that there is no
unique way of inverting B(7') data to obtain a poten-
tial. We also include in Fig. 1 the B(T) calculated for a
(12-6) all-neighbor AN potential whose parameters were
fitted to solid-state data. The inadequancy of this solid-
state potential provides a crude demonstration of the
presence of many-body forces in the solid.

In this paper we are focusing on the properties of the
IGS, and it is standard practice to assume that for
many-body effects only triplet interactions are impor-
tant. Hence, a triple-dipole dispersion interaction, the
so-called Axilrod-Teller term, is added to the true pair
potential energy to yield a complete potential energy for
the solid.? The Axilrod-Teller coefficient is calculated
from known oscillator strengths.! We have followed this
procedure and calculated the Debye temperature ©.,
(Fig. 2) and the ground-state energy (Fig. 3) for Ar
using the Barker-Pompe and (18-6) pair potentials.
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Fi1c. 1. Second virial coefficient of Ar: The (18-6) potential is
from Ref. 18, the Barker-Pompe potential from Ref. 19, and the
experimental data from Ref. 15, The (12-6) AN potential param-
eters were obtained from properties of the solid, Ref. 1.

From Figs. 2 and 3 it is clear that provided the nonaddi-
tivity is due to three-body Axilrod-Teller forces, the
Barker-Pompe potential is far superior to the (18-6)
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F1G. 2. The high-temperature limit of the Debye temperature
©.° for Ar as a function of the volume. The error bar indicates
the experimental value from Ref. 2. The Barker-Pompe potential
is from Ref. 19 and the (18-6) potential from Ref. 18. The (12-6)
nn and (12-6) AN potential were taken from Ref. 1.
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potential. The latter can then be ruled out as a realistic
pair potential on the basis of solid-state data. From the
good agreement of the Barker-Pompe potential with
these two solid-state properties, it is tempting to imply
that nonadditivity, other than three-body Axilrod-
Teller forces, gives very small contributions, but we
should enter a caveat here. The bulk modulus at 0°K for
the Barker-Pompe potential (plus Axilrod-Teller forces)
was found to be more than 109, greater than the ex-
perimental value. It seems premature therefore to base
detailed quantitative studies on the solid on this poten-
tial. Moreover, in a recent series of papers, Lucas? has
considered whether the development of collective dis-
persion forces in terms of pairs, triplets, etc., is mean-
ingful. It had already been shown earlier by Bade? that,
particularly for solid Xe, nonadditive interactions in-
volving four atoms are comparable to those involving
three atoms. Also, using the (somewhat idealized)
Drude oscillator model, Lucas shows that for the heavier
solids “‘the triplet correction to the pair potential cannot
be considered as an improvement of the lattice energy
with respect to the pair interaction.” In fact, he shows
that in some cases the perturbation series converges so
slowly that the contributions of pair, triplet, etc., must
all be summed up for any accurate computations. In his
latest paper, Lucas® has presented a self-consistent pro-
cedure for defining electronic polarization waves in
IGS including anharmonic interactions. The method
opens the way for including the many-body dipolar
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Fi1c. 3. The Ar ground-state energy as a function of the volume.
The experimental result is indicated with error bars on the energy.
The long-dashed curve refers to the two-body (gas) potential,
while the solid line demonstrates the effect of adding an Axilrod-
Teller triple-dipole force.
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van der Waals energy of crystals in a more satisfactory
fashion. Thus a reliable estimate of the modification
of the van der Waals potential term by the dielectric
constant of the crystal would be of considerable interest.
Until then we must conclude that the correction of the
pair potential by an Axilrod-Teller term (Barker-
Pompe) in order to obtain a working potential fof crystal
calculation is incomplete. We are thus forced to work
with the old and familiar ML] (m-6) effective potential,
and we do so in this paper.

Since our potential is purely phenomenological, there
is no reason to believe that allowing it to act between all
neighbors is, in principle, superior to assuming forces
between nearest neighbors only. We shall in most cases
therefore concentrate attention primarily on the nn-force
model. Results for various other models, including
m=13, are available from M. L. Klein.

3. THEORY
Formal Expressions

The thermodynamics used in this paper may be sum-
marized as follows:

S=—(0F/dT)v,
p=—(0F/aV)r,

Cyv=—T(3°F /o1y,

Br=V(0*F/3V:)r=Xr1,

Cp—Cv=pTVBr,
B/Xr=(3p/0T)v,

y=(V/Cv)(8S/dV)r,
B=(1/V)(aV/3T)y-

All quantities involved have their usual meanings. We
clearly need

F(T,V)=—kgT InZ,
with
Z=Tre fH= 3 ¢ BEn,
We write H =H ¢+ H,+H;+H,. Then, using perturba-
tion theory, we find
F=F¢t+Fyt+F3+Fy.

Here Fy is the static lattice energy, and F; is the usual
quasiharmonic free energy. The detailed expressions can
be found in the paper by Feldman and Horton.® We
will write F3 and F4 schematically as

Fy=Z7'3 e PPn{n|Hy|m),

Py=—Z4 5 85| (u] Ha| m) |2/ (En—Ey).
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Outline of the Calculations

The above expressions were written in a convenient
form for numerical calculation by Feldman and Horton.
The result was:

F4=gF4R, F3=gF3R,

with
F4R= (27/4){0411(TR,01)+2(1312(TR,01)+413(TR,(11)} N
F3® = —3{asS1(T r,01)+4a:S2(T r,01)+4S35(Tr,a1)} ,
g=)\274¢”N 3 al=¢l/’2¢” )
as=r¢""/¢", a=r'¢™/¢",
A= (h/r) (M)}, Tr=kT/\'¢"~2.6T/O,

where IV is the number of atoms, ¢"= (9/797)"¢p, and M
is the atomic mass. The details of the evaluation of the
Si(Tr,a1) have been published elsewhere,?® and sample
values of the I;(Tg,a1) are given in Table I.

In order to carry out the volume and temperature
derivatives listed above, we must obtain a suitable
analytical representation for the functions. We used a
(6,4) Padé approximant in 7? to describe their T de-
pendence. In this way we get the correct asymptotic
behavior and adequate numerical accuracy. For the a;
dependence we also used a Padé approximant. We were
careful to take into account the volume dependence of
both a; and Tk when carrying out the various deriv-
atives. As discussed elsewhere,? our accuracy is least

TasLE I. Typical values of the sums 7;(Tr,a:1).

a 1027, 10°1, 10%]; Tr
2.765 14.62 12.48 0.00

2.767 14.64 12.59 0.14

—0.02 2.844 15.10 13.02 0.32
. 3.017 16.12 14.09 0.44
4.247 23.17 21.20 0.80

19.11 107.0 103.8 2.30

2.582 13.61 11.52 0.00

2.584 13.62 11.53 0.14

0.00 2.642 13.97 11.91 0.32
: 2.781 14.78 12.76 0.44
3.814 20.65 18.60 0.80

16.57 92.07 87.72 2.30

2.425 12.74 10.70 0.00

2.426 12.75 10.71 0.14

2471 13.02 11.00 0.32

0.02 2.584 13.67 11.68 0.44
: 3.464 18.64 16.56 0.80
14.57 80.37 75.42 2.30

2.287 11.98 10.00 0.00

2.288 11.99 10.01 0.14

0.04 2.324 12.20 10.24 0.32
) 2.417 12.74 10.79 0.44
3.175 71.00 14.92 0.80

12.94 70.99 65.75 2.30

2.166 11.32 9.39 0.00

2.167 11.32 9.40 0.14

0.06 2.195 11.49 9.58 0.32
: 2.273 11.94 10.04 0.44
2.932 15.63 13.57 0.80

11.61 63.33 57.96 2.30

% M. L. Klein, V. V. Goldman, and G. K. Horton, Proc. Phys.
Soc. (London) (to be published).
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Fi16. 4. The low-temperature behavior of the Ar heat capacity
at constant 0°K volume as illustrated by a Debye © plot; all-
neighbor versus nearest-neighbor models. The experimental data
are from Ref. 2 (full circles) and Ref. 7 (open circles).

near 7=0°K. But in this limit, we can use the reliable
T=0°K results of Barron and Klein® and others? to
guide us.

4. RESULTS

Low-Temperature Heat Capacity

We first confine ourselves to a temperature region in
which volume expansion and C,-Cy corrections can be
neglected. In this region the heat capacity is best pre-
sented in the form of a ® curve. This is done in Figs.
4-6 for Ar, Kr, and Xe, respectively. The nn results
were obtained as described in Sec. 3. The AN curves
were obtained by noting that for the temperature range
in question, anharmonic contributions to C, are essen-

T T
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F16. 5. Low-temperature behavior of the Kr heat capacity at
constant 0°K M volume as illustrated by a Debye © plot; all-
neighbor versus nearest-neighbor models. The experimental data
are from Ref. 2 (full circles) and Ref. 7 (open circles).

% C. Feldman, Ph.D. thesis, Rutgers University, 1967 (un-
;()ubli;)hed); J. Brown and G. K. Horton, Can. J. Phys. 45, 2995
1967).
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tially temperature-independent, so that we could simply
introduce Barron and Klein’s anharmonic ©,¢ into Hor-
ton and Leech’s quasiharmonic calculation.

The measurements of C, are due to Finegold and
Philips, to Morrison ef al., and to Fenichel and Serin.
©,° for Ar and Kr is known to about 0.39, and for Xe
to about 1.4%,. In Ar, near T=0°K, the ©¢(T) of
Morrison et al. are about 1.5%, too high, a result already
surmised by Barron and Klein. ©¢(T) values for Xe are
unfortunately less accurate than the Ar and Kr data,
especially for 10 <7 <20°K. Recent measurements by
Serin and Trefny?® suggest that the ©¢(T) for Xe which
we have quoted is somewhat low in this temperature
range.

Our results show that (13-6) AN potentials give a
good over-all account of the low-temperature C, of Ar
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x 1
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F16. 6. Low-temperature behavior of the Xe heat capacity at
constant 0°K M volume as illustrated by a Debye © plot; all-
neighbor versus nearest-neighbor models. The experimental data
are from Ref. 8.
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Fic. 7. Low-temperature Debye © plots for Ar showing the
dependence of the theory on the repulsive power in the (m-6) nn
potential. The experimental data are from Ref. 2 (open circles)
and Ref. 7 (full circles). The theoretical calculations correspond
to the 0°K M volume.
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and Kr. The (12-6) AN model, whose @, is indicated
by an arrow on our figures, is not compatible with the
experimental data on Ar, Kr, and Xe. This result agrees
with the conclusion of Brown and Horton* who ana-
lyzed the phonon dispersion curves for Kr obtained by
Daniels et al.2® The possibility mentioned by Brown
and Horton that a (14-6) nn model could describe the
properties of solid Kr as a realistic potential can now be
safely discarded. It is clear that the (12-6) nn potential
gives a fair quantitative description of the low-tem-
perature heat capacity of all three solids. (The excellent
agreement for Xe may be due, in part, to experimental
difficulties alluded to above.)

In Figs. 7-9 we show the effect of changing m in the
nn potential. Clearly the nn potential is not quite
able to account for the fine details of the temperature
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I'rc. 8. Low-temperature Debye © plots for Kr. The legend
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(1;7617) Brown and G. K. Horton, Phys. Rev. Letters 18, 647
BW. B, Daniels, G. Shirane, B. C. Fraser, H. Umebayashi, and
J. A. Leake, Phys. Rev. Letters 18, 548 (1967).

TEMPERATURE °K

I'16. 10. Heat capacity Cy, of Ar. The circles are the perturba-
tion theory results for the (12-6) nn model. The quasiharmonic
curve QH (12-6) nn isincluded as a reference point to gauge the
magnitude of the explicit anharmonic effects. The sc curve is for
a (12-6) nn model calculated in the lowest order self-consistent
phonon approximation. The solid unlabeled curve is derived from
the experimental data in Ref. 6 and Ref. 2.

dependence of the heat capacity, and hence the true
frequency spectrum of these solids. In particular, these
models give too large a density of vibrational states at
low frequencies.

Cv at Constant Pressure (High Temperatures)

The specific heat was evaluated for the calculated
equilibrium volume at atmospheric pressure, and the
results are shown in Figs. 10-12. The calculated high-
temperature deviations from the Dulong and Petit law
are very large. Because of this, we must be concerned
about the validity of perturbation theory. This point is
made clearer by examining the result of including in a
self-consistent fashion all even higher derivatives in the
potential. For argon Cv shown in Fig. 10, the appro-
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I'tc. 11. Heat capacity Cv of Kr. The legend is as
in Fig. 10.
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priate curve, labeled self-consistent phonon approxima-
tion is for a (12-6) nn potential calculated by the method
of Gillis, Werthamer and Koehler.?? Although it shows a
large anharmonic effect, its temperature dependence is
in much better accord with experiment than the high-
temperature perturbation theory (pt) results. Moreover,
as we approach the melting point Cv for the lowest-order
self-consistent scheme (sc) is larger than the pt results.
We recall that the sc results themselves are unsatis-
factory at all temperatures due to the omission from the
calculation of odd derivatives of the potential. How-

r T T ] T T T T -
3 ARGON C, (V,.q.T)
T_ 30+ -
4 .
- o
)
c ./ _—sc

a / -
D

g e
= 20— // —
3] > s
= /
5 | 4 |
=4
g °
=
w o -
2
2]
12}
w
' - -
& o
o
&
N | 1 | 1 i 1 | |

o (6] 20 30 40 50 60 70 80

TEMPERATURE °K

F16. 13. Heat capacity C, of Ar. The circles are perturbation
theory results for a (12-6) nn potential. The sc curve is calculated
for the same potential in the lowest-order self-consistent phonon
approximation. The solid unlabeled curve is derived from the ex-
perimental data of Ref. 2. The squares are the quantum-cell-model
calculations of Zucker (Ref. 30).

% N. Gillis, N. R. Werthamer, and T. R. Koehler, Phys. Rev.
165, 951 (1968).
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F1c. 14. Heat capacity C, of Kr. The circles are the perturbation
theory results for a (12-6) nn potential. The solid unlabeled curve
is derived from the experimental data of Ref. 2.

ever, precisely because of this they will provide a crude
lower bond for the high-temperature Cv. Hence the pt
results are probably spurious at temperatures for which
Cyv(sc)>Cv(pt).

C, at Constant Pressure

What is often measured in the laboratory is C, at
constant pressure. So we have calculated C, for the
zero-pressure volume of each temperature. OQur results
are shown in Figs. 13-15. The unlabeled solid line in
each case represents the experimental results. No sig-
nificant corrections were required in this rather direct
confrontation between theory and experiment. We will
confine our comments to Ar (Fig. 13), Kr and Xe
behave similarly. Below one-third of the melting tem-
perature, perturbation theory is in quite satisfactory
agreement with experiment. Above this temperature pt
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F16. 15. Heat capacity Cp of Xe. The legend is the same as
that for Fig. 14 except that the data are from Ref. 9.
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F16. 16. Lattice constant of Ar. The circles are the perturbation
theory results for the (12-6) nn potential. The curve labeled sc L | |

is for the same potential calculated in the lowest-order self-consist-
ent phonon approximation. The unlabeled curve is derived from
the experimental data of Ref. 6.

results fall below sc. This spurious effect we attribute
to a breakdown of pt (to the order considered here).
However, since we have not carried through detailed
AN calculations we cannot rule out the possibility that
our nn potentials are to blame, but this explanation
seems unlikely to us. The sc results themselves are not
too good either since near the melting point, they pre-
dict a C, of ~26 J deg! mole™! compared to the Dulong
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F16. 17. Lattice constant of Kr. The legend is the
same as that for Fig. 16.
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F16. 18. Expansivity of Ar. The circles and triangles correspond
to perturbation theory results for (12-6) nn and (13-6) nn poten-
tials, respectively. The curve labeled scis for the (12-6) nn poten-
tial in the lowest-order self-consistent phonon approximation. The
quasiharmonic curve QH (12-6) nn is included so that the explicit
contribution of the anharmonicity can be seen. The unlabeled
curve is derived from the experimental results of Ref. 6.

and Petit value of 25 J deg™ mole™.. The experimental
result is ~35 J deg™' mole~1. It is rather sad that neither
theory can challenge the naive quantum-mechanical cell
model® in the high-temperature region (see Fig. 13).
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F16. 19. Expansivity of Kr. Legend is the same as for Fig. 18.
2 I. J. Zucker, Phil. Mag. 3, 987 (1958).
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from the data of Ref. 9.

Lattice Constant and Thermal Expansion Coefficient

The lattice constant and the thermal expansion co-
efficient of solid Ar and Kr have recently been mea-
sured with great accuracy by Simmons and his collab-
orators, and their results are shown in Figs. 16, 17, 18,
and 19, respectively, together with our perturbation
results. Again, pt gives a fair account of the experimen-
tal results below about one third of the melting tem-
perature. However, even in this region 209, discrepan-
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F1c. 21. Expansivity of Xe. The full curve is the perturbation
theory result for a (12-6) nn potential. The quasiharmonic curve is
included so that the explicit contribution of the anharmonicity
can be seen. The data (dots—Sears and Klug; full circles—Man-
zehlii, Gravilko, and Voitovich; open circles—Gravilko and Man-
zhelii) are taken from Ref. 31. The squares are taken from Ref. 33.
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I'16. 22. Isothermal bulk modulus of Ar (zero pressure). The
curve labeled (12-6) nn and (13-6) nn are perturbation theory
results. The quasiharmonic curve QR (12-6) nn is also shown. The
data are from Ref. 6.

cies exist between the models and the experimental
expansivities, a situation to which we will return later
in connection with the temperature dependence of
Griineisen’s 7. At higher temperatures the pt results
show the anomalous behavior noted earlier. Anharmonic
contributions to 8 are very large above one-third of the
melting temperature and in this region our perturbation
theory results cannot be trusted.

For argon, we have also calculated the lowest-order
self-consistent phonon (SC) results. Tt is clear that the
lowest-order scheme is incomplete.
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F1c. 23. Isothermal bulk modulus of Kr (zero pressure).
Legend is the same as that for Fig. 22.
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The experimental data® for Xe are not of the same
quality as those for Ar and Kr. They are quoted in
Figs. 20 and 21 where a comparison with theory is made.
In Figs. 18, 19, and 21 we also show the quasiharmonic
expansivities. Although they cannot properly predict
the correct magnitudes, they do predict the correct
general ‘“shape” of the expansivity curves. This sug-
gests that the real crystal behaves like a quasiharmonic
solid and that at high temperatures especially, our pt
treatment is lacking in some crucial aspect.

Isothermal Bulk Modulus

Our results are displayed in Figs. 22-24. Again, at
high temperatures the pt results show a strange tem-
perature dependence. Up to about one-third of the
melting point the pt results with m=12 or 13 give a
good account of the experimental data. As with the
expansivity, the quasiharmonic approximation shows a
more reasonable temperature dependence than pt.

Griineisen Parameters at p=0 Volumes

In Fig. 25 we show the (12-6) nn results for Ar, Kr,
and Xe and compare these with experiment. A number
of different measurements contribute to each value of
v= (VBBr/Cv), Cv=Cp—B2TBrV. Hence there is some
uncertainty in the experimental values we quote. The
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Fic. 24. Isothermal bulk modulus of Xe (zero pressure).
IIie%egg is the same as for Fig. 22, except that the data are from
ef. 33.

3 D. R. Sears and H. P. Klug, J. Chem. Phys. 37, 3002 (1962);
V. G. Manzhelii, V. G. Gravilko, and E. I. Voitovich, Fiz. Tverd.
‘Tela 9, 1483 (1967) [English transl.: Soviet Phys.—Solid State
9, 1157 (1967) ]; V. G. Gravilko and V. G. Manzhelii, Fiz. Tverd.
Tela 6, 2194 (1964) [English transl.: Soviet Phys.—Solid State
6, 1734 (1964)].
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FiG. 25. Griineisen parameters for Ar, Kr, and Xe (zero pres-

sure). The full curves are calculated for (12-6) nn potential and

the dashed curves are experimental curves derived from the data
of Refs. 2, 6, 8,9, 31, and 32.

error bars are difficult to assess and vary with tempera-
ture and mass. Above about one-third of the melting
temperature, both the experimental results and the theo-
retical curves show a characteristic fall off. The theo-
retical v’s fall much more rapidly than the experimental
ones. We attribute this to the breakdown of perturba-
tion theory to which we have drawn attention earlier.
At lower temperatures our theoretical results do not
decrease with decreasing temperature the way the ex-
perimental curves do. Although the latter are most un-
certain at Jow temperatures, there seems to be a real dis-
crepancy here. This we attribute to the inability of our
model potentials to account well enough for the
expansivity.

pT Isochores

In Fig. 26 we show two pT isochores for Ar based
upon a (12-6) nn potential. The explicit anharmonic
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the perturbation theory results and the quasiharmonic curves

QH (12-6) nn are included so that the explicit anharmonic con-
tribution can be seen.
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Fi1G. 27. The temperature dependence of (3p/dT)y. The curve
labeled (12-6) nn is the perturbation theory result and the quasi-
harmonic curve QH (12-6) nn is included so that the explicit
anharmonic contribution can be seen.

contribution to the isochore is large. From the work of
Crawford and Daniels® we know that the V = 22.15-cm?-
mole™ crystal melts at about 180°K. At high tempera-
tures our pt results are not to be trusted, so that the
inflection in the pT curve at about one-half the melting
point is probably spurious. This point is made clearer by
examining (dp/87T)y and this is shown in Fig. 27.

pV Isotherms

pV isotherms are shown for Xe in Fig. 28 for three
temperatures for an (11-6) nn model. This model fits
the data very well especially at high temperatures as
already pointed out by Swenson® and Zucker.* The
data points quoted show the typical scattering of the
results. The solid lines represent the smoothed experi-
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F16. 28. pV isotherms for Xe. The full curves are derived from
the data of Ref. 33. The full circles are perturbation theory results
calculated for an (11-6) nn model. The triangles are results for a
(12-6) nn model at 150°K only.

2 R. K. Crawford and W. B. Daniels Phys. Rev. Letters 21,
367 (1968). See also R. K. Crawford, Ph.D. thesis, Princeton Uni-
versity, 1968 (unpublished).

® J. R. Packard and C. A. Swenson, J. Phys. Chem. Solids 24,
1405 (1963).

# 1. J. Zucker, Nuovo Cimento 54B, 177 (1968).
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mental data and the circles our calculations. Unfor-
tunately there seems to be no systematic pattern emerg-
ing from the equation-of-state studies. The (12-6) nn
model which does reasonably well for other properties
fails completely here.

5. CONCLUSION

In this paper we apply the Born-von Karman theory
of lattice dynamics and its generalizations to the ideal
inert-gas solids. This theory assumes that the root-
mean-square (rms) deviation of the atomic nuclei about
their mean positions in a crystal is small compared to
the lattice spacing and that the ratio of these two
quantities is a meaningful small parameter in a pertur-
bation expansion.

Although to our knowledge the validity of the theory
has not been questioned in this situation, we found to
our surprise that for the various properties studied in
this paper the theory is inapplicable to Ne, and for Ar,
Kr, and Xe it is only valid for rms deviations of about
6% or less, i.e., up to about a third of the melting
temperature. For TS 3T meising the over-all features of
both the magnitudes and temperature dependences of
the thermodynamic properties of solid Ar, Kr, and Xe
can be understood on the basis of short-range central
interatomic forces. At higher temperatures, serious dis-
crepancies exist between our calculations and experi-
ment; it is shown that these are due to the failure of the
conventional truncated perturbation expansion of the
partition function rather than to our idealized choice of
interatomic potential.

Clearly an improvement over the present investiga-
tion would be desirable in two respects. Firstly, a
better expansion of the partition function is required
for higher temperatures, and there already exists evi-
dence that this can be done.* Secondly, refinement in
our knowledge of the interatomic forces in the so-called
simple solids is needed.
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