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Band Structure and Lattice Distortion in V&O,

I. NEBENXAHL AND M. WEGER

The Hebrew University, Jerusalem, Israel
{Received 6 January 1969)

A model for the band structure of a hexagonal (beehive) lattice in the tight-binding approximation is
examined. The stability of the structure against distortions and the effects of distortions in splitting bands
are investigated. The relationship of this model to the theory of Adler and Brooks for the metal-insulator
transition of V~OS is discussed. It is shown that this model can account for a transition from a distorted,
insulating state to an undistorted, semimetallic one, for certain values of the d-d interaction integrals. The
distortion does not double the size of the unit cell; therefore, the gap appears at the point k=0, rather than
half way to the zone boundary.

I. INTRODUCTION

HE compound V203 undergoes a phase transition
from metal to semiconductor when cooled below

150'K.' At the same time, there occurs a lattice dis-
tortion from the corundum structure to monoclinic
(see Fig. 1).It was suggested in Ref. 1 that the metal-to-
semiconductor transition may be a result of the lattice
distortion. This may be seen in analogy with the case
of a linear chain of equally spaced hydrogen atoms. Such
a chain would normally constitute a metal, for each
unit cell contains only one electron but two permitted
states (up and down spin), so that there is a half-hlled
s band. But if the lattice is distorted in the manner

shown in Fig. 2, the unit cell will contain two atoms; as
a result two bands will be formed, with an energy gap
between them, and the substance will become insulating.
Now the analogy to the case of V203 is not complete,
since in that case each unit cell contains four vanadium
atoms both in the corundum and in the monoclinic
states. It can be questioned whether in the case of V20&
lattice distortion produces an energy gap at all. It is
the purpose of the present paper to hand the conditions
under which this is so, and also to discuss the plausi-
bility of such an explanation of the phase transition.

II. BAND STRUCTURE FOR THE
UNDISTORTED LATTICE
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The arrangement of the vanadium ions in each basal
plane, together with the surrounding oxygens, is shown
in Fig. 3. The small noncoplanarity which can be seen
in Fig. 1 is neglected in the present paragraph (its im-
portance will be made clear in the following). Each
V+' ion is assumed to be located at the middle of an
octahedron of oxygens (see also Fig. 4).

Two assumptions will now be made, which seem to be
quite generally accepted when dealing with oxides of
transition metals, ' namely, that the conductivity of the
compound is due to the two d electrons localized on each
V+' ion, and that the ligand-field splitting is much larger
than any interaction between the metallic ions. ' Thus,
it will be assumed in the following that the two d elec-
trons may occupy only the orbitals d,„, d„, and d„,
(Fig. 4), but not d, ~ and d, ~,d„~, and the bands of interest
for us will only be formed out of these orbitals.
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FIG. 1. Structure of V~03 (only V ions are shown). Arrows
indicate the lattice distortion occurring at the phase transition.
(Figure taken from Ref. 1).

' D. Adler and H. Brooks, Phys. Rev. 155, 826 (1967);J.Feinleib
and W. Paul, ibid. 155, 841 (1967);D.Adler, J.Feinleib, H. Brooks,
and W. Paul, ibid. 155, 851 (1967).These papers include a com-
prehensive review of previous experimental work on V203. See also
D. Adler, in Solid State I'hyszcs, edited by F. Seitz, D. Turnbull,
and H. Khrenreich (Academic Press, Inc. , New York, 1968},
Vol. 21, p. 1.

FIG. 2. Linear chain of atoms and the directions
giving a possible lattice distortion.

2 J. Goodenough, Magnetism and the Chemical Bond (Inter-
science Publishers, Inc. , New York, 1963).

3The interaction between the vanadium ions may be direct,
due to d-d overlap, or indirect, due to overlap with the oxygen
orbitals; but it is assumed that the oxygen 2s and 2p bands are
sufBciently low and do not overlap the vanadium d band. This
last point is critically discussed by J. Friedel, Bull. Soc. Chim.
Fran. 4, 1186 {1965).Without making this assumption, it will be
more difBcult to explain the effect of lattice distortion on the
conductor-insulator transition.
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vanadium ions. ) In each cell there are four atomic func-

tions which will be denoted by

4 i= fi(ao), go= fi(bo),

43 f (oa )of 44 fo(bp) ~

P

.Q

In the tight-binding approximation, Bloch wave
functions are formed as

1 N

4'„(k) = Q @„(a;)e'"" n = I, ~, 4. (4)

FIG. 6. Momentum plane and the boundaries of the Brillouin
zone. Along kg, the boundary is at X=~ak~=sr, and along k„
at F= ~VSak„=-',7f.

With the aid of the integrals (2), the 4X4 matrix of
the interaction between the 4'„(k) can immediately be
written

—Ot+2ye '~ cosV

—2'lte x sin V

—o,+2ye'~ cos V

2ue' smV

—2iee '+ sinV

t8 —28e—'x cos V

2i~e'x sin V

0

P —25e'~ cos V

a= o,—2ye' cos V, b= P—2be' cos V,
c= 2iee'x sin V. (7)

Solutions of Eq. (6) were calculated for k lying on
special symmetry lines —the X axis, the V axis, and
also the line F= pie connecting R and Q. Results are
shown in Fig. 7. e and P were varied only over a re-
stricted zone in the np plane (Fig. 8), since other zones
may be reached by the transformations 0.—+ p, P —+ n
or n~ —e, P ~ —P, which do not change the form of
the energy bands. The values of y, 8, and e are 6xed by
Eqs. (3a)—(3c).

Ea,ch of the four bands has space for two electrons
per unit cell (with spin up or down). As there are two
electrons per unit cell to be put into the bands, only one
band is 6lled and three remain empty. The material
will then be metallic in the cases corresponding to
Figs. 7(a), 7(e), and 7(f), and semimetallic in 7(b), 7(c),
and 7(d). Clearly a necessary, but not sufhcient, condi-
tion for the material to transform from conducting to
insulating under infinitesimal lattice distortion is that
it be in a semimetallic state when undistorted. This con-
clusion is a result of the fact that the distortions here

where X=-',ah~, V=-,'&3ak„and c is the interionic
distance.

The Brillouin zone in the XV plane is shown in
Fig. 6. The point P may be given as X=x, V= ~m or,
alternatively, as X=O, I'= po7r. Similarly, Q is given by
X=+, V=O, or by X= V=-'x, or by X=O, V=+. Ke
also define the point E by X=O, V= —,'x.

The characteristic equation of the matrix (5) is

~' —l'(lal'+ lbl'y2lcl')+ lcl'+abc'
+a5c'+ fab/'=0, (6)

where

discussed do not change the number of atoms per unit
cell, and therefore do not split the bands but possibly
separate them near k=O.

The values of n and P that give rise to a semimetallic
state can be shown to be determined by the conditions

sgno. = sgnP, (Sa)

III. LATTICE DISTORTIONS

Two types of lattice distortions take place in V203.
(a) The distances ap —bp, ai —bi, etc. (Fig. 5) get

shorter than ao —b~, ao —b2, etc. This is the distortion
occurring at the phase transition.

(b) The atoms ao, a&, ao, etc. are somewhat above the
plane of the drawing (Fig. 5), atoms bo, bi, bo, etc.,
somewhat below. This distortion is present both below
and above the transition temperature.

either /n[&3/P) or /™/ &~o fP/. (Sb)

LCf. the shaded areas in Fig. 8. It must be remarked,
however, that the necessary conditions (Sa) and (8b)
were checked to be sufhcient to ensure the formation of
a semimetal only along the symmetry lines. j

The condition stated above for the formation of an
insulator corresponds only to an infinitesimal distor-
tion (a finite one may change the whole pattern of
band structure). Whether the distortion occurring in
VoOo at the transition (of about 2%%uq of the interionic
distance) may be termed infinitesimal or not is, of
course, a question we cannot answer. This raises the
more difficult question whether or not such a small dis-
tortion can be expected to produce an energy gap of the
same order of magnitude (0.1 eV) as the bandwidth
itself, as is suggested by Adler and Brooks. '
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FIG. 7. Band structure for various o.' and p; (a) ca= —0.15, p=0.9; (b) a=0, p= I; (c) ~=0.15, p=0.9;
(d) a=0.3, p=0.9 (e) a=0,4, p=0.8; and (f) o.=0.7, p=0.7.

~2 $2+4~2 4)2
cosX = (11a)

As a result of the distortion (a) the matrix (5) remains
unchanged in its form, but the relations (3) connecting
y, 6, and e to n and P are violated.

Figures 9(a)—9(c) give the band structure for a dis-
torted lattice. They were calculated from the char-
acteristic equation (6), with and without use of the
relations (3). This represents the effect of a slight dis-
tortion on the case given in Fig. 7(c). As is seen from
Figs. 9(b) and 9(c), there occurs a splitting at the point
I", but the bands are not separated. Instead, a point of
conical singularity is formed.

More generally, it can be shown that the char-
acteristic equation (6) has a degenerate root (concial
singularity) either along the X direction or along the V
direction. The roots of Eq. (6) are given by

l '= 2(l of'+
I
f I')+

I
cl'

~f:(i~(l &I"—
I
&I')&'y

I
ac —

5cl
'3'" (9)

so that there occurs a degeneracy if

Iaf= Ibf and ac=bc (1o)

The condition (10) is satisfied for a point along the X
axis such that

and a point along the V axis such that

cos V= (o+J3)/2(y+ 8) . (11b)

Fro. 8. ~-p plane. Dots cor-
respond to values for @which
the hand structure is given
in Figs. 7. The shaded areas
indicate values of a, p for
~vhich the metrial is semi-
metallic.

Condition (10) cannot be satisfied for a point that is
neither on the X axis nor on the Y axis (for an infinitesi-
mal distortion). To see this, note that Re(ac —bc)
= 2(P n)e sin—X sinVAO.

When the distortion occurs, let us assume that y
and 6 remain unchanged, but n and P change; thus
Eqs. (3a) and (3b) are violated. Then it can easily be
shown that if a and P Lor even the one of them much
larger than the other, according to Eq. (Sb)j get larger
in absolute value, the right-hand side of Eq. (11a) is
smaller than unity, so that there is a degenerate point
along the X axis. Similarly, if o. and P get smaller in
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absolute value, then the right-hand side of Eq. (11b) is
smaller than unity and the degenerate point lies on the
F axis Lcf. Fig. 9(b) and 9(c)7.

In both cases the distortion does not give way to the
formation of an energy gap, but merely to a change
from one type of a semimetal (bands touching at a
point where dE/dk= 0) to another (bands touching at a
conical singularity). This conclusion is changed, how-
ever, in the presence of a distortion of type (b). This
has the eRect that the integral

fo(ao) Vfp(bi)d'x —-', fo(ao) Vfo(bp)d'x)

t= ——', fo(ap)V fp(bi)d'x+o fp(ao) Vfo(bp)d'x,

fi(ap) Vfp(bi)d'x+ ,' f-i(ao) Vfo(bp)d'x,

b= ——,
' fi(ao) Vfo(bi)d'x —

o fi(ao) Vfp(bo)d'&.

X= fi(ap)Vfp(bp)d'x/0, (12)

I-et us therefore define

fi(ao) Vfi(bi)d'x+ ,' fi(a-o) Vfi(bo)d'x )

and also that the integrals y, 8, and c de6ned in Eq. (2),
have diRerent values for the pair of neighbors ao, b~

than for the pair ao, b2.

In a procedure similar to that leading to Eqs. (3a)-
(3c), it can then be shown that, in the absence of dis-
tortion (a) (i.e., threefold symmetry conserved),

V= —~~+40
8= 4o.—4P,
p = -',v3 (rr+ P),

(13a)

where X is defined in Eq. (12), so that there is only one
new parameter. If now distortion (a) is introduced as
well as distortion (b), then Eqs. (13) are violated, but
the parameters are still connected by

g=-', fi(ap) Vfi(bi)d'x o fi(ao—) Vfi(b.)d'x)
p=-', v3(y+5), g= t, b= —g/~3.

The matrix (5) now takes the form

(13b)

V = {(+;(V[e;&)

—a+2ye ' cosF+2ige ' sinF

0
~ —2iee 'xsinF+g —2he ' cosF

—n+2ye'~ cosF—2ige' sin F
0

2ke'x sin F+g —2he'x cos Y

0

—2iee 'x sinF+x —2he '~ cosF

p —25e» cos Y—2ife ' sin Y

2iee'~ sin Y+g—2he'~ cosF
0

P —2be' cosY+2ite'x sin F
0

The characteristic equation (6) and its solution (9)
retain their forms, but, instead of (7), one has now

c= n —2ye'x cosV+2ige'x sinI',

b p 2gesx cosI'+ 2ite;x sin I',
c= 2iee' sin I'+X—2he' cosI'.

It can now be shown that in the presence of both
distortions (a) and (b) an energy gap is formed. In
order to prove this, one has to show that the two condi-
tions for degeneracy, Eq. (10), cannot hold simul-
taneously. The equality ac= bc holds at two points Lat
the intersections of the curves Re(ac —5c)=0 and
Im(ac —bc)=0], and the location of these points de-
pends on the value of X, whereas the curve on which

( a~ =
~

b~ is independent of &; thus, in the general case,
the points do not lie on the curve [a (

=
[ b( unless there

is an accidental connection between the values of the
parameters for a certain value of the distortion. Unless
this happens, at the point where ac —bc=0 one has
) a~ A

~
b ~. Therefore, at these points c=0 (this can also

be shown directly), but there is no degeneracy. )For a
numerical example, see Figs. 9(e) and 9(f). Note that
there is a certain symmetry between Figs. 9(e) and 9(f),
so that the model does not explain why the distortion
is such that the distance to one neighbor gets shorter
than the distance to the other two—Fig. 9(e)—and not
larger —Fig. 9(f).$

IV. CONCLUSION'

For a lattice distortion not involving a change in the
number of atoms per unit cell, a necessary condition
was found for its causing a conductor to insulator
transition, namely, that the conducting state be
semimetallic. This does not apply to the case of VO2,
for instance, where the distorted unit cell is twice as
large as the undistorted one. '

The necessary condition is not a sufhcient one, and it
was found that only the combined eRect of two sorts of
lattice distortions can explain the conductivity transi-
tion of V~03. The complexity of the explanation gives

' T. Kawakubo, J. Phys. Soc. Japan 20, 4, 516 (1965).
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»G. 9. EGect of lattice distortion on the semimetal of Fig. 7(c) (a detail of the band structure, near the point I'); (a) o.=0.15, p=0.9,
v=0.6357, 8= —0.1125, ~=0.455, g=O, g=O, h=0 )no distortion; same as Fig. 7(c)g; (b) a=0.2, p=1, y=0.6375, 8= —0.1125,
&=0.455, g=0, g=O, h=O I distortion (a)]; (c) a=0.1, p=0.8, y=0.6375, 8= —0.1125, ~=0.455, g=0, g=O, h=O I distortion (a), re-
versed sense); (d) n=0.15, p=0.9, y=0.6375, 5 = —{).1125, ~=0.455, X=0.1, g= —0.0867, h=0.05 t distortion (b) alonej, (e) a=0.2,
@=1, p=0.6375, 5= —0. 1125, ~=0.455, g=0.12, g= —0.0867, h=0.05, )both distortions (a) and (b)); and (f) 0.=0.1, P=0.8,
y=0.6375, 6= —0.1125, &=0.455, g=0.08, g= —0.0867, h=0.05 (both distortions; (a) reversedg.

rise to questions concerning the set of assumptions used
from the outset. In particular, the itinerant electron
picture may be doubtful for dealing with oxides of
transition metals. This leads one naturally to seek the
explanation of the phase transformation in the concept
of Mott transition, which amounts to breakdown of the
itinerant electron picture and establishment of localized
electron states. In this connection it is interesting to
note that a transition similar to that of V203 occurs
also in materials such as Ti305, where the number of
8 electrons per cation is not integral, so the Mott ex-
planation cannot be applicable to these materials —at
least in its simplest form.

Another theory often mentioned in connection with
transition-metal oxides is that due to Goodenough'

6 N. F. Mott, Phil. Mag. 6, 287 (1961).
~ L. K. Keys and L. N. Mulay, Appl. Phys. Letters 9, 248 (1966}.

(see also Asbrink and Magneli'). It is assumed that at
low temperature the d electrons are occupied in some
sort of "cation-cation bond. " This is, in fact, not an
explanation but an approach towards a set of possible
explanations. One of these, in terms of itinerant elec-
trons, is described in the present work (see also Ref. 5).
Another one, aimed at understanding the nature of the
insulating phase in terms of localized states, was
developed in a previous work. ~ Both attempts lead to
very complicated explanations, which shows how far
we still are from comprehending the phase transition.
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