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the order of a wavelength, then we find.

lt, ~t
Cot9P/ BM „,

(5.17)

where we have neglected higher-order terms in
u/(a&its/it~). Here v' is a characteristic velocity defined
as

e'= Op5.

which shows that

Ace —js„/2'.
Numerical calculations given by Lim" have shown that
the leaky waves very often have an attenuation per
period which is only 10 4 —10 '. In these cases the
approximate results given above should be quite good.
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The low-temperature thermal transport properties of an insulating crystal with an arbitrary concentra-
tion of randomly located phonon scattering centers are found for slab geometry. The phonon distribution
function, the distribution of temperature, the Kapitza resistance at the boundaries, and the heat Aux are
evaluated by analytically and numerically solving the complete Boltzmann equation with energy-dependent
scattering cross section.

I. INTRODUCTION

HE problem of heat conduction through an
electrically insulating crystal at low temperatures

leads to the formulation of the Boltzmann transport
equation for phonons. In this equation, the collision
operator plays the most significant part because it is
responsible for thermal resistance. The collision opera-
tor introduces into the equation the efI'ect of the two
most important scattering mechanisms: scattering of
phonons by stationary obstacles (impurities, defects,
boundaries, etc.) and scattering of phonons by phonons.
Because of mathematical difFiculties it has been an
accepted practice not to solve the Boltzmann transport
equation as it is, but to treat it with the aid of the
retaxation time approxim-ation

A large body of experimental observations has been
successfully explained in terms of this approximation,
relying, in particular, on the work of Callaway. ' At the
same time, however, a large number of questions remain
unanswered. They motivate the present work.

The first question we raise, concerns the validity of
the relaxation-time approximation: If, by suitable
choice of the available parameters, the theoretical
curves resulting from the relaxation-time approximation

* On leave from the International Business Machines Corpora-
tion, Ziirich Research Laboratory, Switzerland.

' J. Callaway, Phys. Rev. 113, 1046 (1959).

may be fitted to the experimental data, does this mean
that further conclusions of the theory are correctP This
question cannot be answered without working out the
more exact theory, since the relaxation-time approxi-
mation 1s not capable of estimating its own accuracy.

As we shall see in the discussion (see, in particular,
Sec. VIII the discussion of Fig. 8), some conclusions of
the approximate theory are born out; others are
contradicted by the results of a more exact theory.
Questioning further, let us point out that there are some
basic difficulties with the relaxation-time approximation.

According to this approximation, if more than one
relaxation (scattering) mechanism is present, the system
should approach equilibrium faster, than if any one of
the individual mechanisms alone is active: More
channels enable quicker relaxation. The speed of relaxa-
tion being measured by the inverse relaxation time, this
means

—)max;—

where v. is the combined r.elaxation time, and the
7 are the individual relaxation times. We contend that
in order for the concept of relaxation times to make
physical sense, this equation must be valid.

It has been customary to assume additivity of rs
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I io. 1. The reciprocal 1jf~: of the thermal conductivity of InSb
containing point defects less the reciprocal 1/Kp of the conductivity
of the sample without defects. The defects are created by electron
irradiation, hence the scale of the abscissa is proportional to the
defect concentration. tAfter F. T,. Vook, Phys. Rev. 149, 631
{1966).j

reciprocal relaxation times, i.e., to set

(1.2)

It was realized earlier (see Ref. 1) tha, t (1.2) is not
exactly valid. However, recent provocative results show,
that even (1.1) is invalid. Hence, under quite natural
conditions, the concept of relaxation times loses its
meaning.

The results referred to have been obtained from a
computer experiment by Payton, Rich, and Visscher. '
Their results show, that in a plane lattice with defect
scattering, the introduction of anharmonicity (i.e.,
phonon-phonon scattering) increases the thermal con-
ductivity instead of reducing it. In terms of relaxation
times this means

p
and —4

7 7 imp & +p&—p&

Qualitatively, this may be understood, ' but a transport
theory based on the concept of relaxation times cannot
account for these observations.

It is only fair to point out, however, that in the limit
of weak impurity scattering, our result (5.10) agrees
with the one obtained by Callaway, ' who combines the

' D. N. Payton, III, M. Rich, and W. M. Visscher, Phys. Rev.
160, 706 {1967).

3 J.A. Krumhansl and P. S. Pershan, discussion remarks at the
Gordon Research Conference on Disordered Structures, Meriden,
N. H. , 1968 {unpublished).

Objectives and Organization

In this paper, we treat thermal conductivity at low
temperatures, at which the phonon-phonon scattering
is negligible, hence the question of the additivity of
relaxation times will not be dealt with. However, as a
first step in the direction towards a complete solution
of the transport equation, we shall treat impurity
scattering using the full collision operator, and hence
show how to completely avoid the relaxation-time
approximation. This exact theory not only allows
us to calculate the macroscopic thermal conductivity,
but gives us the phonon distribution function inside
the sample. Hence we will obtain a clear picture of the
nonequilibrium situation which prevails during thermal
conduction, and will be able to answer a long-standing
question: What is the temperature distribution inside
the sample?

Finally, we shaH compare our results with experi-
mental observations. The most striking features of these
may be pointed out in Fig. 1, reproduced from Vook. '
In the range of defect concentration and temperatures
used by Vook in InSb,

(1) the thermal resistivity is proportional to the —,

power of the number of scattering centers.
(2) The thermal resistivity is—within the limits of

experimental error —independent of the tem-
perature.

In the following, an analysis is carried through,
which correctly reproduces these experimental results.
This analysis is based on what we believe is the first
complete solution of the Boltzmann integro-differential
equation for phonons using an energy-dependent scatter-
ing cross section. The foundations to this work are laid
in an earlier publication. ' In the present paper, we go
considerably further in two directions.

First, we develop an approximate analytical solution,
which is better' than the one in Ref. 5. In particular, it
gives the spatial dependence of the distribution function.
Second, we develop a numerical solution, which may be
made as accurate as the purpose requires. This develop-
ment was indispensable, because the analytical solutions
are only valid in the cases where the phonon mean free
path is either much larger or much smaller than the
dimensions of the sample. The numerical solution,
developed for the intermediate region, is also valid for
the two limits of large and small mean free path, and of
course coincides with the analytical solution in these
regions.

' F. L. Vook, Phys. Rev. 149, 631 (1966).' P. Erdos, Phys. Rev. 13S, A1200 {1965).' We are indebted to Professor J. Tavernier of the University
of Paris for his stimulating communication on this subject. See
also J.Yavernier, J. Phys. {Paris) 28, Suppl. 2, C1 {1967).
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We formulate the transport equation for the phonon
distribution function in a slab with point scattering of
the phonons. This equation is then reduced to an equa-
tion for the change of the distribution function due to
the scattering, the function in the absence of scattering
being known.

We introduce the parameter free-path ratio A, defined
'},S

A =X/2a, (1.4)

where X is the free path of those phonons which have
the largest contribution per unit energy range to the
heat Aux in the presence of scattering (see Appendix A),
and 2a is the slab thickness.

The asymptotic solutions are found next, and the two
observables —temperature and heat Aux—calculated in
the limits of A&&1 and A((1. The numerical solution
follows, along with the 6nal results for the distribution
function, temperature, and heat Qux for certain
representative values of five parameters. These five
parameters are the sound velocity c„ the slab center
temperature T, the temperature diGerence DT be-
tween the reservoirs, the free-path ratio A, and, finally,
the slab thickness 2a.

where

T k(T1+Ti) = Ti 2+T &

hT= J'.
g
—&2

(2.1)

(2.2)

is the temperature difference between the reservoirs.
In the absence of scattering centers, the distribution
function for phonons at any point in the slab is given by

f"=8(g)f'(Ti)+e( u) f'(Ti) ~—(2.3)

fo(T ) (e&al&e&m —1)
—i (2.4)

~&——c,hk is the phonon energy, k is the phonon wave
vector, c, is the sound velocity, p, is the cosine of the
angle o, between k and the x axis, which is perpendicular
to the plane boundaries, and 8 is defined by

II. BOUNDARY CONDITIONS

Realistic boundary conditions for the distribution
function of phonons transporting energy across a med-
ium bounded by two infinite planes acting as thermal
reservoirs at temperatures Ti and T~ have been formu-
lated in Ref. 5. For convenience, we recapitulate some
of the definitions of Ref. 5. The reservoirs act as perfect
black bodies, emitting phonons into the slab according
to Planck's law and absorbing all incident phonons. The
mean temperature of the slab is

III. IMPURITY SCATTERING

In the presence of impurities, the phonon distribution
function for one polarization branch becomes

f(k,x,p) =f'+ f'(k, x,y) . (3.1)

The first term in (3.1) is the distribution function
(2.3) in the absence of impurity-scattering centers, and
the last term represents the change of the distribution
function due to the scattering by impurities. The dis-
tribution function is independent of the azimuthal
angle because of the symmetry around the x axis.

In accordance with the assumption made in Sec. II
about the interfaces between the reservoirs and the slab,
f satisfies the boundary conditions

t( a) = f'—(Ti) for 0(p&1,
f(a) =f'(Ti) «&r —1&/&0, (3.2)

where 2u is the distance between the reservoirs, and the
origin of the coordinates is midway between them.

We solve the Boltzmann transport equation (see
Ret'. 5) for phonons:

—c,pt 8fi(x)/clx7= Li,""&{f„(x)}. (3.3)

The collision operator Lq' i'{f}, due to impurity
scattering is given b&.

2x' 0'

dWgg = —k" 'B(k —k')
c.h' V' (3.5)

Rayleigh point scattering, which is characterized by
pg=4, will be used in the numerical calculations. The
transition probability is developed in Appendix A,
and the scattering strength 0 is related to the total
scattering cross section and A.

Since f' does not depend on x, (3.3) becomes

c,p(af'/8x) =Li, * '{—f"}yy „™r{f'}
Using (2.3) and (3.5), the first collision term is

Jk™{f }= (LVak"/27rc, ki){f"(T,)t 2pg)
+f'(Ti)L29(-i ) —17},

which can be recast in the form

(3.fi)

(3.7)

Lt™{f }= (A'ak /2iic, k')Lf'(T, )—fo(T,)75 (&) (3 g)

by de6ning

Ji' '{f.(x)}=-~'V 2 Lf (x) —fi, (x)7dl4'„,~, (3.4)k'

where lV is the number of scattering centers per unit
volume, V is the volume of the sample, and d8'kk. is
the transition probability for isotropic, elastic, energy-
dependent, impurity scattering given by

8(p) = 1 for 0(p(1,
=0 for —1&p &0. (2.5)

5'(~) =1 for 0- p& 1,
= —1 for —1(p& 0. (3.9)
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The second collision term is

1Nok
tf'(-k, x,p) ——f'(k, x,p ) p«k'

in 3.8 and (3.10) into (3.6), the equation
for the change in the phonon is ri
becomes

8f' %ok~ 1Vo.k"
+ f =

8$7l c8 A 2x'cg A

IV. ANALYTIC SOLVTION8 FOR HIGH- AND
TION LIMITSLOW-IMP VRITY-CONCENTRATION

nons are isotropically scattered from
om oint impurities, we expect t a e

Therefore, in seeking solutions to . we se
h t + is weakly dependent on p (or p .andassume t a gp is

we haveAccor ing o et th mean-value theorem, we a

f'( ')d ' D'(—~ ) f'(T )3~( ) (3 11
go (~')4'=go (~0), (4.1)

~k-= 1/2A(k) .

Thus, (3.11) becomes

In view of (3.2) an d (3.1) this solution must satisfy
the boundary conditions

f'( — )= o =,
(f'(k, a,p) =0 for —1&p(0.

th ughout the rest of the paper, weFor convenience t roug o

&=aA'a/« 'k' and C'= f'(Ti) f'(I'2)—
0

Using the definition of A(k) from Appendix A, it
follows

(3.14)

go (&o) =go—(p)+r(p), (4.2)

ia le 0= p, (1, and neglect thewhere p, is now a varia
r . A similar approximation is ma e orremain er r p .

0+. Since both p and p are positive, we us
bl to denote both of them in thisindependent varia e p o e

the coupled integro-differential equa-
eneousto a cou led set of two ordinary inhomogene

di6'erential equations wit p as a param

4aA (k)p (dgo+/dx)+go+ —
go

————C' for p) 0

(4 3)

0~ p& i. Since we assume thatwhere pp is a fixed va ue,
gp edepends only weakly on p, we may set

If we define fi+ and fi by

f,+(k,x,p)= f'(k, x,p) f—or 0~@&1,

fi (k,x,p) =-f'(k, x,p)—for — p--0,

—g +—4aA(k)p(dgo /dx)+g =C' for p) 0.4'(k)I +2f.'=—
Bx —i

Adding these equations gives

dgp dg0

dx dg
(4.4)

where
p= —p,

that due to back scattering. %e rewrite
equations:

i+ I

4'(k)p +2fi+— fi+(p')dIJ, '
8$ 0

1

f, (~')dp' = —Co —for a) 0

and
8f1

4aA. (k)p +2f—i fi (p )—dp
8$ 0

(3.17)

d
1 Lf'(Ti) —f'(T2) j

2a 1 —p/tk~

(4.5)

Recalling that these are approximate solutions, we
substitute them in o q.h

' t Eq. (3.17) and find that some of
theterms o or erf d C' cancel leaving a remainder7

R =—C' —$k" ln(1+1/tk") . (4.6)a 1+@/$k

3.12 theUsing . an&4.4g d the boundary conditions (3. ),
solutions to (4.3) are

1 Lf'(Ti) —f'(2" )j
2a 1+@/gk

f,+(Ii')de'=C' for p)0.
%e de6ne the high-itnPNrity-scattering limit by

1/2A(ki) p= (ki"/p»1 (4.7)
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1/2A (k g)p = /kg"/p«1. (4.9)

Expansion in powers of (k~ gives

E=(x/a)Co/kq L1/p+lnfk~ +O()k~ )]&&Co. (4.10)

Thus, in seeking a solution which is independent of p
for the high-impurity-scattering limit, we have found
one which is dependent on p and which is valid under
certain restrictions on p for both the high- and the low-

impurity limits. This is not surprising, because when p
approaches zero the phonons travel almost parallel to
the boundaries. For these phonons the probability of
encountering an impurity before reaching the other
boundary is very high; hence they must be treated as
phonons in the high-impurity limit.

To obtain a solution for the middle-impurity-concen-
tration region, we start with the solution found for the
low-impurity limit, and apply an iterative process by
setting

(4.11)fj go +gl

Here, go is given by (4.5) and gq+ is assumed to be almost
independent of p. Substitution of (4.11) into the Boltz-
mann equations (3.17) again gives a coupled set of
ordinary inhomogeneous differential equations

with ki being the phonon wave number around which

the phonon distribution is peaked. In this limit, expan-
sion in powers of (g~ ) ' shows that all terms of order
C' cancel, leaving

R—:(x/a)Co[(-' —p)/fk, "+0(1/Pk;"")]«Co. (4.g)

Hence the solution is particularly accurate around

p, = ~. The limit of low ieipurity scattering is dehned by

numerical solution (to be discussed later). The com-

parison shows that this form of g~ is very precise in the
low-impurity region. The singular dependence of g~

on p proscribes any further iteration.

V. MOMENTUM AND ENERGY IN HIGH- AND
LOW-IMPURITY-SCATTERING LIMITS

CALCULATED FROM THE ANALYTIC
SOLUTION go

Q =c.oP = «(AT/2a) .

The total momentum density is

(5.1)

P =Po+Pg 0hk xf——o(x)d'k, (5 2)

where x is a unit vector in the x direction, and 0= (27r) '.
As is well known, Eq. (5.2) defines the quasimomerrtgm
of the phonons; however, for short, P will be called the
momentum in the sequel. The contribution obtained
from fo is

Eo=2mQA @de k'C'dk, (5 3)

Momentum Density and Heat Flux

The total phonon momentum density at any point x
in the slab is given by the sum of a contribution Eo due
only to the temperature difference across the pure slab
and a negative contribution P& due to scattering by the
impurity centers. Because of the linear dispersion rela-
tion ez=c,hk, the total momentum density E is simply
related to the total heat ffgx Q and to the thermal con-
ductivity K by

and

dg ~+

4ah(k) p +g,+—g,
—=R for p) 0

dx

dgy—4aA(k) p —gg++gg ——R for p) 0,
dg

and that obtained from the analytic solution go in
(4.12) (4.5) is

1 ao
Co pm

Pg ——0 Akpgod'k = —2' QA pdp k' dk . (5.4)

with R defined by Eq. (4.6).
0 0 5k +p,

The solutions to this set are found in the same For the high-impurity-scattering limit we substitute
manner as go was found. %e have (5.3) and (5.4) into (5.2) to give a combined form

1 Lf'(Ti) —f'(To)]
gx Ly —p(1+y) ln (1+y/p)]

4 v'(1+v)

1 oo k3CO

P = 2xQA p,'dp,
o o $k"+p

(5.5)

where

X —— Wy — —— —Wy, 4.13

y =
2pA (k) .

Note that the momentum density is constant across the
slab, as expected for elastic scattering. The integral in
k space is evaluated in Appendix 8, using the saddle-
point method of Laplace. The result is

In the low-impurity-scattering limit, i.e., y))1, the
function go goes to zero almost as y '; however, for
y(&1, the function g~ grows without bound.

To test the validity of the approximate analytic
expression (4.13) for g~, it was compared with the

2m(m —2) 2o.c 'O' "" QkeP= I DT (err) »~, (5.6)-
2m+3 m —2 c

where I is a constant given by (311).Comparison of
(5 6) with the momentum density obtained from



numerical calculations with m =4 in the high-impurity
limit gives a value of I= 2.23. The dependence of the
momentum in Eq. (5.6) on the impurity concentration
agrees with that obtained from the numerical integra-
tion to be discussed. In view of (5.1), the thermal
conductivity will have the following dependencies:
ss~a' ""(ATo) s™,independent of AT and T.

To find the momentum density in the low-impurity-
scattering limit, we integrate (5.5) over ss. This yields

yields
00

E(x) =Es 2v—rQc, h — Cs jk™+sln(1+1/tk )dk, (5.12)

where

Es=2srQc, hJs(ks/c, h) (Ts +Ts ). (5.13)

In the high-impurity limit the peak of the integrand is
such that $ks ))1.In all the region of integration where
the integrand is appreciable, )k )1. Therefore, the
logarithm may be expanded, and we obtain

P = 2nQ h C'ks( s —g'"

XL1—$k™ln(1+1/$k")g)dk. (5.7) E(x) =Es—2srQc, h
8

Cok'dk . (5.14)

In the low-impurity limit, the integrand has a pro-
nounced maximum for a value k i of the momentum,
such that tks"((1. In this limit,

Qo kg
P=2srQh Coks(-' —~k )dk=2srQh

cs~I

kg
X —;&s(Ts'—Ts') —$ J +s(Ts™+4—T "~)

csA

(5.8)

where J is defined in terms of the Riemann g function

by

c,h E(x) -—'~4

T(x)=-
4m Qc, AJ3

(5.16)

From (5.15), we have for DT/T «1

For DT/T «1 use of (5.13) and (83) of the Appendix
gives

E(x) = 4nQc, hjs(k.sT„/c, h)'

XL1—2 (~T/T ) (x/o) ]. (5.15)

The femperatssre at any point x in the slab is defined
by Ref. 5 as

x dx

o 8~ —1
=n!g (rs+ 1)

For &T/T &(1, (5.8) reduces to

k, Z. 4 gT- m+4 J +&
P=4~06J3

c,b T'

(5.9) T(x) = T- (x/cs) s&T.— (5.17)

ln the high-impurity-concentration region the tem-
perature varies linearly from T( a) = Ts to T—(a) = Ts,
crossing the mean temperature T at the center of the
slab. For the low-impurity region the second term in
(5.12) becomes negligible and the energy approaches
Eo, consequently, the corresponding temperature
approaches the mean temperature T at all points in

(5 10) the slab. Section X I deals with intermediate-impurity
concentrations.

in agreement with Ref. 5. The reader will notice, that
the momentum density I', as given in (5.10), becomes
negative at some value of the temperature T . This
is obviously incorrect, and is due to the neglect of the
last (logarithmic) term in (5.7). (See also the discussion
of Fig. 8.)

Energy Density and Temperature

Having obtained the momentum density Land heat
flux (5.1)j we proceed to evaluate the energy density
E(x) and temperature T(x) at an arbitrary point x in
the slab. The phonon energy density is

VI NUMERI C~ SOLUTION

In an attempt to solve Eq. (3.15) for all impurity
concentrations, we formulate a numerical method based
on a 6nite de'erence approach of Mennig and Marti. ~

This approach was originally developed to handle finite
multilayer slabs, cells, and shielding problems in
neutron transport theory, involving rather general
boundary conditions. To our knowledge, the method
has not been used previously in an actual problem:
The following sections will show that its use is
very convenient and its convergence properties are
satisf actory.

E(x) =Q ssfs(x)dsk. (5.11)

17sing f" and gs, and carrying out the p integration

J. Mennig and J. Marti, Technische Mitteilung PH 257,
Eidg. Institut fur Reaktorforschung, %urenlingen, AG, Switzer-
land, 1966 {unpublished) . A full account of the numerical method,
including applications to neutron and phonon transport, will be
published shortly, jointly with these authors.
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Description of the Finite Difference Method

The Boltzmann transport equation is discretized in

the space variable x, whereas the angular part is treated
analytically. Discretization of Eq. (3.15) is achieved by
assuming that the value of fi,'(x;+i~.) at a space point
x;+ii, can be replaced by its average value 2 (f +f; l')
in the interval (x;, x; l). (We omit the wave-number
variable k in the sequel —the subscripts refer to the dis-

crete coordinate points. ) Et follows that

i3 — 1 i3

f,'= f; l'+ —L4,+4l; l —2C'5(P)$
v+0 2 Ii+0

for i =2, . . . , m, (6.1)

where

fi'(xi, k,ii') ifp',
I

5=x,—x; y,

p=
4A(k) u

Up to the factor t,„ the quantities 4~ represent the
additional Qux of phonons at the point x~ in the slab
due to the presence of scattering centers.

Separating (6.1) into a coupled set of equations by
using the definition (3.16) gives

p —P 1 P
f;+= f;,++ L4;+-4;,—2C"j

Ii+0 2 v+P

Similarly, to find f;, we substitute successively f;
for j =n, li —1, , i+1 into Eq. (6.3) and use Eq.
(6.5). This gives

Determination of the Fluxes

ln order to determine the Qux 4; at each point x;, we
write

f,'(~') ~d'= (f"+f' )du'

We define
for i=i, . . . , ll. (6.g)

~= (~ 0)l( +P—) (6.9)

(&—P) /(1+P)

d& for j=i, . . . , li. (610)
1 1—~

] P „; p P n i —i-
f* = - Z L4'. i+4'.+l i+2C'j

21+0 &=& I +P
for p&0, i=1, . . . , ll —1. (6.7)

Equations (6.6) and (6.7) give, respectively, the con-
tributions to the phonon distribution function due to
forward and backward impurity scattering.

At this point, we have succeeded in expressing the
distribution function f+ entirely in terms of the fluxes.
The remaining part of the development deals with the
determination of the Quxes by deriving a system of linear
equations for them. This set will no longer involve the
distribution function.

(6 2) Z; satisfies the recursion relation

p i3 1 P—

f' l= f' -+ L4'~+4-'* l+2C']
p+p 2 p+P

for p&0, i =2, . . . , n. (63)

Equations (6.2) and (63) constitute a set of 2(m —1)
linear integral equations in 2N, unknowns fl+,
f„+ and fl, . . ., f„.The remaining two unknowns
are determined by the boundary conditions (3.12)
which are satisfied by

p j—1-

(—1)~'— +Z
1+le

for j=2, . . . , ri. (611)

Substitution of f;+ and f; from Eq. (6.6) and (6 7)
into (6.8), and integration over p' yields a set of linear-
algebraic equations which can be written in concise
form as

and
fi+=0 for 0 = p&1 (6 4)

With the notationf„=0 for 0&p&1. (6.5)

P i l p —P i l i-
f+= — 2 ,

-
I 4'i+4'i+i —2C'3

2 p+p i=~ p+p

for p&0, i=2, . . . , n. (6.6)

To find fi+, we substitute successively f,+ for j=2, 3,
, i—1 into Eq. (6.2) and use Eq. (6.4). This gives

0s& = 1 for i& l,
=0 for

the matrix elements are

ilf;, i= APL(1 —&i..) (e..~lZ g+Oi„Z~, ;)
+ (1 ~l, l) (8ilZi+1 i+0~i , l iZ, ;)—j

for i =1,

(6.13)

(6.14)
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The inhomogeneous terms of Eqs. (6.12) are of S; were carried out analytically in inverse powers of

P, up to order P '. These expansions are necessary~
since the matrix R; ~ is singular to order P ' for large p.

i=1, . . . , n. (6.15)

The dimension of the matrix which determines the
fluxes is equal to the number of discretization points.
Therefore, the matrix inversion time (i.e., the time
needed to solve for the fluxes) is proportaional to n'
for Gaussian elimination. This we used in combination
with an iterative improvement in the electronic com-
putational solution of the linear equation (6.12). It was
found most practical to limit the dimension of the
matrix to 23.

Reduction of the Matrix Dimensions

Two facts make it possible to solve the problem
accurately using 46 discretization points. First, the
dimension of the matrix M; ~ can be reduced to
n/2 half—the number of discretization points (we use
n =even). Second, the spatial derivative of the scatter-
ing contribution to the phonon distribution function
does not vary rapidly: Ke recall that go+ is linear in x
for both high- and low-impurity-scattering limits. Only
in a small solid angle around p, =0, near x=~a, for the
middle-impurity region does the spatial derivative vary
so rapidly that 46 points would not resolve the function.
The reduction of the matrix reduction of the matrix
dimensions 3E;,E is accomplished by examination of Eqs.
(6.14) and (6.15).The following properties are observed:

M' +i ' +i [=M'
~

fol' f=1 . . . n l=l ~ ~ ~ n (6 16)

and

Momentum Density (Numerical)

The total momentum density at each space point
X' ls

P;=Pa+0 hkli, f id'k. (7.1)

I'0 would be the momentum density if there were no
impurities. From (5.8) we have

Pp=7I'IEflJg(kg/c, fi)4(Ti T2') . (7.2)

Substituting the discretized solutions f;+ and f; given
by (6.6) and (6.7) into (7.1) and integrating over the
angular variables yields

P;=Po+7rflb k'c (1—6;, i) Q p'(Q; )+Q; (+i)

VII. MOMENTUM AND ENERGY DENSITIES
CALCULATED FROM THE NUMERICAL

SOLUTION

%e shouM like to emphasize that even with the
present-day high-speed large-memory computers an
accurate solution of the Boltzmann integro-diGerential
equation was, for us, a dificult task. Only by the use of
numerous ad hoc mathematical expansions and other
"tricks" was the final accuracy gradually achieved.
The present section is meant to provide the reader with
a sampling of those difhculties, by giving a more de-
tailed account of the method of calculation of the
phonon momentum density and energy density.

S +1;———S; for i=1, . . ., n. (6.17)

Using (6.16), and (6.17) and the matrix Eq. (6.12),
it can be proven that the fluxes satisfy the following
relation:

C„+i (= —4( for l=1, . . ., n(6, ..18)

The original set of n equations (6.12) can now be
reduced to a set of n/2 equations of the form

n/2

X (4. )+@„)+,+2C')]dk. (73)

The quantities Q are defined in terms of Z„as
(1—P/1+P) ~m—ld~ y P ~—1 y p

(1—q) 1+P 1+P
Q 8;,+(——5; for i=1, . . . , n/2,
l 1

(6.1(3) —~(—1) ' —(m —1)Z for m=2, . . . , n (7.4)

where we have set

R;, i
——8;,&

—~;,&+~;,~1 I,

for i =1, . . ., n/2, l=1, . . . , n/2. (6.20)

In impurity-concentration regions where P& 3X10,
the above form of the matrix elements R; ~ was used
for numerical computation. For P)3X10' $i.e., the
free path X(k)& s X10 '&, where h=discretization
intervalj expansions of the matrix elements E;,~ and

and

Qi=1/2P. (7.5)
»itiaiiy Eq. (7.3) was the form used to find the total

momentum density in all the impurity regions by
numerically integrating the second term over k and
then adding I'~ to it. The result was inaccurate for very
small free-path ratios for two reasons: First, the matrix
elements were not calculated accurately prior to the

21/P expansion (see end of Sec. VI). Second, since the
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momentum density approaches zero in the high-
impurity (zero free path) limit, the integration must
give a second term equal to —Po in this limit. However,
this did not occur because the integral J3 in Po was
taken from a table of Riemann g functions which was
not su%ciently accurate; therefore, the momentum
density levelled off at 10 ' for T =1 K.

The expansion of the matrix elements and of the
inhomogeneous terms in power of p ' solved the first
problem by giving accurate cruxes 4; at each point. The
second problem was eliminated by a 1/P' expansion of
P'Q, , which made it possible to extract the I'o te—rm
from the integral in (7.3).The total momentum density
at the position x; can now be written as

P;=zrQA koP'f (1—5;,z) Q L(Q; ~+Q;-z+z)(C'i+I'i~z)

—2C'(Q'-i'+Q'-z+z')) —(1—~ ..)
n 'c

X2 L(Qa —i—l+z+Qa —i—1+2) (C n —l+C n—z+z)

where
+2C'(Q.-*-~+z'+Q.-'-~+z'))) dk (I 6)

Energy Density (Numerical)

The energy density E; of the phonons at the position
x; in the slab is found by substituting f;+ and f;
into the integral (5.11) and integrating over the angular
variables. This gives

E,=Eo+zlQC. A koL(1 —0;,z) Q PP; ~(Cz+%+z —2Co)

n—i
+(1—5, „)g PP„; z+z(C„ i+I„ i+z+2Co))dk, P.8)

with Eo given by (5.13). The temperature T(x;) is
calculated from E; using (5.16).

The numerical calculations were performed on an
electronic digital computer. ' A computer program
consisting of a main program and five subroutines
was written in the programming language FoRTRAN Iv'
in order to calculate the discretized solutions f;+ and
f; derived in Sec. VI and to carry out the necessary
k-space integrations to find the momentum and the
energy at each discretization point xi in the slab.

8 Model 6400 Computer of the Control Data Corporation,
S. Minneapolis, Minn. 55420, at the Florida State University.
The assistance rendered by the U. S. National Science Founda-
tion through its grant GJ 367 to the Computing Center of the
Forida State University is gratefully acknowledged.' American Standards Association Proposed Standards for
voRx'RAN, Comm. Assoc. Comp. Mach. 7, 591 (1964);8, 287 (1965).

P'(Q-'+Q~z') -P'(Q-+Q-+z)+( 1) /2 —(& 7).
Equation (7.6) is programmed to obtain the numerical
results.

The main program contains loops for varying all the
relevant parameters of the problem, such as the sound
velocity c„ the impurity concentration times scattering
cross section 3 a (the free-path ratio A), the angular
variable p, ,the mean temperature T, and the tempera-
ture difference AT.

The set of linear equations (6.19) is solved by a
Gaussian elimination with partial pivoting. "A relaxa-
tion algorithm improves the solutions, using as a first
approximation the results obtained from the Gaussian
elimination. These solutions are found for every value k

of the wave vector, for which the distribution function
is needed for accurate integration. For an accuracy of
10 a maximum of 257 values of k are needed. The
necessary integrations to obtain energy and momentum
densities are carried out by means of a Romberg
algorithm. "

To compute the phonon distribution function, the
momentum, the energy, and the number of particles
at each discretization point x; (out of n) for 13 values
of p and for fixed values of the parameters c„XO.
(or A), T„, and AT, the following approximate times
were observed: 25—50 sec for n=10, 430 sec for v=28,
and 1400 sec for @=46.

err. RESULrS AND DISCUSSION

This section contains the results obtained by the
numerical methods. The results obtained by analytical
methods (cf. Sec. IV) are, with the exception of two
figures, not separately displayed because, within the
limits of drafting accuracy, they coincide with the
numerical results.

Spatial and Directional Distribution of Phonons

Figures 2—6 represent various results concerning the
phonon distribution function. The distribution func-
tion has been written as a sum of two Bose distribu-
tions at temperatures T +-,'AT and T zohT Lsee——

(2.3)) and afunction fz+. The superscript & denotes the
sign of the phonon velocity component along the x
axis. Each of the Bose distributions is isotropic in one-
half of the solid angle, zero in the other half, and they
are independent of x. The function fz+ depends on the
angle n between the phonon's direction of propagation
and the x axis, as well as on x, for every value of the
wave number k, and the parameters of the problem.

The relief diagrams LFig. 2(a)—2(c)) show clearly
how the free path ratio A affects the distribution func-
tion f When the .free path of the phonons of wave
vector k is much smaller than the slab thickness
LFig. 2(a)), the phonon distribution varies linearly
across the slab —more phonons per unit volume being

' G. Forsythe and C. B.Moler, in Seriesin Automatic Computa-
tion (Prentice —Hall, Inc. , Englewood Cliffs, New Jersey, 1967)."F.L. Bauer, E. Stiefel, and H. Rutishauser, in Proceedings
of the Symposiumin A pplied Mathematics, edited by N. Metropolis
(American Mathematical Society, Providence, R. E., 1963), Vol,
15, p. 199.
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FIG. 2. Relief diagram of the phonon distribution function
f(x, ). The function has been obtained by numerical solution of
Boltzmann's equation using a maximum of 46 discretization points
across the slab of thickness 2a= 1 cm. On the horizontal axes are
plotted the coordinate x across the slab, and the angle 0. of the
phonon wave vector with respect to the direction of the tempera-
ture gradient (slab normal). The function is plotted on the vertical
for the wave number k=5)&106 cm ', phonon velocity c,=10'
cm sec ', center temperature (mean temp. ) T =1'K, and tem-
perature difference across the slab AT=10 'K. (a), (b), and (c)
show f for the free-path ratios A=0.001, 1.0, 100, respectively.
A =X/2n, where X is the phonon free path. The zero of the vertical
scale has been chosen at f= f0(T )=225&10 4. The numbers
&4.38, &2.75, and ~0.51X10 4 give values of f at the special
points shown,

found at the hotter parts of the slab. The distribution
function does not vary with the angle hence, is isotropic.

As the free path of this particular group of phonons
(characterized by its wave number k) approaches and
finally exceeds the slab thickness LFig. 2(b), and 2(c),
respectively] the distribution function varies less and
less along the x axis, but varies more and more with the
angle n of phonon propagation direction with respect to
this axis. In particular, we see in Fig. 2(c), that at
o. =0' and at +=180 the distribution function is
practically the same, as the one corresponding to the
sum of the two Bose distributions emitted by the
reservoirs into the slabs at temperatures T„,+&DT and
T —26T, respectively. "For angles n 90', the impurity
scattering smooths out the difference between these two
Bose distributions. Note, that phonons travelling at
angles close to n~90 travel much longer paths in the
slab, than those at a=0 or 180', hence, for them
scattering is more effective.

The distribution function f in the relief diagram
Fig. 2(b) exhibits an anomaly at @=~0.5 cm, a =90'.
The oscillatory anomaly displayed is due to the bad

"The latter distribution, which prevails in the total absence of
scatterers, is not shown in Fig. 2(c). j;t would be represented by
the two horizontal planes at j=4.38)& j0 ' for o. (90', and at
f= —4.38)&10 ' for o, &90'.

convergence of the numerical calculation around 90',
and can only be diminished by increasing the number
n of discretization points in the finite-difference method
used.

This conclusion is born out by Fig. 3. Here f& is

plotted as a function of x for n =90.5'. The oscillations
of fi diminish and disappear (except for x~0.5 cm)
as the number of discretization points is increased. The
maximum value n =46 represents a compromise between
excessive computer time use and acceptable accuracy.

To test the accuracy of the analytic solution obtained
in Sec, lV, we plotted the first analytic approximation go

and the second analytic approximation go+gi together
with the numerically obtained fi as a function of x in

Fig. 4. The three functions are plotted for such values
of the parameters, for which the analytic approxima-
tions are expected to be bad. The free path is of the
order of ten times the slab thickness and the phonons
move at a grazing angle (n=95') with respect to the
slab boundaries. Despite these adverse conditions, the
analytic approximations are seen to be quite satisfactory.

As noted with reference to the relief diagrams the
distribution function is strongly changed by scattering
at grazing angles of phonon propagation. This fact is
particularly born out by Fig. 5. Here fi is plotted
i}ersgs n for fixed values of k and x, with the free-path
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lOx)~ 5x lQ

-0.5 -0.5 -O. I O. Ix(cm)'
Fxo. 3. Influence of the number of discretization points n on the

computational accuracy of the function f1 defined in the text.
The function f1 is plotted versus the coordinate x across the slab.
for the same set of parameters used in Fig. 2, and A=1.0. The
phonons move at the angle 0.=90.5', almost parallel to the slab
boundary. The plot smooths out as n is increased from 10 to 28
to 46, respectively.

0.5 0.5

ratio as a para, meter. For long free paths the distribu-
tion function is only aBected for n close to 90'. For
short free paths the distribution function becomes
isotropic.

When the free-path ratio h. is much smaller than
unity, a distribution is established at the point x in the
slab which difFers only in6nitesimally from a drifting
Bose distribution with temperature T(x) =Tr

$(a+x)/2a jh—T. Hence, the function f~ approaches
the limit

180 l50 I20

e (dog)

90

FIG. 5. Dependence of the correction fj to the Bose-distribu-
tion function on the phonon propagation angle n= g(k, x). The
four curves represent results for different free-path ratios A, for
the point x = —0.056 cm in the slab of 1 cm thickness. Discretiza-
tion parameters n= 10-46 have been used. The other parameters
are as in Fig. 2.

For the parameters used in Fig. 5, this limiting value
is f~ (—0.056 cm) =4.87X10 ', and is 99%%uo attained
for 4&0.01.

Figure 6 shows how the phonon distribution
approaches the drifting Bose distribution as a function
of the free-path ratio. Let us consider the drifting Bose
distribution to be attained when the deviation from it is
smaller than 1% of the deviation which exists for a slab
with no scattering centers. It may be seen then from Fig.
6, that this condition is attained for k~0. 1 (V0~10 ").
For smaller free-path ratios the distribution function

6 x IO

logof,

-8--

0
-0.5 -0.3 -O. I O. I 0.3 0.5

x(cm)
FIG. 4. Comparison of the accuracy of the analytical and the

numerical solutions. Plotted as functions of the coordinate x
across the slab are gp gp +g1 f1 defined in the text. The
parameters are the same as in Fig. 2, h. =10 and n=95'. It can
be seen that gp +gl approximates the numerically obtained
function f& quite well.

-lo
6 0

log,

Fro. 6. Dependence of the correction f1 to the Bose-distribu-
tion function on the free-path ratio A. The log-log plot shows both
numerical and analytical results (coincident within plot accuracy)
for a slab of thickness 1 cm at the point x= —0.056 cm and a
propagation angle a =150'. The other parameters are as in Fig. 2.
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does not undergo further changes (horizont, a,l part of

the curve).
On the other hand, we may say that the distribution

function is not affected by the scattering if it still
deviates by more than 99% from fo(T(x)). Figure 6
shows, that this is the case for h.)100(Xa(10 ").
Hence we see, that the drastic changes in the distribu-
tion function occur in the range

0.1(A& 100.

From these considerations (and remembering that
u '=1.16) we derive the rule-of-thumb that 7oben a
Phonon is scattered more than 12 times on the aerage,
the equi/ibrium distribution is attained to W%.

Let us turn to the analysis of the heat ffux which is
a result of the anisotropy of the phonon distribution
function. Ke plot the phonon momentum density
I'=c, 'Q, where Q is the heat flux due to phonons
belonging to one of the three polarization branches.

fore A, depends on k.) A noticeable decrease of the
momentum density occurs as h. (k&) becomes smaller

that 1.0. As soon as A(k&)(10 ' the dependence of the

momentum density on the free path-ratio may be de

scribed by a simple power law I'~A'". This means
that the heat ffux becomes proportional to the —4

power of the impurity concentration.
Retracing the origin of this dependence, we find, that

in general the law is —3/m, where m is the power of k

which occurs in the relation Lcf. Appendix Fq. (A12)]

Scattering theory predicts m=4 for punctual, m =3 for
linear, and m =2 for planar scatterers. Hence, we expect
I' ~ A for linear, and I"~ A'" for planar scatterers in the
limit of A(&1.

Turning now to the curves for T =0.1.'K and
T =10'K of Fig. 7, we see that the onset of the decrease

Variation of Heat Flux and Thermal Conductivity

Figure 7 shows the dependence of the momentum
density on the free-path ratio, for different slab-center
temperatures T . For large free-path ratio, the mo-
mentum density is at first independent of the free-path
ratio. In this region, the phonons move freely from one
boundary to the other, and the heat current is limited
only by the fact, that the boundaries emit a finite
number of phonons per unit time into the slab.

Let us focus attention on the curve for T =1'K of
Fig. 7. For this temperature, the momentum integrand
(7.6) peaks at a certain value kq of the wave number.
These phonons at the peak are the ones whose free-
path ratio A =A(kq) is used as the abscissa of the figure.
(We recall that the scattering cross section, and there-

-6
log)oP

-IC

I
0- IO

l4I 0 -0.6 -0.2
log)0 Tm

0.6 1.0

Fro. 8. Phonon momentum density P (g cm ' sec ') as a func-
tion of the mean temperature T ('K), for different free-path
ratios A. The other parameters of the log-log plot are as in Fig. 7.

-6
logloP

-8

-I 0 0.75

-I 2
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Fxo. 7. Phonon momentum density P (g cm ' sec ') as a func-
tion of the free-path ratio A for different central slab temperatures
T . t P is related to the phonon heat flux Q by P= (1/c,2)Q.) The
log-log plot has been obtained for a slab of thickness 1 cm, phonons
of velocity c,= 10' cm sec ', and a temperature difference across the
slab DT= 10 'K, using I=10 discretization points.

of the heat current, and its approach to the asymptotic
A"4 behavior occurs at higher- and lower-impurity con-
centrations, respectively, than for T =1'K. This is
due to the shift of the maximum of the phonon distribu-
tion function with temperature (Wien's displacement
law). Consequently, since A(k) ~ k~, the free-path ratio
of the phonons at the peak becomes smaller as the tem-
perature increases, even though the impurity concen-
tration is constant.

If the curves of Fig. 7 are redrawn as a function of
A(k~), where kq is the peak of the momentum integrand
for each temperature T, we obtain one universal curve
which coincides with the one for T =1 K of Fig. 7.

An interesting feature of the heat gus is that for
A«1 it becomes independent of the temperature This.
may be seen in Fig. 7, or more explicitly in Fig. 8. Here
the phonon momentum density is plotted as a function
of T . For large free-path ratio, the familiar T 3

dependence is observed. %ith decreasing A the momen-
tum density becomes more and more temperature-
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FlG. 10. Phonon momentum density I (g cm ' sec ') as a
function of the temperature difference b,T('K} across the slab for
different free-path ratios A. The parameters of the log-log plot are
the same as in Fig. 7.

Hence,
a"4E "4

independent of T. The exact calculation gives these same
dependencies. For other than Rayleigh scattering, i.e.,
for XI., ~X '0 '" (m/4) the Pomeranchuk argument
does not yield correct predictions: Here only the more
exact theory provides the dependence on the impurity
concentration X, temperature T, and slab thickness 2a.

In contrast to its complicated dependence on the
temperature, the momentum density ~'s a simple hnear
function of the temperatnre difference DT between the
slab boundaries for any value of the impurity concentra-
tion or free-path ratio. This may be seen in Fig. 10,
where AT varies over four orders of magnitude, up to
AT=T . The heat flux is reduced by a factor of 2.7
for A = 1, and by a factor of 600 for A = 10 4, at T = 1'K.
"This linear dependence on hT does not hold true in
the low impurity limit when the temperature di8erence
AT becomes greater than the mean slab temperature

T, i.e., 1(ET/T 2. In this region, therefore, the
equation Q=KhT/2a becomes invalid and is replaced
by a new more complicated dependence of Q on ET
Lsee Eq. (5.8)]."

The efI'ect of the scatters may be viewed. as producing
a backflow, or reverse current of phonons, which for very
high-impurity concentration finally cancels the forward
current produced by the temperature difference. This
viewpoint is illustrated in Fig. 11. Here, this reverse
momentum density P~ is plotted as a function of the
central-slab temperature T . The free-path ratio is
used as a parameter to obtain a set of curves. For large
free path ratio the backflow is small, and is proportional
to T ', as may be seen from the analytical solution.
As the free-path ratio decreases, the curves approach
an asymptotic curve with T' dependence. The latter
curve represents a backflow P~ which is equal in mag-
nitude but opposite in sign to the unobstructed flow
Po. The shaded region in Fig. 11 represents the area
wherein all curves lie for 10 4&A&10'.

Syatial Distribution of Temyerature

After this discussion of the momentum density or
heat flux, let us summarize our results concerning the
energy density E(x). From the latter quantity we obtain
the local temperatnre T(x) through (5.16), the tem-
perature being proportional to the fourth root of the
energy density. Figure 12 shows the temperature as a
function of position across the slab, for different free-
path ratios A. Note, that for all four curves shown the
temperature difference across the slab is the same:
61=10 mdeg.

+$-
T(x)
(mdeg)

l'g~o P)

lOOQ—

—l2

-l6
—l.o -0.2 0.2

lo TglO m

I.O

FIG. 11.Correction I'& (g cm ' sec '} to the momentum density
due to scattering as a function of central slab temperature T ('K)
for different free-path ratios A. All parameters are the same as in
Fig. 7.
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Fro. 12. Distribution of the temperature T as a function of
position x across a slab of 1 cm thickness for different free-path
ratios h. , for phonons of velocity c,=10~ cm sec '. The numerical
results are obtained with a discretization parameter m=10. For
all four curves the temperature difference across the slab is
AT=10 mdeg.
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For a large free-path ratio 4& 100, the temperature is

practically constant across the slab and equal to T .
The reason for this is that scattering is negligible and
at all points in the slab a thermometer mill receive the
same Aux of phonons originating at the two reservoirs.
Hence, the temperature will everywhere inside the slab
be the average of Ti and T2, and will discontinuously
rise or drop to Ti and T~, respectively, at the slab
boundaries.

As the free-path ratio decreases a temperature
gradient develops in the slab: The discontinuity at the
boundaries decreases, and disappears in the high-
impurity-concentration limit. For A(10, the tem-
perature is seen to decrease linearly from Ti to T~
a,cross the slab, and the formula

I 005

I 004

T(x -a)

1 005

I 002

I OOI

I 000'

log,

0

1''io. 13. 'l'emperature drop at the interface of the heat reservtzir
;and the conducting slab (x= —a), plotted as a function of the
logarithm of the free-path ratio A. The central-slab temperature
is T =1000m K, that of the reservoir is T +AT,'2=1005 m K,
and the phonon velocity is c,=10' cm sec '.

becomes valid.
In the region of intermediate-impurity concentration

(A=1.0, 10, 100) the numerical results show that the
temperature distribution in the slab is still linear. It
may be observed, that the calculated points at the
boundaries do not fall on the straight lines which can be
drawn through the other points. Therefore, the lines are
drawn slightly- bent at their ends. It is not possible to
say, whether this bend is significant, or a result o$
numerical inaccuracy. The latter is more likely to be
the case, because the distance over which the deviation
from linearity occurs seems to have no relation to the
only two physical parameters of the problem which
have the dimension of a length: the slab thickness 2a,
and the free path X.

Finally, Fig. 13 shows the variation of the tempera-
ture drop at the boundary as a function of the free-

path ratio. This temperature drop, which may be
termed the Eapitsa resistance of the slab, varies from
more than 99'%%uo of AT at A ~ 10' to less than 1% of AT
for 4&10 . This again indicates, that if a phonon is
scattered more than 20 times on the average while

crossing the slab, classical thermal conductivity theory
becomes valid, and the Kapitza resistance is absent.

IX. REMARKS ON TRANSPORT COEFFICIENTS
OF IMPERFECT CRYSTALS

In conclusion, we would like to add a few remarks con-
cerning the implications of this work for the general
theory of transport coeKcients of solids. That is, we
include in our consideration also such phenomena as the
electrical conduction in disordered alloys, etc., and try
to predict certain features of these phenomena from
what we learned from the problem discussed in the pre-
ceding sections. At present, transport coeKcients are
most frequently calculated by means of linear response
theory" or the method of Greesz functions" used in
conjunction with some truncation procedure. These
niethods most often lead to KNb0-ty pe' fongl las.
These formulas will certainly give sarong answers, if
the generalized driving forces (temperature gradient,
electric field) are large, or if the product of scattering
cross section a and concentration of scatterers E is
large.

I.et us first discuss sirozzg driving forces. Two basic
assumptions of linear response theory are violated in
this case: The distribution function, hence the density
matriz, is not close to the equilibrium function, and
therefore cannot be written as the equilibrium function
plus a small correction which is linear in the driving
force. How much the phonon distribution function
diGers from equilibrium even for a small value of
DT/T may be seen in Fig. 2. For hT/T ~1 our theory
is still valid, but of course linear response theory becomes
prohibitive. "

The other, related assumption found in the deriva-
tion of linear response theory is the validity of phenom-
cnological equations which assume the currents to be
proporliozzal to the drivizzg forces We have se.en, that
due to the finite dimensions of our system such equations
are not valid if the mean free path is not much smaller
than the dimensions of the system. Hence, the driving
forces cannot be considered to be a prion given. This
can be seen in (5.8) where the heat flux depends (for
fixed T„,) on AT and ATz, as well as in Fig 13, whic.h
shows a temperature drop at the boundaries, making the
concept of a temperature gradient illusory in this case.

'6 J. M. Luttinger, Phys. Rev. 135, A1505 (1964)."D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) L
English

transl. : Soviet Phys. —Usp. 3, 320 (1960)j."R.Kubo, J. Phys. Soc. Japan 12, 570 (1957)."For the case of electrical conductivity in strong fields, see9".A. Schlup, Physik Kondensierten Materie 7, 124 (1968).
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While it is generally recognized that linear response
theory is restricted to the case of weak driving forces,
the limitations of this and of the Green-function
approach to small scattering strengths Ecr needs to be
pointed out.

We have seen that in the high-impurity-concentration
limit the thermal conductivity became a nonanalytic
function of iir'ri Lnamely, «~ (X&r) ai'] Co. nsequently,
any theory which uses a series expansion in terms of
integral powers of Xa (even if it is a self-consistent
theory) will certainly yield erroneous or divergent
results for the system considered here. Similar oc-
curences may not be excluded, for instance, in treating
the conductivity of disordered alloys, where the con-
centrations of diff'erent constituents are of the same
order of magnitude.

In the limit of low-impurity concentration, the
formula developed in the text gives the result that the
conductivity is reduced by an amount proportional to
Xo (5.10). If one carries the approximation one step
further, one finds that the next correction is of the order
(Xu)'(u+b 1nXrr) He.nce even ig the low impurity-
limit, a series-expansion-type solution is expected to

diverge when curried beyond the first tenn (1nlVo can-
not be expanded. ) Therefore, transport coefficients
obtained by approximations —such as the truncation of
chains of equations for Green functions —can only be
trusted if the accuracy of the approximation can be
estimated (or if the results agree with experiments. )

APPENDIX A: CROSS SECTION AND
FREE-PATH RATIO

Consider particles in a box of volume V in plane-wave
states of the discrete spectrum. The w'ave function of
each particle is given by

0 (k) = (1/V'")e"' (Ai)

The particle density is 1/V.
For elastic scattering, the probability dlVkk that

particles in an initial state P(k) make a transition to a
final state f(k') per unit time is

dWi, k. ——(2v/h) ~*U»k.
~

'b(ek —e«.), (A2)

with 'U» given in the Born approximation by

1
'Ukk. ——— U(r)e'ik k i'd3r.

V
(A3)

U(r) is the scattering potential of one scattering center.
Making use of the linear dispersion relation for

phonons ~~ =c,hk and passing to the limit of a large box
so that the transitions involve states in the continuum,
(A2) becomes, summing over k' within an element of
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Af ter integration,

t'~kdn = k'dQ'
(2s.)' c.h'

(A5)

is the probability of transition of one phonon with wave
vector k into a solid angle dQ'. Since the number of
phonons incident on a unit area perpendicular to k
is c,/V, the quantity

~'kaa
dS» — — ~'Ukk

~

k dQ
c,/ V 2v.c.h k~k'

(A6)

represents the differential scattering cross section. The
quantity dS& is independent of the volume V because
~~kk.

~

- V-k.

Assuming isotropic scattering ('Ukk ——'Uk), the total
cross section per unit volume for N scattering centers
per unit volume is

dS, X/V
S.=4 =—

] [V, f k,
dQ' ir Ec,h

(A7)

where
~

'Uk
~

'~ 1/V'.
In order to establish the correspondence between 00

de6ned in Ref. 5 and Sk, note that fk(x) is the number of
phonons per unit volume with wave vector k at the
point x. The Boltzmann equation dictates that the
collision operator Lk' &{fk(x)) be the rate of change by
scattering of fk(x) per unit volume. Since dW»k
represents the transition probability for V ' phonons
per unit volume, we have, for X scattering centers per
unit volume

Lk' &{fk(x)) =iaaf V p Lfk(x) —fk (x)gdW»k. (A8)
k'

for the continuous spectrum

aIld

p —+

(2~)'
d'k'

V 2vrEV
L.- {g'(x))= — Lf.(-)-f'(') j

(2v)' c,h'

X~V,.~»b(k —k)d3k. (A9)

Xow according to Ref. 5 the collision operator is

V
L»' '{fk(*))= I:fk(x) —i"k (x)jr»» d'k'

(2')'
V 2m~Vcr p

X kr X
(2rr)' c,h'

Xk" 'b(k —k')d'k'. (A10)

solid angle dQ',

VdQ' 2~
Wkar '

~
Ukk'

~

'&(k k')—k "dk' (A4)
(2ir)' c,h'
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i'Upgo =aok~—P/Pcc 1/l". (A11)

(Note: iii as defined here is m+2 of Ref. 5.) Comparison
of (A9) and (A10) shows that

zz Z4ez(fo)2

K(ti) = dz.
p C~ +8

(85)

By defining o = Vop, substitution of (A11) in (A7)
gives the desired relation

In order to evaluate K(ti) we write the argument as
an exponential e~&'i, where F(s) is given by

g, =1Vok /m. c,'k'. (A12) F(z) =4 lnz+s+2 lnf —ln(f'z +ti). (86)

Note, that by definition, r is independent of the volume.
We define the phonon free path X,h(k) by

This function has a maximum at

Xoh (k) Sp ——1,

and the free-path ratio A(k) by

A(k) =!i,a(k)/2a.

The latter is a dimensionless parameter.

APPENDIX 8: EVALUATION OF THE
MOMENTUM INTEGRAL

(A13)

(A14)

(87)

under the assumption that f))1. It can be shown that
for /(zp ' the tth derivatives of F(s) depend on zp ',

the maximum. We expand F(s) into a Taylor series
around sp and And

so 8 SQ

F(z) =F(zo)+Q a&
l=2 SQ

1

P =2~0' p, 'dp
k3CP

(81)

Making a change of variables in (81) we set

(82)

and for AT/T &(1 use

df' AT
OP=AT = ze'(f')'

dT T
Thus, (81) becomes

(83)

kgT 45T
P =2irQh ti'K(ti)dp (84)

Cttk Tm p

In the high-impurity-scattering limit the momentum
integral (5.5) is

vrith

3/m

K(ti) = ~ (3—m) /mI

m (m —2)l'
(810)

exp(P an't')dt
1=2

(811)

Substituting (810) into (84) and integrating over ti

gives the desired result (5.6). If the calculations above
are carried out without assuming that hT/T «1, one
obtains the same result (5.6) that the momentum den-
sity P is proportional to T&—T&.

ai zp'F &'& (zo——)/l!

turns out to be independent of sp. Substituting (87)
and (88) into (85) and changing variables yields


