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Elastic Surface Waves in Crystals
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Elastic surface waves in a general semi-infinite, anisotropic medium are discussed in terms of a six-
dimensional vector formalism. The six-dimensional state vectors have the physical significance that their
erst three components constitute the displacement of and their last three components the force on the surface
of the medium. For a semi-infinite medium with no sources of energy in its interior, a definite relation exists
between force and particle velocity at the surface. This relation defines an impedance matrix for the semi-
in6nite medium which is a function of frequency, wave vector, and material parameters. The impedance
matrix exhibits interesting symmetry properties and provides us with some generally valid relations for
surface waves. In particular, formulas for energy and power relations attain attractive forms especially
suitable for numerical computation. Finally, some characteristic properties of surface waves along free
surfaces are discussed, including undamped and damped ("leaky" ) surface waves.

I. INTRODUCTION

'HE elastic surface waves propagating along the
free surface of a solid consist of combinations of

two or three nonuniform plane waves. In a Cartesian
coordinate system where the x axis is the direction of
propagation in the surface and where the y axis is the
direction normal to the surface, the displacement at
an arbitrary point may be written

3

(=Q c;g;e 1(~& ~'+"''"i.

Here (; is the normalized displacement of the ith com-
ponent wave. The imaginary part of n; ensures that
the component waves decrease exponentially with
increasing distance from the surface. To each displace-
ment vector g; there corresponds a force v, per unit
area of the surface. Since there can be no force on a free
surface the boundary condition is

3

v=P c;v;=0. (1.2)

The equation requires the force vectors v; to be linearly
dependent. This requirement is satisfied only for par-
ticular values of cv)q. Thus, (1.2) determines the phase
velocities of the surface waves. The solution of (1.2)
also gives the relative values of the amplitude factors
c;, i.e., the amplitudes of the component waves.

In an isotropic material, first discussed by Lord
Rayleigh, ' the surface wave (Rayleigh wave) is a
combination of two component waves each having zero
displacement in the s direction, whereas the nonpartici-
pating wave is purely transverse with displacement and
force in the s direction. The transverse wave numbers n;
are in this case all purely imaginary. In anisotropic
materials these results may be altered in various ways.
In general the wave numbers n, become complex
(generalized Rayleigh waves), the surface wave contains
three rather than two component waves, and the dis-
placement in the s direction is nonzero. Examples of such

' Lord Rayleigh, Proc. London Math. Soc. 1?, 4 {1887).

184

waves have been published. ' " A few authors' ' " '4

have considered the general case of triclinic symmetry,
which is the subject of the present paper.

The solution of (1.2) is, in general, very complicated
and analytic solutions can be found only in cases of high
crystalline symmetry. Therefore, the surface wave-

solutions in crystals must be obtained numerically. In
this paper we shall present a formalism which has been
found particularly useful in numerical work.

Assume that a force v is applied to the surface. This
force causes a displacement g of the surface which can
be obtained from Eq. (1.1) and the first of Eqs. (1.2)
by elimination of the amplitude coefficients c,. %e shall
write the relation between force and displacement as

v= j&oZ),

where the 3/3 matrix Z is determined by the displace-
ment vectors g, and force vectors v, . It follows from the
definition that Z may be interpreted as a mechanical
impedance matrix for the semi-infinite medium. The
surface waves along the free surface occur for those
values of Oi/q for which Z is singula, r. On the basis of
orthogonality relations for the displacement vectors g,
and force vectors v; we shall find some very useful
relations for Z. In particular we shall find simple ex-
pressions for power Row and energy densities which are
suitable for numerical work. It will also be shown that

' J. L. Synge, J. Math. Phys. 35, 323 (1957).' V. T. Buchwald, Quart. J. Mech. Appl. Math. 14, 293 (1957).' Robert Stoneley, Proc. Roy. Soc. (London) 232A, 447 (1955).' D. A. Tursunov, Sov. Phys. —Acoust. 13, 78 (1967).
J. L. Synge, Proc. Roy. Irish Acad. A58, 13 (1956}.' Robert Stoneley, Geophys. Suppl. to Monthly Notices Roy.

Astron. Soc. 5, 343 (1949).
V. T. Buchwald, Quart. J. Mech. Appl. Mat. 14, 461 (1961).
G. A. Coquin and H. F. Tiersten, J. Acoust. Soc. Am. 41, 921

(1967).' R. M, White, Trans. IEEE Electron Devices 14, 181 (1967)."K. A. Ingebrigtsen and A. Tonning, Appl. Phys. Letters 9,
16 (1966)."J.J. Campbell and W. R. Jones, IEEE Trans. Sonics Ultra-
soIllcs 15, 209 (1968}.

"Teong C. Lim and G. W. Farnell, J. Appl. Phys. 39, 4319
(1968).

"A. Tonning and K. A. Ingebrigtsen, Proceedings of the First
Cornell Biennial Conference on Engineering Applications of Elec-
tronic Phenomena, Cornell University, Ithaca, New York, Aug.
29—31, 1967, p. 315 (unpublished).
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the numerical search for surface wave sol&itions inay be

simplified by using the impedance matrix.
Finally, some properties of the "leaky" surface

~aves which have been observed recently"" will be
considered. Numerical investigations have shown that
these waves exist in several materials. "

the colunin vectors

4
4

-4-
and the 3&3 matrices

V~

and v= v„
ivy~

(2 9)

11. VECTOR FORM OF THE EQUATIONS
OF MOTION

The equations of motion will be referred to a Cartesian
coordinate system where we take the xz plane to be a
plane boundary of the crystal with the positive y axis
pointing into the crystal. %ithout loss of generality we
may assume that the tensor of elasticity o$ the medium
is referred to the same coordinate system.

Denoting the displacement by the vector $~ and the
strain tensor by $ik we have

5/k g (ital/rtxk+ dtk/dxl) &
(2.1)

where the subscripts l and k refer to any one of the
coordinates (x, y, s) = ( x&, xk, xk). The stress tensor may
then be written

o . X.«=8&(/Bxk, (2.2)

where we have used the general symmetry properties
of the elastic tensor, viz. ,

dg/dy+ jB 'Lg —B 'v=0.

If we introduce the six-dimensional vector

(2.12)

A= (Xik k), B= (X~k g), C= (Xik~k),

(~/I k+ ~l3 I) and L (q*~l2 1+q*~l2 k)

where Xii i denotes the element in row number 1 and
column number m of A, and similarly for the other
matrices. It is worth noting that the symmetry proper-
ties of x&k „require A, 8, C, and D to be symmetric
matrices.

After elimination of 0.
k and a k by means of (2.6)

Eq. (2.7) takes the form

dv/dy+(soPI q, 'A q, q,—D q, '—C+L B—'L)(
+jL&B-'v= 0. (2.11)

Here, I denotes the three-dimensional unit matrix, and
I ~ is the transpose of the matrix I. Likewise, Eq.
(2.8) may be written

~mnlk ~nssslk ~nmkl ~kin, n ~ (2.3) (-' 13)
In addition to Eq. (2.2) we need the equation of motion

s8'&i/Bt'= Bo «/Bxk,

where s is the density of the medium.
%e shall find it convenient to work with the vector

(2.5)

which is the force per unit area on a plane parallel with
the xs plane. Equations (2.2), (2.4), and (2.5) will now
be Fourier transformed with respect to x, z, and t.
That is, we multiply by ej'"' &* &*'~ and integrate over
aH x, z, and t. By this means we obtain equations in u,
q„q„and y which take the form

a &k
——(j q,X»~&+j q,X«„k)$~+4»„..d( /dy, (2.6)

s~'P =j q.~„k+j—q,~„,+dv„/dy, (2 7)

vi=j (q*&l2 1+q*~!2 3)$ +Xlk kd$ /dy (2.8).

Here, 0;k, $g, and v~ are the Fourier transforms of b,k,

$i, and vi, respectively. In (2.7), ~ k and a„k are the
forces per unit area on planes parallel with the yz plane
and the xy plane, respectively.

In order to introduce a matrix formalism v-e define

'~ H. Engan, K. A. Ingebrigtsen, and A. Tonning, Appl. Phys.
Letters 10, 311 (1967).

' F. R. RoHins, T. C. Lim, and G. W. Farnell, Appl. Phys.
Letters 12, 236 (1968).

'7 Teong C. Lim, Ph.D. thesis, McGill University, Canada,
1968 (IUIpubu hed).

we may combine (2.11) and (2.13) in a six-dimensional
vector equation

(2.14)dg/dy+ jNg= 0,

where the 6)&6 matrix N is dehned in terms of 3&(3
matrix blocks as

(2.15)

0
d(,/dy+~N( =

f
(2.17)

with S given by

S= q, 'A+ q,q,D+ q, 'C —LrB—'L —saPI. (2.16)

Equation (2.14) may be regarded as a six-dimensional
form of the equations of motion of the medium. The
vector ( has a simple physical significance. Its first
three components are the components of the displace-
ment vector and the last three components are the
components of the force per unit area on a plane normal
to the Y axis. The matrix X is composed of terms which
are homogeneous polynomials in ~, q, and q, . The o6-
diagonal blocks are symmetric while the diagonal blocks
are nonsymmetric. %e notice that co appears only in
the diagonal terms of the matrix block S.

If it is assumed that a volume force density acts on
the volume element, a slightly generalized version of
(2.14) is obtained, viz. ,
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where 0 is the three-dimensional zero vector and f is
the Fourier transform with respect to x, s, and t of the
volume force density.

In this paper we shall consider primarily free waves
in the crystal, i.e., solutions of (2.14). A general solution
may be expressed in terms of eigenvectors of N. Let the
equation

(N —nI)(=0
have for solutions the eigenvalues

(2.18)

and eigenvectors
nI) n2g ' '

) nba

(~ (2 . . (6. (2.19)

Then a general solution mey be written

(2.20)

Since N is a function of q„q„and ~ this will be the case
for n and ( as well. The coeKcients c„are determined
by the boundary conditions. In general they will also
be functions of q„q„and w. However, before we con-
sider the boundary value problem, it is evidently im-
portant to study the eigenvalues and eigenvectors n
and ( . This subject will be considered in the Sec. III.

III. EIGENVALUES AND EIGENVECTORS OF N;
IMPEDANCE MATRIX OF THE SEMI-

INFINITE MEDIUM

Clearly the eigenvalue n is the y component of the
wave vector of a plane wave. The displacement and
force vectors of this plane wave are given respectively
by the erst three and the last three components of the
eigenvector ( . When we eliminate v from the eigen-
value equation (2.18), we obtain

(n'B n(L+L—~)+g.'A+q. g.D+ g, 'C s~'I5(—0 (3.1=).

Some properties of the eigenvalues and eigenvectors are
deduced most easily from the form (3.1) while others are
conveniently obtained from the six-dimensional matrix
equation. Ke shall work, therefore, with both forms
alternatively. Consider erst the three-dimensiona}
vector equation (3.1).The eigenvalues n are found by
requiring the determinant of (3.1) to be zero.

~n'B —n(L+Lr)+q, 'A+q, q D+g 'C —saPI~ =0. (3.2)

Since each term is a homogeneous polynomial of degree
2 in q, n, q„and ~, it follows that the determinantal
equation will be of degree 6 in these variables.

For a given co this equation describes three closed
surfaces in the real (q„n,q,) space. These are the slow-
ness surfaces. ' It follows from the equation that the
surfaces are point snnmetric with respect to the origin.

Assume now that we keep q, and q, real and fixed and
consider the solutions for n as functions of ~ when ~ is
real, Since the equation is a sextic equation in n with
real coeflicients the following possibilities exist: (1) Six

complex solutions in three conjugate pairs. This case
occurs for suRiciently small values of co. (2) Six real
solutions. This case occurs for sufEciently large values
of ~. For intermediate values of co we obtain either

(3) two real solutions and two complex conjugate pairs,
or (4) four real solutions and one complex conjugate
pair. Synge' has shown that in each case the solutions
may be divided into two parts in the following way.
Since the complex solutions occur in conjugate pairs
one half of these represent waves which increase ex-
ponentially with increasing y, the others decrease
exponentially. One half of the solutions with real eigen-
values, represent plane waves with energy transport
in the positive y direction; the other half, in the negative

y direction. A little care must be taken when two or
more of the eigenvalues coincide. Waves which other-
wise have diQerent directions of energy Qow then de-
generate into waves of identical phase velocities and
zero-energy Bow in the y direction.

The classification of solutions outlined above is
important for the selection of what we may call "physi-
cally acceptable solutions" for the semi-infinite medium.

Let us now return to the six-dimensional eigenvalue
equation (2.18). The matrix N exhibits symmetry
properties that impose orthogonality relations between
the eigenvectors. These relations are conveniently
expressed by means of the auxiliary matrices

I= and P= (3 3)

where 0 and I are three-dimensional zero and unit
matrices, respectively. When the wave vector q= (q,q.)
and frequency co are complex it is found that N satisfies
the followirIg relations:

TNT= N~, (3 4)

N(g nj, (1,= 0.— (3.7)

Multiplying by (PT on the left and using the relation
TT= I, we obtain

(ni —ns)(&rT(1, = 0. (3.8)

That is, eigenvectors corresponding to diferent eigen-
values are orthogonal, with the matrix I as a metric.

The relations (3.5) and (3.6) may be used to relate
the eigenvalues and eigenvectors at (co,q) to those at

PN(co, q) Pr = N'(co', q*), (3.5)

N(a, q) = —N~((u', —q*) . (3.6)

Here Nt denotes the Hermitian conjugate of N. Since
T= T ' and Pr=P ' the transformations (3.4) and
(3.5) are similarity transformations which preserve the
eigenvalues of N.

The relation (3.4) leads to important orthogonality
properties for the eigenvectors of N. If nI, is an eigen-
value of N and (~ the corresponding eigenvector, they
satisfy
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3

F =P c„,e '"""K,
I

(Nt(co*,q*)—n,I)P(g ——0. (3.9)

(co*,q*) and (co*, —q*), respectively. Multiplying Eq. Equation (2.20) may then be written
(3.7) on the left by P and using the relation PPr= I
and (3.5) we obtain

(3.14)

Multiplying (3.9) on the left by T and taking the
complex conjugate we find

(N(ca*,q*)—ng*I)TP(g*——0. (3.10)

(3.11)

This shows that n~* is an eigenvalue of N(co*,q*) and
that the corresponding eigenvector is TP(q~. Notice
that when (q is written in terms of displacement «and
force vq as in Eq. (2.14), we obtain

3

v — c e JN)nljv

I

If eo and q are real, the acceptable eigenvectors are the
ones corresponding either to uniform plane waves
carrying power away from the surface or to nonuniform
plane waves with amplitudes decreasing exponentially
a,s y ~~. For complex-valued co and q, the principle of
selecting the physically acceptable eigenvectors is more
complicated, and we leave it aside for the rnornent.

In order to write (3.14) in a more convenient way let
us introduce the third-order matrices

Xl —(«)$2,$3) ~ Yl ——(v1)v2, vB),

X2—($4)(~)(6) & Y2 —(v4&v5)va) )

the third-order diagonal matrices

9 —diag(c f7llv g JB21J e JA3f/)

92 —diag(s i&4W c c~ntl c &~6v)

(n )* nk) (—~'P(k = 0 (3.12)
and the column vector

It is an important consequence of (3.10) that for real
values of cu and q the vectors ('~ and TP(~* are both
eigenvectors of N corresponding to eigenvalues n~ and
nI, *, respectively. %'hen (0 and q are real the eigenvectors
( also sa, tisfy an orthogonality relation with respect
to P, viz.

(3.15)

(3.16)

(3.17)

This follows from Eq. (3.9) by multiplication on the
left by (P. In terms of the three-dimensional sub-
vectors ( and v this relation may be written

(n&* nk)(vi (r; —«vA. ) = 0—.

c2

c3&

Equation (3.14) may then be written

(3.18)

When n~ is a complex eigenvalue this equation states
that the quantity vk~(q must be real. On the other hand,
if n& is a real eigenvalue Eq. (3.1) shows that g& may be
chosen real. From the eigenvalue equation (2.19) it
then follows that vt, will be purely imaginary. It should
be emphasized that in this case the relations (3.8) and
(3.12) are equivalent.

To summarize: vent« is real whenever ni, is comp. lex
and pure imaginary whenever ny is real.

Impedance Matrix

i,et us consider waves which are excit.ed by a surface
force acting on the surface y=0. The free waves will
then appear as a limiting case. The boundary conditions
on the surface may be satisfied by a linear combination
of three eigensolutions. This means that the sum in
(2.20) is reduced to three terms, the remaining three
coeKcients c„, being zero. The choice of three from a.
total of six eigensolutions may be done in 20 diferent
ways. This choice must be determined from additional
requirements imposed on the solutions. Ke shall denote
the three eigenvectors satisfying these requirements as
the physically acceptable eigenvectors and assume that
they are for given M and q: (I, Q, and $3. The remaining
eigenvectors are the physically Unacceptable e~'genvectors.

X191el v Y191Cy ~ (3.19)

When ci is eliminated from these equations we obtain

v= ga)Zy(, (3.20)

where ZI is the impedance matrix of the medium and is
de6ned by

ZI = —
QG0 YIXI (3.21)

It is important to notice that ZI is independent of y and
is, therefore, the same for any plane parallel with the
boundary plane y=0. We shall see that this matrix
exhibits some interesting properties which are particu-
larly useful in the discussion of surface waves.

Consider hrst the analytical form of the matrix
elements. From Eq. (3.1) it is observed that the elements
of g are homogeneous polynomials of degree 4 in the
variables ~, q„q„and n. Therefore, the elements of
X~ are homogeneous polynomials of degree 4 in the
variables co, q, q„nI, n~, and n3. The elements of YI
are polynomials of degree 5 in the same variables. A
little reQection shows that the elements of Zi are rational
functions of the same six variables, the numerator and
denominator of each element being homogeneous poly-
nomials of degree 13.

So far cu, I7, q„nI, n2, and n~ have been regarded as
independent variables. However, the eigenvalues are
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6 Imaginary

Real

orthogonality relation (3.8) which may be written

X,&Y,+Y,&X,= 0, (3.25)

where the matrices involved are defined in (3.15) and
(3.16) When multiplied on the right by X. ' and on the
left by (Xir) ' Eq. (3.25) yields

Zir(co, q) = —Zz(co, q) . (3.26)

FIG. 1. Branch points of Z located on the real frequency axis. q is
kept real, fixed, and normalized to

I q I
=1.

actually algebraic functions of co, q„and q„defined by
the eigenvalue equation

fN —nI/ =0. (3.22)

We may imagine that nI, n2, and n3 are eliminated from
the expression for Zi by means of (3.22). Zi then appears
as one branch of a multivalued function Z of the three
variables co, q, and q.. We have seen already that the
selection of three eigenvectors out of a total of six may
be done in 20 diferent ways. Thus, Z has twenty
branches, one of which is Z&. It may be shown that the
matrix retain the property of being a homogeneous
function of order zero of the three variables, i.e., for an
arbitrary constant n we have

Z(oi, q„q,) = Z(ncd, nq„nq, ) . (3.23)

Furthermore, from Euler's rule for homogeneous poly-
nomials it may be shown that

q, (c7/c7q, )z+q, (8/Bq. )Z+c0(8/c7oi)Z=0 (3.24).
I.et us now choose a constant real value for q with
~q~

= 1 and consider cd as the only free variable. The
matrix function Z(a&) has a number of poles and branch
points. The latter are also branch points of n n(oi)=
They may be defined as those points of the co plane for
which Eq. (3.22) has double roots. In Ref. 18 (Appendix
IU) the algebraic equation satisfied by the branch
points is derived, and the number of branch points is
shown to be at most 30. Of these at least 6 are located on
the real axis (see Fig. 1).These branch points subdivide
the real cu axis into four regions, each corresponding
either to 0, 2, 4, or 6 real eigenvalues of X, as explained
before. The location of the remaining branch points in
the complex co plane is symmetric with respect to the
real and imaginary axes.

The branch constructed from the physically accep-
table solutions has been denoted by Z&. It is related in a
particular way to the branch Z2 constructed from the
physically unacceptable solutions. This is seen from the

"K. A. Ingebrigtsen and A. Tonning, Elab Report No. TE-74,
Electronics Research Lab. , Norwegian Institute of Technology,
Trondheim, Norway (unpublished}.

It is obvious that this equa, tion remains valid for a
matrix Zj constructed from any three solutions provided
that Z& is constructed from the remaining three.

I.et us next consider the effect on Z~ of reversing the
sign of q. If nI, and gl, are a set of eigensolutions of N at
(co,q) it follows from (3.6) that ne—* and (ee are
eigensolutions at (ce", —q*). Combining this result with
the relations (3.4) and (3.5) we observe that ne—and
TP(e are solutions at (oi, —q). For real-valued oi and q,
reversion of the sign of the eigenvalues has the eGect of
transforming the acceptable solutions into unacceptable
ones and vice versa. In terms of impedance matrices
we then have

Zi(ce, —q) = —Zz(co, q).

Combining (3.27) with (3.26) we obtain

Zi(cd, —q) = Zir(cd, q),

(3.27)

(3.28)

i.e., inversion of the sign of q transposes the impedance
matrix. A little reflection shown that this holds for any
branch of Z(oi, q). This property of Z may be taken to be
an expression of reciprocity. If co is replaced by —co

neither the eigenvalues nor the eigenvectors change
since ~ always appears in N in even powers. If the im-
pedance constructed from the physically acceptable
solutions at (cd,q) is denoted as before by Zi(cd, q), we
may conclude that the impedance matrix at (—ai, q)
has a branch Z, that satisfies

Z, (—ai, q) = —Zi(co, q). (3.29)

However, this need not be the branch that is relevant
for our physical problem, since the change

may transform physically acceptable solutions into
unacceptable ones. For example a bulk wave carrying
power away from the surface is changed by a reversion
of sign into a wave carrying power towards the surface.

When we use the relation (3.11) for eigenvectors with
complex conjugate eigenvalues and remember that for
real eigenvalues n~ we may chose gq real and vl, purely
imaginary, a little reflection shows that for real values of
co and q we have

z( q)= z*( (3.30)

which according to (3.26) is the same as

Zi( —co, q) = Zit(ai, q) . (3.31)

This relation is complementary to (3.28) in expressing
reciprocity.
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In the range of co where all eigenvalues are complex

(3.32)

(see Fig. 1), the equations above lead to an important
relation for the impedance matrix. When co is in this
range it follows, from the definition of Zi, that

This relation has an important consequence for the
surface-wave solutions. Let any vector g be expanded
in terms of g„$i, and g, as shown in (3.14). From (3.41)
we then obtain

4'(Zi+Zl~)4= p «ci'&k~(Z1+Zl')(i'=Z ~~~I', (3.43)
Zi( —~, q) = —Zi(~,q).

Combining this equation with (3.31) we obtain

Zl ——Zl .

(3.33)

(3.34)
Zi(= 0, (3.44)

v here the last sum is taken over the k's for which n~ is
real. However, if ( is a null vector of Zi,

The impedance matrix is thus seen to be skew-Hermitian.
The poles and zeros of

~
Zi(co)

~
give rise to a particular

type of wave mode called surface waves. Consider first
a point a» in the frequency plane for which

~
Zi

~

= 0,
i.e., one of the eigenvalues of Z~ is zero. We can find a
nonzero vector $0 such that

Zi(~0) 40= 0 (3.35)

This means that the displacement may be nonzero while
the stress is zero v= 0, which is the boundary condition
of a free surface.

If coo is a pole of ~Zi(c0)~ one of the eigenvalues of
Zi '(~0) is zero, i.e., a nonzero vector vo exists so that

Zi (cdo)vo= 0. (3.36)

(=X,D,ci. (3.37)

Here, D, is the diagonal matrix defined by (3.17). For
y=0 we obtain

(p= Xici, (3.38)

This means that we have a nonzero stress vo while the
displacement is zero, which is the boundary condition
of a clamped surface.

It is the former type of surface wave that has most
practical interest and we shall confine our attention to
this type. Evidently the null-vector Fo of Z& is the dis-
placement of the surface. The displacement ( at a
distance y from the surface may now be found from
(3.14) or its equivalent (3.19)

IV. POWER AND ENERGY RELATIONS

A. Poorer Flux

In this section we derive expressions for power fiux
and energy density. It will be seen that the impedance
matrix appears in much the same way as in the case of
an electric network. The relations will provide us with
generally valid criteria for selecting the physically
acceptable solutions.

Consider the instantaneous power passing a unit area
parallel with the boundary. This power density is

S„=Re(vre'"') Re( jco(&'"') (4.1)

the left-hand side of (3.43) is zero. According to (3.43)
this means that the coeKcient of expansion c~ is zero
if n~ is real. Thus, a null vector of Xi for real co and q
belongs to the subspace E spanned by the vectors (i;
corresponding to complex eigenvalues n~. Examples of
surface-wave solutions are known for which the fre-
quency satisfies

(3.45)

(see Fig. 1).This means that there are two real and four
complex eigenvalues. The result given above shows that
the eigenvector corresponding to a real eigenvalue is
not part of the surface wave solution. The surface wave
for the frequency range given by (3.45) is therefore a
two-component wave.

which can be inserted into (3.3/) to yield

X1DlXl 40. (3.39)

I.et us finally see how the orthogonality relations
may be expressed in terms of the impedance matrix.

By means of

Averaging over one period we obtain

Sy= —,
' Re( jowr().

This expression may also be written

S„=—jr'(') P(.

(4.2)

(4.3)

vi;= J(0Zigi, k= 1, 2, 3;
Eq. (3.13) may be written

(3.40)
For real cu and q, S„ is independent of y. This is seen
from

(~/~y)S. = 4i ~(~/~y)(&'P0)+4i ~eP(~/~y)( (4 4)

C/, = 0 if n~ is complex
if n~ is real. (3.42)

(ii(Zi+Zi~)(i=Ci8ii. /, k=1, 2, 3, (3.41)

where the constant CJ„ if it is not zero, may be chosen
equal to unity by suitable normalization of the vectors,
l.e.)

W~y)Su= o. (4.6)

YVhen the derivatives are eliminated by means of the
differential equation

(8/By)(= —jN(', (4.5)
and the symmetry properties of N are used, we obtain
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This shows that the pov er Aux in the direction normal
to the surface is constant. The result holds only if co

and q are real. An alternative formulation of (4.3) is

S = -'~%'(Z+Z')6 (4.7)

at the surface. When (o is the displacement of the
surface, we have

g(Z+Zt)g, = 0, (4.8)

and, since the matrix is positive semidefinite, this means
that (o must belong to the null space of (Z+Zt), i.e.,

(Z+Z')Ko= 0 (4 9)

The dimension of the null space is 0, 1, 2, or 3, depending
on the value of or. As co varies the dimension changes
abruptly at the critical frequencies ol&, ~&, and ~3
defined in connection with Fig. 1.

To every gp corresponds an impressed surface force
Pp given by

4o= jplZ(o. (4.10)

I'or particular values of co, X is singular and h;~s a null
vector satisfying

Z(p ——0. (4.11)

This solution represents a lossless mode satisfying the
boundary condition of a traction-free surface.

Let us next consider power transport in directions
parallel with the surface, assuming zero transport in
the y direction. If we denote by v, the force per unit
area normal to the x axis the time average of power
Row density in the x direction is

S,=-,' Re{jlov,t().
ln terms of K, v may be written

v*= {jq A+ jq:r(X/1 ap)+(ill„u. )cJ i7y)$,

(4.12)

(4.13)

The power Qow in the y direction in thus determined by
the Hermitian part of the impedance matrix. Since we
exclude power sources located in the interior of the
medium, or at y= ~, we must require, in order that our
solution be physically acceptable, that the expression
(4.7) be nonnegative for any acoustic field. This means
that the Hermitian part of X must be positive semi-
definite. Most branches of X will not satisfy this require-
ment and are, therefore, physically unacceptable. A
sufhcient condition for the requirement to be satisfied
is that X is constructed from the eigenvectors which
represent waves carrying power away from the surface
and into the medium, i.e., the branch which was denoted
by Z& in the Sec. III. In the following we shall consider
this branch only, and we shall therefore omit the
subscript on Z.

Assuming now that X has a positive semidefinite
Hermitian part, let us discuss the condition for having
zero power fiow in the y direction. Since S„is indepen-
dent of y, it is suflicient to impose

where (Xli„p) and ()~li„p) are 3X3 niatrices with row

and column subscripts denoted by t and m as in the
matrices defined by Eq. (2.10).Using Eq. (4.13) we find,

after some manipulations,

I.ikewise
s,,

= 4i jlo(t(8/Bq, )(PN)(.

S,= —,
' jld('(8/Bq, )(PN)(.

(4.14)

(4.15)

M

S,oIy= —(p~ Z (p,
. o 4j ~q*

(4.18)

where &p is the displacement of the surface and Eq. (4.9)
has been used. In the same way we find

~.= (~'/4j) 4'(~/~q. )Z4. (4.19)

B. Energy Density

The time average density of kinetic energy is, with
cv and q real,

(4.20)wp= oo s( (.
This may also be written

w p ——(lo/8 j)(t(8/Bio) (PN)(. (4.21)

The density of potential energy is ~(T,,);;.For harmonic
time variation its time average is

8
rv„=~ Re jq,v tf+vt (+j q.v.~( —. (4.22)

By

The total energy density is the sum of wA, and m~. After
some manipulations we find

w =w„+w p-—- -', j('PN(+ (q./oo)S.+ (q./lo)S. . (4.23)

Another form of the same expression is

w= 2wi+(w, —wl, )
= (~/4j)('(d/~~)(PN)(+(wv —wp) (4 24)

The last term is the time average of the Lagrangian
density and may be written

wv —wp = (1 '8 j)((~TN(—(tNtT()
1 8=——(Pv+v~() . (4.25)
Sly

For a lossless surface mode, 5 is conveniently ex-

pressed in terms of the impedance matrix. From (4.14)
we have

S,= —,
' jco(t(fj/olq. )(PN() ',j—ld(-lPN(f)/Bq )( (4. .16)

3Iaking use of Eq. (4.5), the relation

('PN= (~N'P

and the synimet. ry properties of N for real ro and q, we
find

S,= j-,'lo'8/l)y[gt(8/r7q, )Z&+ ("(Z+Zt) 8/Bq, Q (4..17)

If g~ 0 as y ico, we may introduce the power flux

integrated with respect to y,



ELASTIC SURFACE 9 AVES I X CRYSTALS

This expression is zero for a uniform, plane acoustic
wave, but, in general, nonzero for nonuniform waves.
We shall assume, as before, zero-power Qow in the y
direction, i.e., that (4.9) is satisfied. The acoustic field
then tends to zero for y —+~, and we may integrate
with respect to y to obtain

(»~.—»()dy = —
o ((o'vo+vo'go) . (4.2ti)

or, taking account of (4.33),

gotSZ(o= O.

For the variation of Z we have

i9 8 8cd

Z = Zdq, +—Z dq . (4.37)
8q~ Boo Bg,

When this expression is inserted into (4.36) wc obtain

j(o4 Z4 (4.27)

When the impedance matrix is introduced and Eq. (4.9)
is used, this gives (o~ X ~o+got —Z 4o

9q,
(4.38)

I'or a lossless surface wave mode go is a null vector of Z,
and for this case (4.27) shows that the kinetic energ&
per unit area equals the potential energy.

On the basis of (4.24) we may now find the energy
density per unit area of the surface

00
C0

»dy =— dy(t (PN—)( ioj(og—otZ)o (4.28.)
p 4j p 8M

Using the differential equation for g in the same way
as in the derivation of (4.18), we find that the integrand
is a perfect differential in y, and obtain

» = o(o&otp —(o oj (o—(o"Z—K()

BGO

(4 29)

Introducing the impedance matrix and using (4.9), we
obtain

e=j ', (of ot—Z-(().
Bco

(4.30)

Taking account of (3.24), (4.18), and (4.19) we find
that this leaches to

(de= q&.+q.h .. (4.31)

C. Group Velocity of a Surface Wave

Suppose that for real values of coo and q we have
found a vector &o satisfying

Z(~o)4= o (4.32)

From (4.7) it is then evident that 5„=0, and i(o accord-
ingly satisfies (4.9) which together with (4.32) leads to

Zt(o(o) (o= 0. (4.33)

As we have seen already, $o is the displacement of the
surface in a lossless surface wave mode. Suppose now
that q, is changed by a small amount bq, while q, is
kept constant. This will cause changes (iZ and 1((o in
impedance matrix and displacement. In fact we have
from (4.32)

or, by comparison with (4.18) and (4.30)

a(o/Bq. =8./». (4.39)

V. SURFACE-WAVE SOLUTIONS

In Sec. III we found that a lossless surface wave corre-
sponds to a real zero of the determinant Z when the
latter is regarded as a function of u. The null vector
(o of Z at this zero is the displacement of the surface.

An important relation for the eigenvalues of Z may be
deduced from Sec. IV. Consider the frequency range
for which ~(o((~(oi~ (Fig. 1). In this region Z is
skew-Hermitian and from (4.30) it follows that the
Hermitian matrix (8/rico)(j Z) is positive semidefinite.
From this fact it is easily shown that the eigenvalues of
Z must have a monotonic variation with frequency.
Denoting the real eigenvalues of jZ by X; we 6nd that

(8/B(o)X;) 0; i =1, 2, 3. . (5.1)

In the search for numerical surface-wave solutions it is
therefore advantageous to work with the matrix Z rather
than with Yi defined by Eq. (3.15). The problem of
finding the surface-wave solutions is reduced to finding
the zeros of the three real functions A.;, which a11 have
monotonic variation with frequency.

Solutions of an entirely different kind are the zeros
of

~
Z

~

for complex values of (o. Suppose that

coo= Mo e'

is a zero for a real-valued q. From (3.23) we have

Z(~ q* q*) = Z(l I q*e "',q:e ' ),

(5.2)

(5.3)

In the saine way we find for the x coniponent of the
group velocity

(1(o/Bq, 8,/=» (4.40)

The last two equations show that the velocity of energy
propagation of a surface wave is equal to the group
velocit& .

8Z(o+Zb(o= 0.
Multiplying on the left by got, we have

goi&Z(o+gotZhgo= 0,

(4.34)

(4.35)

i.e., the impedance matrix is unchanged if we replace
the complex ~o by its absolute va, lue and th real q by
qe & . It may be shown that this multiplication of the
variables by a common factor subjects the eigenvalues
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n.; of N to the change

J'l e ~ Pg2C

After this transformation has been carried out the solu-
tion evidently represents a wave with exponentially
decreasing (or increasing) amplitude in the direction
of propagation in the surface. Since we have assumed
zero dissipation in the medium, the decrease in ampli-
tude must be due to radiation of energy from the surface
into the medium. %aves of this kind have been observed
experimentally"" and are called leaky surface rvaves

As before the power transport in the y direction is given
by Eq. (4.7) having now a nonzero and nonconstant
value.

Consider a leaky surface wave propagating along the
surface in the x direction. Since its amplitude decreases
exponentially with x this also is the case with the power
Aux 5,. Accordingly we have

~o= Qo —Ls;/(Bs;/B~)]. (5.9)

Since Qp corresponds to a minimum in ~s;~ we have

L(B/B(o) (s;s;*)j o,
——0.

Splitting s; into its real and imaginary parts,

S,=N+ je,
we find

(5.10)

(5.11)

these cases an eigenvalue z, (oo) of Z computed for a
series of real values of co shows a sharp minimum in its
absolute value at some real frequency co = Qp. From (5.1)
it may be concluded that no minimum can occur in the
frequency region —coj&~&co&, hence Qp)co&, i.e., the
phase velocity of the leaky wave is larger than the
velocity of the slowest bulk wave, with energy transport
parallel to the free surface.

If the minimum is small, the zero of ~Z~ may be
taken to be

(B/Bx)S,(0. (5.5) Dcu = (up —Qp = jL22/(Bv/Boo) j. (5.12)

On the other hand, conservation of energy requires

and hence

8—5,+—Sy =0,
Bx By

(5.6)

(BIB')5o)0 (5.7)

As before the acoustic field amplitude has an exponential
variation with y, determined by the eigenvalues n; of
N. The above result shows that the amplitude is ex-
ponentially increasing with increasing distance from the
surface, tending to infinity as y~~. This is an un-
avoidable consequence of the fact that the field in the
surface tends to infinity as x —+—~. In any concrete
physical problem where the excitation of the waves must
be accounted for, the permitted ranges of variation of
x and y are limited. This removes the difhculty of
infinite field. However, in our earlier discussion of the
surface-wave solutions, the requirement of finite
amplitudes at y = ~ has been used in selecting the physi-
cally acceptable solutions and the physically acceptable
branches of the impedance matrix. In the case of leaky
surface waves this requirement is not applicable and
should be replaced by a more direct application of the
radiation condition. %e are thus led to impose the
following requirement: The physically acceptable
branch of the impedance matrix must satisfy

This shows again that if s; is purely imaginary for real
values of a&, i.e., if u=0, then the minimum of ~s;~
must be zero.

When Aced is small we may discuss the acoustic field
of the leaky wave in terms of the eigenvalues of N for
u= Qp. Since Qp) coi, N has at least two real eigenvalues.
The displacement vector g of the leaky wave may be
written

nlgl+ n2$2 (5.13)

$= jQps, (, (5.14)

which excites the dissipative mode (2. When we suddenly
remove the surface force, the acoustic field will decay
with a decay time which is the inverse of Aced. Under
stationary conditions the power Qow in the y direction is

where $& and (2, are combinations of displacement
vectors corresponding to complex eigenvalues and real
eigenvalues, respectively. Then (q is a null vector for the
Hermitian part of the impedance matrix while (2 is a
null vector of the imaginary part. The acoustic field is
therefore composed of two different parts: A nondissi-
pative field which stores the energy in a layer close to
the surface and a dissipative part which has a component
of energy Row in the y direction. In order to maintain
stationary conditions we must accordingly apply in the
surface the force

C(Z+Z')(~& o (5 g) 5„=~n2~'pQo'(2 (Z+Z )Q=2Qp'N( (. (5.15)

for an arbitrary vector (, i.e., the Hermitian part of Z
must be positive semidefinite.

Most important in practice are leaky waves that are
weakly damped, corresponding to zeros cop with an
imaginary part which is small compared to the real part.
The leaky waves that have been studied so far, experi-
mentally or by computation, are of this kind. In some
cases the damping of the waves along the surface has
been so small that it has scarcely been measurable. In

The energy stored in the surface wave mode is

Qp~

e=,~, ~ g,~BZ/B g,
4 ca=00

(5.16)

The amplitude n2 may be very small compared to n&.
If the dissipative part of the wave has an energy velocity
v~„ in the y direction, and if the surface-wave part has
fields with an effective penetration depth b which is of
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the order of a wavelength, then we find.

lt, ~t
Cot9P/ BM „,

(5.17)

where we have neglected higher-order terms in
u/(a&its/it~). Here v' is a characteristic velocity defined
as

e'= Op5.

which shows that

Ace —js„/2'.
Numerical calculations given by Lim" have shown that
the leaky waves very often have an attenuation per
period which is only 10 4 —10 '. In these cases the
approximate results given above should be quite good.
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The low-temperature thermal transport properties of an insulating crystal with an arbitrary concentra-
tion of randomly located phonon scattering centers are found for slab geometry. The phonon distribution
function, the distribution of temperature, the Kapitza resistance at the boundaries, and the heat Aux are
evaluated by analytically and numerically solving the complete Boltzmann equation with energy-dependent
scattering cross section.

I. INTRODUCTION

HE problem of heat conduction through an
electrically insulating crystal at low temperatures

leads to the formulation of the Boltzmann transport
equation for phonons. In this equation, the collision
operator plays the most significant part because it is
responsible for thermal resistance. The collision opera-
tor introduces into the equation the efI'ect of the two
most important scattering mechanisms: scattering of
phonons by stationary obstacles (impurities, defects,
boundaries, etc.) and scattering of phonons by phonons.
Because of mathematical difFiculties it has been an
accepted practice not to solve the Boltzmann transport
equation as it is, but to treat it with the aid of the
retaxation time approxim-ation

A large body of experimental observations has been
successfully explained in terms of this approximation,
relying, in particular, on the work of Callaway. ' At the
same time, however, a large number of questions remain
unanswered. They motivate the present work.

The first question we raise, concerns the validity of
the relaxation-time approximation: If, by suitable
choice of the available parameters, the theoretical
curves resulting from the relaxation-time approximation

* On leave from the International Business Machines Corpora-
tion, Ziirich Research Laboratory, Switzerland.

' J. Callaway, Phys. Rev. 113, 1046 (1959).

may be fitted to the experimental data, does this mean
that further conclusions of the theory are correctP This
question cannot be answered without working out the
more exact theory, since the relaxation-time approxi-
mation 1s not capable of estimating its own accuracy.

As we shall see in the discussion (see, in particular,
Sec. VIII the discussion of Fig. 8), some conclusions of
the approximate theory are born out; others are
contradicted by the results of a more exact theory.
Questioning further, let us point out that there are some
basic difficulties with the relaxation-time approximation.

According to this approximation, if more than one
relaxation (scattering) mechanism is present, the system
should approach equilibrium faster, than if any one of
the individual mechanisms alone is active: More
channels enable quicker relaxation. The speed of relaxa-
tion being measured by the inverse relaxation time, this
means

—)max;—

where v. is the combined r.elaxation time, and the
7 are the individual relaxation times. We contend that
in order for the concept of relaxation times to make
physical sense, this equation must be valid.

It has been customary to assume additivity of rs


