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TABLE II (continued)

5.99
13.30
59.86
95.82
99.76

103.5

2.57
2.68
2.78

11.91
21.25
30.81
50.26
77.66

103.91
106.3
108,3

5.37
11.94
53.73
63.21

{ iso

48.6
48.1
46.1
41.8
45.4
48.9

50.4
54.9
59.2
54.4
53.0
51.2
46.9
40.2
31.7
33.2
34.4

S5.0
54.6
53.3
53.1

Cited

48.6
48.6
51.2
49.3
54.2
59.1

54.7
54.1
53.1
50.3
45.6
38.4
41.0
43.3

SS.O
55.0
56.8
57.3

24.3
24.1
22.6
20.0
21.8
23.7

25.2
27.5
29.7
27.3
26.6
25.7
23.7
20.5
16.3
17.3
18.1

27.5
27.3
26.3
26.2

Krypton C;, (Vz 0 K,T) in kbar

Cl 2180

23.9
23.7
23.3
21.9
23.6
25.2

24.0
24.2
28.4
29.5
32.4
35.3

Xenon C;;(V, ~t, T) in kbar

24.9
27.2
29.3
26.9 27.2
26.1 27.2
25. 1 26.9
22.5 25.9
18.4 23.9
13.9 20.7
14.2 22.0
14.3 23.2

Xenon C;, (T~g o'K, T) in kbar

27.3 27.3
27.1 27.5
26.8 30.4
26.9 31.1

+iso

32.2
31.9
30.9
28.5
30.8
33.1

33.4
36.4
39.3
36.1
35.1
33.8
30.6
25.7
19,9
20.5
21.0

36.5
36.3
35.7
35.6

p VI,'I 110)

60.6
60.5
62.4
59.4
65.1
70.9

62.8
68.6
74.0
68.2
67.2
65.7
61.8
55.3
45.9
48.8
51.4

68.6
68.6
69.9
70.4

p VTpI 110)

12.3
12.2
11.4
9.92

10.9
11.9

12.7
13.9
15.0
13.7
13.4
13.1
12.2
10.9
8.90
9.50

10.1

13.9
13.8
13.2
13.1

12
12
12
11
12
13

11
12
13
12
12
12
12
12
11
12
13

12
12
12
12
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The states of the Ii center are considered on the basis of models which treat the movement of the nearest
neighbors to the F center and the F electron in a self-consistent manner. The lattice is first described in terms
of a classical ionic-crystal theory. The theory is then extended to treat the nearest-neighbor ions in a quan-
tum-mechanical manner. The one defect electron (the F electron) is treated according to polarizable-ion
models. The absorption energy, the emission energy, the lifetime of the first excited state, the zero-phonon
transition energies, and the Huang-Rhys factors are evaluated for two models, which diRer in the rigor used
to compute the polarization of the nearest and next-nearest neighbors. It is found that the model that con-
tains the more rigorous evaluation of the polarization agrees best with the experimental results for CaO and
perhaps MgO. In addition, it is found that both these models are least successful for I' centers in NaCl and
KCl. Not enough data exist to make judgments about the agreement for CaF~, SrF~, and BaF2.

I. INTRODUCTION

HE F center in ionic crystals consists of one
electron (the F electron) localized about a vacant

anion site, regardless of the valency. Even though the
F center is one of the simplest defects which may occur
in ionic crystals, calculations of its optical properties
have been a challenge to theoreticians ever since Tibbs
6rst undertook such calculations for the alkali halides. '
Such calculations are even today unsatisfactory in
many cases when one studies the lifetimes of the ex-
cited states, the phonon structure, and the spatial ex-

' S. R. Tibbs, Trans. Faraday Soc. 35, 147 (1934).

tent of the F-electron wave function. Two basic models
from which we may calculate the electronic structure
of the F center exist. For brevity, we refer to these
models as Hartree (or Hartree-Fock) polarizable-ion
models (HFPf) and semicontinuum (or semicontinuum-
polaron) models (SCP). Both types of models reduce a
many-electron problem to an eRective one-electron (the
F-electron) problem and treat the lattice polarization
and the F electron in a self-consistent manner. They
diHer most profoundly in their treatment of the effective
interaction between the F electron and the anion va-
cancy due to ionic polarization. %e may view the va-
cancy as an infinite-e6ective-mass hole having a charge
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Z.&O. The HFPI models assume that the F-electron
orbit will be smail enough (or equivalently, that the
f' electron will move sufficiently fast) so that the ionic
polarization cannot follow rapid changes in the F-elec-
tron motion. The SCP models contain an approximate
expression for the F-electron-vacancy interaction which
is based upon the Haken theory of Kannier excitons"
and which thereby allows the ionic polarization to
follow to some extent the motion of the F electron when
the latter is in a large orbit (or is moving slowly).

The author has discussed, in a previous paper, 4 some
of the SCP models within the context of variational
procedures employing hydrogenic trial wave functions.
It was found there that the SCP(HF) model was most
successful for NaC1 and KCl, was successful for only
optical absorption in CaF~, SrF2, and BaF2, and gave
inconclusive results for the oxides MgO and CaO. In
this paper, studies of the F center in ionic crystals are
continued. Results are reported here for the F center
in NaCl, KCl, MgO, CaO, SrO, CaF2, SrF2, and BaF2
that follow from two HFPI models. The electronic and
ionic polarizations are computed by a more rigorous
procedure for the second model, HFPI (2), than for the
first model, HFPI (1). Both HFPI models assert that
the ionic polarization does not respond to rapid changes
in the F-electron state when the F electron undergoes
an optical transition. This means that all low-lying F-
electron states should be compact if the model predic-
tions are to be internally consistent with the assump-
tions of the model.

The method of the present calculations is a two-
parameter variational procedure. The author assumes
a trial wave function which has a suitable symmetry
and which contains a variational parameter g. He then
computes the ion displacements o. which are consistent
with the assumed trial wave function. In this way, he
obtains the total energy of the crystal as a function of
p and o.. Finally, he minimizes the total energy as a
function of g and o. to obtain the F-electron wave func-
tion and the lattice configuration.

It is found that the HFPI (1) model gives incon-
clusive results because the forms of the trial wave func-
tions most likely do not approximate even crudely the
exact solutions (eigenfunctions) to the HFPI (1) model.
If success is measured by agreement with present experi-
mental data, it is found that the HFPI (2) model is
rather successful for CaO, is successful with some
qualifications in MgO, and is least successful in the
alkali halides and alkaline-earth Ruorides. Making
judgments about the success of a given model for the
F center in the alkaline-earth Quorides is hazardous be-
cause the only known experimental data treats the ab-
sorption, and this is probably least sensitive to the

' H. Haken, Nuovo Cimento 10, 1230 (1956).' H. Haken, in I'olarons and Excitons, edited by C. G. Kuper
and G. D. Whitfield (Oliver and Boyd, London, 1963), p. 295.

4 H. S. Bennett, Phys. Rev. 169, 730 (1968).Hereafter, we shall
refer to this as paper E. %'e shall use, whenever possible, the no-
tation of this reference.

physical details of a model. The above is contrasted
with the SCP(HF) models of paper I. It is shown in

paper I that the SCP(HF) models are successful in

agreeing with the known experimental data for the
alkali halides and alkaline-earth Auorides; but they give
inconclusive results for the alkaline-earth oxides.

The author will review in Sec. II the classical ionic
lattice and will summarize the calculation of the change
in the lattice energy due to replacing an anion with
an F-center electron. Using the results of Appendix A,
he will list in Sec. III the many terms of the Hamil-
tonians for the HFPI (1) model and the HFPI (2)
model. He will present in Sec. IV the theoretical expres-
sions for those quantities which are measured in the
optical absorption and emission experiments. In Sec.
V, he will tabulate the numerical results of the HFPI (2)
models and will discuss some additional modifications
which he has studied. He will extend in Sec. VI the
HFPI models to treat the nearest-neighbor ions in a
quantum-mechanical manner and then will derive with
reference to Appendix B the theoretical expressions for
those quantities which are measured in the experiments
on the zero-phonon transitions of the F center. In Sec.
VII, he will compare the HFPI (2) models and the
SCP(HF) models and will attempt to relate their pre-
dictions to some of the uncertainties which plague both
theoretical and experimental studies. Appendix A con-
tains a discussion of the polarizable lattice and the
notation used in Sec. III. Finally, Appendix B contains
the derivation of the Huang-Rhys factor for the case in
which the nearest neighbors (nn) move quantum me-
chanically in a breathing mode and all the remaining
ions move classically.

G. PRELIMINARIES

The two models for the F center which the author
shall present below contain the same treatment of the
lattice energy and di6er only in their treatment of
the contribution to the F-center energy due to the elec-
tronic and ionic polarizations. The author has given in
Secs. II and III of paper I a discussion of the total
crystal Hamiltonian and of the classical ionic lattice.
Because he will use here the results contained in Secs.
II and III of paper I, he summarizes below the contents
of those two sections. He will treat first the entire
lattice classically, as was done in paper I, and then in
order to discuss the zero-phonon line in Sec. VI (a
quantum-mechanical concept), he will treat the nn
cations quantum mechanically. In this section, the en-
tire lattice is viewed classically.

Using the Born-Oppenheimer approximation, we
write the one-electron Hamiltonian for the F center as
the sum of two terms,

Kr(r, R) =Kg(r, R)+fez(R) . (1)
The expectation value of the operator 3'.p gives us the
F-electron energy, while the expectation value of Kl.,
which contains no F-electron operators, gives us the
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FIG. 1. Schematic configuration coordinate diagram for the
HFPI (2) model in which the distant ions obey the Franck-
Condon principle for all optical transitions. The quantity E& is
the total energy of the F center, and cr gives the nn radial motion
r1'=r1(l —r). The points A, B, H, C, D, and G correspond,
respectively to the states Iao', oo,&o), IPo , oooo),'IPp;op&p),
Ith; p&,o&), a, ; pq, o~), and io~, p~, eq) The t. electron is in the
ground state L"ts", Eq. (5}jfor curves Vs and Vn, and it isin the
excited state { "2p", Kq. (6)g for the curves Vz and Vp. The
electronic polarization responds for all states to rapid changes in
the F-electron wave function. The distant ionic polarization does
not respond to the rapid changes in the F-electron wave function
when it undergoes an optical transition (Franck-Condon principle).
The distant ionic polarization of the lattice induced by the F
electron is the same for curves Vg and Vg and is the same for
curves Vz and VL}.It is computed from state ~cxo,

' np, cro) for curves
Vg and Vg and from state ~pl., pl, ol) for curves Vg and V~. An
axis which is perpendicular to the plane of the paper and which
is not drawn represents the configurations of all the distant
classical ions. Curves Vg and Vg are coplanar and lie in a plane
parallel to the Eg —o plane. Curves Vg and Vz are coplanar and
lie in a plane which is parallel to the E~-r plane and which does
not coincide with the plane in which the curves V~ and Vp lie.

lattice energy of the crystal. We shall study the follow-
ing process: The F center, which is originally in its
ground state irrp' , trp, op), becomes excited into the state
iP&', op, ~p) which is assumed to be a quasistationary
state with an electronic wave function calculated from
the same crystal potential (same ionic polarization) as
that for the ground state

i
ere', np, ~p). We designate the

total F-center state by the notation i', t', o). The'
quantity 0 gives the distance the nn ions move from
their sites in a perfect lattice. The symbols q and f
would be the generic quantum numbers in an exact
description of the F center and are variational param-
eters in the calculations given below. The symbol n
denotes a state which transforms as a "is"state trans-
forms, and the symbol I8 denotes a low-lying excited
state which transforms as a "2p" state transforms. The
two symbols which are to the right of the semicolon,

where the F-electron charge density is given by

p, (r; ~) = —etI „'(r)if„(r), (3)

an6 where the charge density of the vacancy i~ given by

p„(r) =Z,V(r). (4)

The F-electron wave function is f„(r)=(ri r};g, o)F and
the effective vacancy charge is Z„. The 8 function 5'(r)
indicates that we treat the effective vacancy charge
Z. as a point charge. We also dehne Zp ———e, where
the magnitude of the electronic charge is e. The change
in the lattice energy is written as the sum of many
terms. Each researcher has his own way of carrying out
the summations. We have chosen the method given by
Kqs. (17) and (18) of paper I; i.e., the lattice energ}
has the form EFI, (vacancy, distortion) =hF,+AF-„,
where hE, is the change in electrostatic energy, and
DF„ is the change in the effective repulsive energy which
takes the Pauli exclusion principle between the ith- and
jth-ion cores into account. Because the van der Waal
terms increase the formation energy by about 5% and
decrease the distortion by about 4%, and because we
do not expect the F-center-electronic part of the
Hamiltonian to be accurate to within 5% of the experi-
mental results, we do not include the van der Waal
terms in our expression for the cohesive energy from

1 and o, characterize the crystal potential which the F
electron in the state g experiences. The lattice then
relaxes and, thereby, the crystal potential which the F
electron experiences changes. The excited electronic
state calculated from the relaxed crystal potential
iPt', Pt, ot) may diRer from the unrelaxed excited elec-
tronic state itip' Qp 0'p). The F center may then undergo
a transition to the unrelaxed ground state irrt P ItTt)

with an electronic wave function calculated from the
same crystal potential (ionic polarization) as that for
the relaxed excited state iPt, Pr, pt). In Fig. 1, we pre-
sent a simple configuration diagram which illustrates
the four F-center states discussed above and two ad-
ditional states associated with the zero-phonon tran-
sitions. We shall treat the two zero-phonon states in
Sec. VI.

Ke want to compute the change in the lattice energy
due to replacing an anion with an F-center electron.
We first create a vacancy at the anion site ro ——0 of
charge Zo by adding an effective vacancy charge Z„
= —Zo at ro ——0 and permit no lattice relaxation. This
fictitious lattice state will serve as the reference energy
for the lattice part of the total F-center Hamiltonian.
Ke compute the change in the lattice energy AE&

(vacancy, distortion) due to replacing an anion with an
F-center electron by classical ionic lattice theory. We
allow the nn to move radially from rt to rt' ——rt(1 —o)
in order to accommodate the F-center charge density.
We define the total F-center charge density ps(r) by the
relation

pd (r) =u F(r; p) +p (r)
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which we compute the lattice energy. In addition, be-
cause we have found previously that unless we include
next-nearest-neighbor (nnn) repulsions for the oxides,
the inward distortion compatible with a compact Ii

center will be excessive, we include both first- and
second-nn repulsive terms in the cohesive energy. We
express the repulsive energy contribution to the cohesive
energy by means of the empirically determined Born-
Mayer exponential form. Again, the reader is referred
to Sec. III of paper I for the details.

III. POLARIZABLE-ION MODELS

neglecting lattice vibrations, n1agnetic interactions,
and the spin of the Ii electron, we shall discuss the
polarizable-ion Hamiltonian for the Ii center in a re-
laxed state (lnp' , op op) and lP(, Pq, oq&) and then in an
unrelaxed state (leap', o'p, o'p) and ln(, P(,a()). We mean
by "relaxed" that the electronic state with a given sym-
metry has existed for a time long enough to allow the
lattice to accommodate itself to the defect. In our case
here, the F-electron state lit; g, o)» exists long enough
for the nn ions to move. The "unrelaxed" state arises
when the F-electron state

l it; f,o)r has existed for such a
short time that the lattice has not had time to accom-
modate itself to the new charge density associated with
the Ii electron. We denote the total relaxed F-center
state by I q; q, o) and the total unrelaxed F-center
state bylit; g,o&.

The trial wave functions which we shall use in the
variational approach are

f(s(r) = (r ln; f, &oi (n'/7a. )'——"(1+nr)e " (5)
and

tributes an energy

H((g; g, o) = po(r)BCgP(r) d'».

We consider the ions as point charges Z„and we
write the operator for the F-electron —point-ion inter-
action in the form

3Cp(r; o) =Z» Q' (Z„/(r —r„)),
v&0

where the prime means that the v =0 site is not included
in the summation, and r„ is the location of the vth ion.
The Madelung constant is defined by

n „=»pe,(0; o)/( —e), (10)

where rq is the nn distance (anion-cation) for the NaCl
structure and is the lattice constant (cation-cation) for
the CaF2 structure. The potential energy is invariant
under the full cubic group, and we may expand it in
terms of the Kubic harmonics Q(r;, l,o); e.g. ,

X..(r; o) = Vpp(r)Q(r(', 0,0; 8q)
+V4p(r)Q(r&', 4,0; 8q )+

+V„p(r)Q(ri', n,o; 8y)+
where n is an even integer. "' Because we shall limit the
trial wave functions to functions which belong to the
irreducible representations r('(Is) and F4'(2P) of the
cubic group O~ and because the following matrix
elements vanish,

(r;lQ(r, ,l,o;8( lr;)=0

p p(t) = &r
l p; f', a.

& r = (g'/7r) "'r cos8 e e" (6)
&I',

l Q(r;, N, o; 8, (o) l I;)=o,

where o. and P are independent variational parameters,
and g assumes the variational value of o. for the relaxed
ground state or the variational value of p for the relaxed
excited state. If our calculations were exact, then the
distortion 0 would be the only variational parameter in
the problem. The notation

l q; t, cr& means that the nn
;(re at r(' ——ri(1 —o), and the ionic polarization of the
remaining ions is that polarization which occurs when
the F center is in the state ll; f,o). The wave functions
are normalized to the crystal volume

0„'(r)y„(r)d'»= »(v; I', o l v; (,o&, =1.

Because all terms of the model Hamiltonian operator
are real, we may choose the trial wave functions P„(r)
to be real.

Referring the reader to Appendix A for a discussion
of what follows, we now list the terms of the Hamilto-
nians for the two polarizable-ion models. Ke list first
those terms which are common to both model HFPI (1)
.(nd model HFPI (2).

The kinetic energy operator 3C( ———(fi '-'/2m)V' con-.

for all n&~ 4, we have that

V ph(r' o) = Vp for 0&r &r~'

= Vo —((S,Q /» ') —(S Q(/rr))Z„Z,
for rg'&r&r.

= V„+(D„/r), for r„(r(r.+,
where

(12)

Vp Z„zr[n (r/F(+S(Qio/r. q(1 —o)],
'H. A. Bethe and F. C. Von der I,age, Phys. Rev. 71, 612

{1947);and B.S. Gourary and F. J. AdriaII, ibid. 105, 1180 (2957).

where the spherically symmetric part of the point-ion-
crystal potential is denoted by V.ph(r, o) = Vpp(r, o').

We consider the point ions as distributed on shells
centered at the anion vacancy. We denote the radius
of shell s by r„, the number of ions on shell s by S„and
the charge of the vth ion on shell s by Q,, =Z„. We then
express the spherically symmetric part of the crystal
potential V,», (r,o) in terms of the above notation,
namely,



922 HERBERT S. BENNETT 184

where for n&~ 2 we have
n

V.= Vo —Z.Z F(SiQi/»i'+ Q S4Q'/»*),
4=2

and where

BC'(»l; a) = f (r) Vs,h(», a)P(r)d'». (13)

Because practical considerations limit the number of
shells we may explicitly treat, we will consider the 6rst
21 shells in our computations and will use the Coulomb
potential for distances beyond the 21st shell;

V4vh(») =Z„ZF/», for»)»ii (14)

We shall introduce two approximations to compute
the electronic polarization and the ionic polarization
induced by the defect charge density pd(r). In the first
model HFPI (1), we consider only the spherically sym-
metric part of the polarization potential which arises
from the dipoles induced on all of the ions; while in the
second model HFPI (2), we consider rigorously the
polarization potential from the first-two shells of dipoles
(s= 1 and s = 2) and consider only the spherically sym-
Inetric part of the polarization potential from all the
other dipoles on shells s~&3.

The interaction energy between the F electron and
the polarization induced by the effective vacancy charge
Z„has the form

H4(»1; a) = —Z F(Q p(»i, q)P(0; M„(O,T); Z,)
+ p LQ p(», +i, 'e) QF(», ; g—)]P(s; M.(O, T),Z,)}. (15)

The interaction energy between the F electron and the
electronic polarization induced by the F electron has
the form

H4, (g a) = —ZFZF(QF(»i', g)P(0; M„(O,e); Qp(. , il))

+Z [Qp(»+i, n) QF(» ~)j—
e& 1

XP(s; M„(O,e); QF(,g))}, (16)

and the interaction energy between the F electron in
the state

~ g; f',a) p and the ionic polarizations induced

D.=Z.ZF Q S;Q, .
s=l

The term SiQia/»i(1 —a) represents the total ionic
polarization potential arising from the 6rst shell owing
to both the point charge Z, and the F electron. The
operator for the F-electron —point-ion interaction, K2,
contributes the energy

by the F electron in the state
~ i; i,a) p has the form

H4, (»1; l,a) = z—pz p(Q F(»i', g)

)&P(1;M„(O,i); Q p( .,t'))
+ Z LQ F(».+i, n) —Q F(».; n)j

)&P(s; M„(0,i); Q p( . ,i))}, (17)

where 1 =q for the relaxed state, and l' is the initial
state of the F electron for the unrelaxed state (the final
state of an optical transition). Because the HFPI models
do not allow the ionic polarization to follow rapid
changes in the F-electron wave function, we use the
ionic polarization and the nn distortion a which are
appropriate for the initial state of an optical transition
when we compute the F-electron wave function for the
final state. The interaction energy H4, (»I;t', )athen
means that the F electron in the state

~ g; f, a) Finter-
acts with the ionic polarization potential which arises
from the nn distortion 0. and from the ionic dipoles
induced on the distant ions in shells s&~ 2 (distant ionic
polarization) by an F electron in the state ~f; f,a) p
We shall use hereafter this notation:

The self-energy of the F electron is'

H.,F = 2(H4.+—H4;) . (Ig)

The interaction energy of Z, with the polarization in-
duced by Z, itself is

H4= Z,P(0; M„—(O, T); Z„),
and the self-energy of the effective vacancy charge is'

(20)

The interaction energy between Z„and the electronic
polarization induced by the F electron is

He, (»l,a) = Z,ZFP(0; M„—(O,e); Qp(, q)), (21)

and the interaction energy between Z, and the ionic
polarization induced by the F electron is

He, (f) = Z„ZpP(1; M„(—O,i); Q p( f')) . (22)

The total F-center energy for the model HFPI (1)
becomes

Hr(q, l,a; 1)=Hi+H2+H4+2(H4. +H4;)+ ',H4-
+H4.+H4;+AEi, (vacancy, distortion), (23)

where AEq(vacancy, distortion) =DE,+DE„.
Using the notation given in Appendix A, we list the

energy terms E4 to E4, for the case of model HFPI (2)
which correspond to the energy terms H3 to H6; of
model HFPI (1).The set of v's corresponding to the sth
shell is denoted by F,.

E4(g; a) = —(Z.ZF p ai'(Z. )A.(g)+Z,ZF g M (O,T)A„(»1)+ZFQF(»4', g)P(3;M.(O,T); Z.)

+Z p P LQF(r, +i, g) —QF(»„q)jP(s; M. ,(0,7'); Z..)}, (24)
a&3

'T. Kojima, J. Phys. Soc. Uapan) 12, 908 (1957).Appendix A of this reference contains the derivation of Eqs. (18) and (20).
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Eo.(rl; o) = —Z«Z«{ g a~ Qr(, rl)B„(rl; g)+ P M (O,e)B„(rl,g)+Q«(ro, g)P(3;M„(0,e);QF( ',g))
v+Fl v@K'g

+E I:Q (.+;n) Q—(.;n)7P(;M*(0, );Q (, ))}, (»)
8&~ 3

Eo(g; {,p)= —Z«Z«{ g M (Oi)8(rl; {)+Q«(ro, g)P(3; M(Oi)Q«( . ,{))+P I Q«(r+r', g) —Qr( „' q)7
v+I'p a)3

XP(s; M, (O,i); Q (. . {'))}, (26)

E r= ——,'(E4,+E4;), Eo=H~,

~see = g&5 p

Eo.(n, ~) = —Z.ZF{ 2 ol (Qr(, n))A. (n)+ 2 M-(O, e)A.(n)+P(3; M.(o,e); QF(,n))}
v+I'y

and

Eo,({)= —Z„{Z«Q M (O,i)A„(g)+Z«P(3; M„(O,i); Q«(,{))}.

(O'I)

(2g)

(29)

(30)

Hr(n; Pr, pz) with respect to only n to obtain the energy
of state D, ED Er(ng, pr, «——)r.

The optical absorption energy for the transition from
state A to state 8 is E(A—8)=Ee E~, and th—e optical
emission energy from state C to state D is E(C D) =Ec-

p~
The lifetime of the relaxed excited state C is pro-

portional to the ratio of the square of the dipole matrix
elements for absorption and for emission. We expect an
order-of-magnitude estimate for the radiative lifetime
to be given by'

The total F-center energy for the model HFPI (2)
becomes

HT(«I {e 2) =Hl+Ho+Eo+p(E4e+E4 )+2E5
+Eo,+Eo;+AEr, (vacancy, distortion) . (31)

IV. ABSORPTION AND EMISSION

(32)T =TRQ 10 sec

1(Po, oo,&o
I
z

I op,' oo,p'o) b. l

TR
l&P~ P~ «leis~;O~, «)-'. I'

(33)

We have considered only dipole radiation to the state D
in the above estimate for the radiative lifetime. There
are, of course, other processes which may compete with
the dipole-radiation decay, such as nonradiative decay
(high-temperature thermal ionization) of the excited
state and tunneling to the conduction band. Hence,
our present treatment of the HFPI models will be least
subject to criticism for low temperatures.

The expectation value of a given power of the radial
coordinate r gives us information on the spatial extent
of the F-electron wave function. As a measure of the
spatial extent, we have chosen to consider only the first
power of r, namely,

«(n; {,~) =«i '(n; {,e I r I n; -{,e) (34)
'The SCP{HF) and SCP(QA) models of paper I allow those

ions which are su%ciently far from the F center to violate the
Franck-Condon principle whenever the F-electron wave function
is di6'use. Notice that in the present HFPI models the Franck-
Condon principle applies to the distant ions for all F-electron
wave functions. This is a most fundamental difference between
the S('P models of paper I and the HFPI models of the present
work.

We refer the reader to Sec. V of paper I for a more complete
discussion of the radiative lifetime.

The low-lying states of the F center can be described
by referring to Fig. 1. The Ii center is originally in the
relaxed ground state A, I no,' no, &rp) We .minimize
Hr(n', n, ~) simultaneously with respect to a and o to
obtain the energy of state A, i.e., E~ ——E«(no, no, pp).
The F center becomes excited into the state 8, I Pr, ptp, o p),
which is assumed to be a quasistationary state with an
electronic wave function calculated from the same dis-
tortion 0 and distant ionic polarization as that for the
relaxed ground state Inp', Go, pp). This is a statement of
the Franck-Condon principle. It should be emphasized
that the distortion 0. represents the ionic displacement
(ionic polarization) of the Sq nn due to both the F
electron and the effective vacancy charge Z„and that
the distant ionic polarization (long-range ionic polari-
zation) refers to the ionic displacements of all the re-
maining ions located on shells beyond the first shell.
This distinction will be most important in Sec. VI when
we treat the first shell of ions in a quantum mechanical
manner. We minimize Hr(8; oo, p.o) with respect to only
P to obtain the energy of state 8, Ee Er(8o', ~o,p'o). ——
The lattice then relaxes to the state C, IPr', Pq, «), and
the distant ionic polarization and the nn distortion
change to accommodate the F electron. %'e minimize
Hr(P;P, p) simultaneously with respect to ti and p to
obtain the energy of state C; i.e. , Ee Er(P&, Pr,or). ——
The unrelaxed ground state D, Inq, P„p.q), into which
emission occurs is assumed to be a quasistationary state
with an F-electron wave function calculated from the
same distant ionic polarization and distortion o- as that
for the relaxed excited state IPr, P~,e~). We minimize
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T&&LE I. Input data for the HFPI (1) and HFPI (2) models for the F center. The Pauling factor for the ith and the jth ions is p;y.
The io»c radius of the cation is P+ and of the anion is P . The quantity p is the stiffness factor in the empirical Born-Mayer exponential
f«m which characterizes the repulsive energy between the ith and the jth ions. The Madelung potential constant at the anion site is
ot3f. The high-frequency and low-frequency dielectric constants are e„and 6p, respectively. The quantity r& is the lattice constant (cation-
cation) for the CaFs structure and is the nn distance (anion-cation) for the NaCl structure. The quantities P+~, P+ P, e, 4p, and

o ~ «e dimensionless. The free-ion electronic polarizabilities a+' and n ' are expressed in units of 10 24 cm'. The longitudinal-optical
phonon frequency ~t is expressed in units of 10"rad sec '. The letters CA% mean cation atomic weight. The CAW is used to compute
the ~~ti~n mass in Sec. VI. All other quantities are expressed in terms of a.u. ; 1 a.u. =27.2 eV for energy and 0.529' 20 s cm for length.

p++
p+-
p--
P
P+
P—
ot $t'—I

eo '
rl
Ct
Co
Cg
CX+

CA%

NaCl

1.25
1.00
0.75
0.599'
2.22~
3.00'
1.748
0 444e
0 177e
5.32.
3.579g
0.9895g
2.942g

0.411
2.96'
4 88e

22.99"

KCl

1.25
1.00
0.75
0.637~
2.77~
3.00'
1.748
0 469e
0 214e
5 93'
3.579g
0.9895'
2.942g

1.33'
2.96'
3.95'

39.20~

MgO

2.50
1.00
0.50
0.629b
2.76b
2.55b
1.748
0 339c
0.102e
3.97b
3.579g
0.9895g
2.942g
0.096~
2.65'

19.83'
24.32"

Cao

1.50
1.00
0.50
0.629b
2 2ib
2.55b
1.748
0.305'
0.085'
4.54b
3.579~
0.9895'
2.942~
0.48~
2,36~

13.07e
4Q.Q8"

SrO

1.50
1.00
0.50
0 629b
2 48b
2.55
1.748
0.302'
0.075'
4 86b
3.579'
0.9895g

2.942'
0.86~
2.58'
8 06'

87.63"

CaF2

1.50
1.125
0.75
0 546'
2.21a
1.98a
4.071
0.489'
0.149'

20.32a
1.865b

~ ~ ~

1 101
0.64'
1 38e

40.08"

SrFg

1.50
1~ 125
0.75
0.560'
2.48a
1 98a
4.071
0.483'
0.152'

10.95a
1.865b

~ ~ ~

1.601
Q 64'
1.12'

87.63~

1.50
1.125
0.75
0 582e
2.76a
1.98a
4.071
0.463t
0.239t
11.71a
2.865"

~ ~ ~

2.501
0.64'
0 977e

137.36"

"M. P. Tosi, in Sohd State physics, edited by F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1964), Vol. XVI, p. 52.
b M. L. Huggins and Y. Sakamoto, J. Phys. Soc. (Japan) 12, 241 (1957).
& A. D. Franklin (private communication).
d G. C. Benson and E. Dempsey, Proc. Roy. Soc. (London) A266, 344 (1962).

M. Born and K. Huang, Dynamica/ Theory of Crystal, Lattices (Oxford University Press, Oxford, England, 1954), p. 85, Table 17.
W. Kaiser et al„Phys. Rev. 127, 1950 (1962).

& A. Scholz, Phys. Status Solidi V, 973 (1964).' H. S. Bennett, J. Res. Nat. Bur. Std. 72A, 471 (1968).
' J. R. Tessman et a/. , Phys. Rev. 92, 890 (1953), Table VI.
I J. R. Tessman et at. , Phys. Rev. 92, 890 (1953),Table VII."S.Glasstone, Atomic Energy (D. Van Nostrand Company, Inc. , Princeton, N. J., 1958), p. 12.

We use the following procedure to estimate how well
the variational wave functions approximate the exact
eigenfunctions of our model Hamiltonians: We take the

TABLE II. Numerical results of the HFPI (2) model for NaCl
and KCl. The quantities E(A-8) and E(C—D) are energies ex-
pressed in atomic units (1.a.u. =27.2 eV). All other quantities are
dimensionless.

matrix elements of the operator equation

Ls,Hr) =ihP, /m

between the states A and B for absorption and between
the states C and D for emission, namely,

(Po» ao»&o I
s I ao; ao,oo)E(A 8)'—

= (ik/No)(Po; ao, o'o
I p* I ao; ao,o'o) (36)

pro

r(otop exp~co)

r(po', o.o,cro)

apRp
'

P&o
r.v(~o,a o)
E(A-8; theory)
I' (A—8; expt)
tr&(theory)
~r ~(expt)
r(Ay& Pj,try)

r(Pi; Pi,&i)
CXIEI

p]R$.~(p, )
E(C-D; theory)
E(C-D; expt)
v g(theory)
rg(expt)

NaCl

0.014
0.725
1.02
2.95
2.46
1.17
0.093
0.101'

—0.032—0.07 to —0.08'
0.752
1.10
2.85
2.44
1.21
0.081
0.04a
0.86

10.0e

KCl

0.036
0.703
0.957
3.05
2.61
1.15
0.086
0 085'

—0.015—0.125'
0.718
0.969
2.98
2.58
1.17
0.074
0.04&'
0.87
5 72e

for absorption and

&ai; Pi,aiI ~ II'; Pi,ax)E(C-D)
= (ih/m)(ag. , Pg, ogI p, IPg» itg, og) (37)

for emission. Ke then compute the left-hand and right-
hand sides of Eqs. (36) and (37). If the trial wave func-
tions (rI g; t', )r awere exact eigenfunctions of the model
Hamiltoman, then the equalities of Eqs. (36) and (37)
would be satis6ed. However, our variational wave func-
tions are not exact, and the amount by which the ratio
r~(t', a) of the left-hand side divided by the right-hand
side divers from unity will be a measure of how well
we have carried out the mathematics for the HFPI
models.

& The quantities Ro and Rs are given by the relations Ra=re(1 —oro)
and Rt =rt(1 —or) t.

b J.J. Markham, in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic Press Inc. , New York, 1966),Vol. VIII (Suppl. ), Table 3.2a.

N. F. Mott and M. J. Littleton, Trans. Faraday So". 34. 485 (1938);
N. N. Kristofel', Fiz. Tverd. Tela 5, 2367 (1963) LEnglish transl. :Soviet,
Phys.—Solid State 5, 1722 (1964)j.

d Reference b, Table 8.1.
& Reference b, Table 8.5.

V. RESULTS FOR ABSORPTION AND EMISSION

In this section, the results of the preceding two HFPI
models are reported. We shall divide the presentation
of our results into three groups: the alkali halides
(NaCl and KC1), the alkaline-earth oxides (MgO, CaO,
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TABLE III. Numerical results of the HFPI (2) model for MgO,
CaO, and SrO. The quantities E(A-B) and E(C—D) are energies
expressed in a.u. (1 a.u. =27.2 eV). All other quantities are
dimensionless.

&o

r(ao,

'aors'o)

r(po', ao,cro)

pRp a

ppRp
T~(ao,ao)
E(A-B; theory)
E(A —B; expt)

r(al, pl, trl)
r(pl pl &I)
alRl
plR]
T3f(Pl,&l)
E(C-D; theory)
E(C—D; expt)
Tg(theory}

MgO

—0.067
0.709
1.04
3.02
2.41
1.28
0.141

0.180 . 0.182'
—0.090

0.751
1.06
2.85
2.37
1.37
0.127
0.088e
0.86

CaO

—0.055
0.673
0.947
3.18
2.64
1.23
0.127
0.134o

—0.074
0.700
0.944
3.06
2.65
1.27
0.119
0 121c
0.90

SrO

—0.048
0.658
0.906
3.26
2.76
1.21
0.120

0.110b 0.118&0.02d
—0.066

0.678
0.905
3.17
2.76
1.23
0.113

0.090&0.01d
0.92

a The quantities Ro and Rl are given by the relations Ro=rl(1 —o'o)
and Rt =r1(1 -o t).

b B. Henderson et at. , J. Phys. C1, 586 (1968), Table 2; and B. Hender-
son, Natl. Bur. Std. (U. S.) Spec. Publ. 296, 41 (1967).

e J. C. Kemp et a/. , Phys. Rev. 171, 1024 (1968);and B.D. Evans et aL,
Phys. Letters 27A, 506 (1968).

~ B. D. Evans (private communications). These are preliminary and
unpublished results for which the author thanks B.D. Evans.

o Ref. b. Because the Huang-Rhys factor is experimentally about 39,
the F-center emission peak has not been observed in MgO. The authors
estimate that it is near 0.088 a.u.

and SrO), and the alkaline-earth ffourides (CaFp, SrFp,
and BaFp). We use the Born-Mayer empirical form
LEq. (15) of paper Ij for the repulsive energy terms.
Table I contains the values of the input data which were
used in the two HFPI models.

If the test ratio r~ is not close to unity, then we must
say that our results are inconclusive because we have
not solved the model Hamiltonian with sufBcient rigor.
We stress that even when v~ equals unity, the varia-
tional wave functions may differ substantially from the
exact wave functions. The test ratio T~ gives us only
first-moment information. The extent to which r,~~ may
differ from unity before we must reject the variational
wave functions as being too crude for the computed
quantities is a subjective decision. Our experience with
the SCP models of paper I suggests that values of r.~~

between 0.5 and 1.3 are reasonable.
We consider the results of the HFPI (1) model for

the alkali halides, the alkaline-earth Quorides, and the
alkaline-earth oxides as inconclusive because all values
of the test ratio v ~ are too far from unity in both the
absorption and emission studies. We may attribute this
difficulty of the HFPI (1) model to the deficiencies of
the hydrogenic variational wave functions. The Ap-
pendix of paper I contains a discussion of some of the
deficiencies of the variational procedure. The author
concludes that hydrogenic-type functions (5) and (6)
do not even approximate the exact eigenfunctions of the
model Hamiltonian HFPI (1).

In Table II are presented the HFPI (2) model pre-
dictions for the two alkali halides, in Table III the HFPI
(2) model predictions for the three alkaline-earth oxides,

TAsr.E. IV. Numerical results of the HFPI (2) model for CaF2,
SrF&, and BaF&. The quantities E(A-B) and E(C-D) are energies
expressed in a.u. (1 a.u. =27.2 eV). All other quantities are
dimensionless.

&p

r(ap', ao,pro)

r'(pp, ap, d'p I

aoRo'
doRo
T V(ao,~o)
f (A —B; theory)
J:.(A —B; expt)
0'1

r(al, pl, ol)
«(Pl Pl &1)
KIRI
]SIRl
TM(pl al)
E(C—D; theory)
E(C-D; expt) "'

Tz(theory)

CaF2

0.042
0.732
0.993
2.93
2.52
1.16
0.142
0.121b

—0.004
0.754
1.02
2.84
2.45
1.20
0.125

~ ~

0.86

SrF2

0.041
0.72i
0.972
2.97
2.57
1.16
0.131
0.101'

—0.005
0.74()
1.00
2.89
2.50
1.19
0.115
~ ~ ~

0.86

BaF2

0.041
0.709
0.947
3.02
2.64
1.15
0.119
0,069'

—0.006
0.725
0.974
2.85
2.57
1.18
0.105

~ ~

0.87

a The quantities Ro and Rl are given by the relations Ro rl(1-ao) and
Rl =rl(1-trl).

b P. Feltham and I. Anders, Phys. Status Solidi 10, 203 (1965), Table 3.
e Experimental values for emission have not been reported.

and in Table IU the HFPI (2) model predictions for the
three alkaline-earth Auorides.

Two modifications to the HFPI (1) and HFPI (2)
models have also been studied. The first modification
contains a different evaluation of the electronic polari-
zation. Namely, during an optical transition the elec-
tronic polarization induced by the F electron responds
to only the change in the F-electron charge density of
each state. These modifications are called the HFPI
(1, mod) and HFPI (2, mod) models. The absorption
problem may be used as an example in order to be more
explicit. The electronic polarization induced by the F
electron for the state B= ~Pp, np, op) may be obtained
from the electron polarization induced by the F elec-
tron for the state A—= ~np, np, op) by adding the elec-
tronic polarization induced by the change in the charge
density between the final and the initial states QF(r;
Pp,

'
np, op) —Qp(r; np', np, op). For all the quantities given

in Tables II, III, and IV, there are only negligible dif-
ferences between the HFPI (1, mod) model and the
HFPI (1) model and between the HFPI (2, mod) model
and the HFPI (2) model. Also, the analogs of Kqs.
(15)—(31) are much lengthier than any of those equa-
tions. Therefore, we do not report the numerical results
for these models. The HFPI (1, mod) model yields test
ratios r~ which are much too large and the HFPI
(2, mod) model agrees with the HFPI (2) model to
within 3%. The latter result obtains because all states
are rather compact.

The second modification attempts to study the finite-
ion-size effect and approximates the Coulomb-inter-
action integrals between the F electron and the first-
and second-nn core electrons. This second modification
neglects the exchange integrals and hence is subject to
question. We mention the second modification here only
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because we want to avoid confusing its results with the
present results. We replace in the second modihcation'
the point charges of the 6rst- and second-nn by spheri-
cally symmetric charge densities of the form C„(r)
= (a„e ~ ")2, where r is the radial distance from the pth
ion on shells s=1 and s=2. The conditions

and

4ir C„(r)r'dr =Z„

4ir C„(r)r'dr =0 9Z„.

determine the parameters a„and b„ for the vth ion. The
second condition states that 90% of the ionic charge is
contained within a sphere whose radius is the ionic
radius, p„=p+ for cations, and p„=p for anions. We
evaluate the Coulomb integrals between this effective
ionic charge density and the F-electron wave function
and thereby obtain, in a most heuristic manner, the
effect of the 6nite size of the nn and nnn ions on the
self-consistent potential which the F electron experi-
ences. We then proceed as in the HFPI (1) model and
call this second modification the HFPI (1, finite-ion)
model. Using this model, we studied the F center in
CaO and reported the results in Ref. 9. Except for the
absorption energy, only a negligible numerical difference
exists between the HFPI (2) model and the HFPI
(1, finite-ion) model. The HFPI (2) model predicts
E(A —8)=0.127 a.u. and the HFPI (1, finite-ion) model
predicts E(A —B)=0.133 a.u. We feel that any model
such as the HFPI (1, finite-ion) model which approxi-
mates the Coulomb interaction integrals between the F
electron and the core electrons should include also an
evaluation of the exchange-interaction integrals to de-
termine their values relative to the Coulomb-interaction
integrals. We expect that this second modi6cation is
justified only for very compact F-electron states,
r(i1; (', )&a0 6, and .for very compact core-electron
states. This is the case for which the F-electron —core-
electron overlap integrals are small and for which ex-
change integrals may be neglected. We doubt that all
the F-electron and core-electron states meet these con-
ditions, and for this reason, we shall not discuss the
HFPI (1, finite-ion) model any further.

(q; i,a~ V(r, X)
~
ri; (,a) =H2(ri; a)+E,(s; a), (40)

(n;(, I V;(r,i)l~;(, )=E;(1)+lE;(~;1,), (41)

(q; 1',a~ V,(r,q) ~ g; f', a) =E6,(g,a)+ E4,(ri; a), — (42)

(~; i,a~St,
~ ~; t-,a) =a. (43)

and the F-electron kinetic-energy operator by the
identification

(q; f,a~ T, ~g;i,a)=a, (q; a). (44)

Using the Born-Oppenheimer approximation, we ob-
tain the following equations for the F-electron and
nuclear systems:

(T.+V(r; X)+V,(r; 1)+V.(r; q)}f„(r;X)
=IIr (rl; i,a)f„(r,X), (45)

mechanical model which we present is very idealized.
We assume that the nn ions are constrained to rt~ove

only in the breathing mode.
We write the total idealized F-center Hamiltonian as

3Cr = Tp+ TN+ V(r, X)+V;(r; 1)+V,(r; s)+-',Ri
+DE&(vac. ancy, distortion) . (38)

Here T~ is the F-electron kinetic energy; T~ is the
kinetic energy of the S~ nn ions; and X represents the
positions of the Si nn, i.e., X„=r„(1—a) for the breath-
ing mode. We now treat, in the Hamiltonian of Eq. (38)
the F electron and the Sj neighbors in a quantum-
mechanical manner and all the remaining ions in a
classical manner. We shall define below the potential
operators V, V;, V., and X5.

The Born-Oppenheimer approximation separates the
total wave function 4„,„ into electronic and nuclear
factors:

e„,„=P„(r;X)X„,„(X), (39)

where the F-electron wave function (r t q; f', )ar =p„(r X)
depends parametrically on the ion (nuclear) coordinate,
and where the ion (nuclear) wave function (X~ g; i,a)
=X„,„(X) depends not on the F-electron coordinate r
but on the F-electron state g. Ke define, within the
context of the Born-Oppenheimer approximation, the
potential operators V, V;, V„and X5 by the identi6-
cations

VI. QUANTUM LATTICE

The F-center absorption and emission in CaO ex-
hibit some structure which Henderson" and Kemp"
interpret to be zero-phonon lines. The concept of zero-
phonon lines is a quantum-mechanical concept. In this
section, we shall extend our models to treat the nn ions
in a quantum-mechanical manner. We shall continue
to treat classically the ions on shells s& 2. The quantum-

~ H. S. Bennett, Bull. Am. Phys. Soc. 13, 420 (1968)."B.Henderson, Natl. Bur. Std. (U. S.) Spec. Publ. 296, 41
(1968)."J.C. Kemp ef al. , Phys. Rev. 171, j024 (1968).

( Trr+Hr (g; i,a)+AEr (a) )X„,.(X)=B.,„X„,.(X), (46)

where

A
Tiv =

2M g&I

M is the mass of the ion at r„on the first shell,

Q, =x +j +z
ax„. ax„„ax„,'

AEr. (a) =DEr. (vacancy, distortion)+ —',Hs,
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where the relation
O'Hr(g; {,0)

S,M(o„'(g;{')=ri '
80

defines the local breathing-mode frequency ~ (p; {) and
ri is the nn distance for the perfect lattice. The lattice
equation (46) becomes

S1 h2

,gr1 2Mrg2 BO2

+-', PAv„'(rl; {)ri2(a.—0 )'j X„,„(X)

Equation (49) is separable, and we therefore write the
breathing-mode —lattice wave function as the product
wave function

x„„,(x)= g U„,„(x„), (50)

where U, , (X„)= U„,„(X„')for all v and v' on the first
shell. The individual-ion wave functions satisfy the
equation

O'U„.(X„),
.pri 23fri'U„, „,(x„) Bir'

+-', cVco '(rj,.{)ri'(a o)'= b„,„H—r(rl; {,ir„) . —(51)

We see from Eq. (51) that the quantum-mechanical
lattice reduces within the context of the Born-Oppen-
heimer and the harmonic-lattice approximations to the
solution of the Schrodinger equation for the harmonic
oscillator. Letting y =r,(0o), we have fin. a—lly.

A2 Gl2

,+2~~-'(~; {)y-' U, , -(y-)
2%By '

=Si—'(b„,„—Hr(ij; {,0„)}U„,„(y ). (52)

Hr(q; {,a) =Hr(rj; {,0) A—Ez(o) .

In order to proceed further, we introduce the har-
monic approximation. The total energy Hr(rj; {',0) has a
minimum at &r (g; (). For example, our results in Sec.
V tell us that 0 (ao, ao) =iro and 0' (Pi', Pi) =0'i. We
expand the total energy about the minimum 0„, to
second order; i.e.,

Hr(~;f, )=Hr(n;{, -.)

where n=0, 1, 2, 3

X„=(y„/Qm. 2"e!)"', y„'= (Ma& /i'),

H„($) is the Hermite polynomial of order m, e.g.,
Hp(&) =1, Hi(&) =2&, etc , a. nd where &=y y .

When we treat the breathing mode of the first 5~ nn
quantum mechanically, the total F-center energy be-
comes

Ero = B„,„=Hr(g; {,~ )+Ace„(n+-', ) . (55)

We see from Eq. (55) that the total energy Ero should
be minimized to obtain the correct F-center energy.
That is, we should find the appropriate minimum of
Hr(rl; f,&r„), e.g. , Er(g„.{'„a,), use this energy to com-

pute the frequency or&, and calculate the total quantum
energy Ez@. We then should vary, simultaneously, the
parameters g, g, and {T about the respective values q&,

{'~, and 0.
&, compute a new id, (q; {,0), and thereby, a

new Ezq. These steps should be repeated until the
minimum of Ezq obtains. But this iteration procedure
requires excessive computer time. We, therefore, use
below the results from the first step of the above iter-
ation procedure. We expect the error to be negligible
because m((M and therefore (T.)»(Tiv).

At this point in our discussion, let us consider how we
calculate the states G and H of Fig. 1 and how we evalu-
ate the local frequencies cv (g;{',o ) We . minimize

Hr(P; ao, a.) simultaneously with respect to /9 and 0 to
obtain the energy of state H, i.e., EH=Ei(a~, no, a~).
This notation means that the distant ionic polarization
for state H is the same as that for states A and B.
Similarly, we minimize Hr(n; Pi,o) simultaneously with
respect to o. and o. to obtain the energy of state G, i.e.,
Ei, Er(o3, / i,~—3—). This notation means that the dis-
tant ionic polarization for state G is the same as that
for states C and D. Let us summarize the polarizations
in the six F-center states. The electronic polarization is
different for all six states A, 8, H, C, D, and G. The
distant ionic polarization (s&~ 2) is the same for states
A, 8, and H and for the states C, D, and G; but that
for states C, D, and G divers from that for states 4,
8, and H. States A and 8 have the same distortion Op,

and states C and D have the same distortion fTiQop.
We compute the local breathing-mode frequencies

from the following relations:

2 (E.4 (0.01) Eg}—
uo o.p,'oo =—

SiMrP(0. 01)'

2 {Ec(001) Ec}—
~i'-(Pi; ~i) =

SiMr P (0.01)'

Hence, the eigenvalue for each ion is

S {8.,„—H, (&; {.,~„,)}=A „(&;{-)(n+-,'), (53)

2(Eii —EH }
M2 O,'P~ 02

SiMri2(ag . )'o0—(58)

and the wave function for each ion is

U, ,.(y-) =&-H.(y-y-)e (54)
(59)

2(En L'g)—
~3 (Pi; &3) =

SiMri2(o 3
—O.i)'



HERBERT S. BENNETT

TABLE V. Numerical results of the HFPI (2) model for the zero-phonon transitions. The quantities E(0-ph) are
energies expressed in a.u. (1 a.u. =27.2 eV). All other quantities are dimensionless.

S(abs; theory)
S{abs; expt}
E{0-ph; abs, theory}
E(0-ph; abs, expt)
Sg
$(emis; theory)
S(emis; expt)
E(0-ph; emis, theory)
E(0-ph; emis, expt)
eD

Nacl

7.81
25.0'
0.085

~ ~ ~

7.33
6.15

~ ~ ~

0.086
~ 0 ~

5.57

KCl

11.39
~ ~ ~

0.079
~ ~ ~

11.05
10.05

~ ~ ~

0.079
~ ~ ~

9.27

MgO

3.56
39.0b
0.132
0 134b
3.00
2.61

~ ~ ~

0.134
0.134b
2.22

CaO

3.56
39c
0.122
0.128'
3.04
2.46

3.5 to 4.9'
0.123
0.128'
1.98

SrO

4.43
~ ~ ~

0.116
~ ~ ~

3.95
3.26

~ ~ ~

0.117
~ ~ ~

2.78

7.53
~ ~ ~

0.132
~ ~ ~

7.27
7.48

~ ~ ~

0.134
~ ~ ~

6.77

SrF2

11.07
~ ~ ~

0.122
~ ~ ~

10.87
11.04

~ ~ ~

0.123
~ ~ ~

10.34

14.19
~ ~ ~

0.111
~ ~ ~

14.14
14.50

e ~ ~

0.112
~ ~ ~

13.65

& J. J. Markham, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1966), Vol. VIII„'(Suppl. ), Table 3.5.
The Huang-Rhys factor is assumed to be 25 for the Poissonian curve.

& B. Henderson et al. , J. Phys. C (Proc. Phys. Soc.), 1, 586 (196&), Table 2; and B. Henderson, Natl. Bur. Std. (U. S.), Spec. Publ. 296, 41 (1967).
These values are estimates.' J. C. Kemp et al. , Phys. Rev. 171, 1Q24 (1968);and B.D. Evans, Phys. Letters 27A, 5Q6 (1968).

where we minimize Hr(n;np, o, 0 0—1) .with respect to
n only to obtain the energy

Eg(0.01)=Er(n', np, op —0.01)

and IIr(P; P~, or —0.01) with respect to P only to obtain
the energy Eo(0.01)=Er(P', P&, o &

—0.01).
%hen the quantu~ number n is large, we define the

classical turning point as that displacement o,&(rp, rrp)

for which the kinetic energy of the oscillating ion is zero,
namely,

', %co„'r—PPo,g(m, mrs) o]'=—Ace (ps+ ', ). -(60)

The oscillator quantum number is zero for the states A,
C, 6, and II, and it is approximately

mg ——LMco rp, '( po—op)' —App, ]/2Arap (61)

for state 8 and

rpn —$3fc03 rg (oJ 03) A(op]/2Appp, (62)

for state D.
Before we calculate the zero-phonon transition energy

in terms of the above quantum lattice, we must empha-
size the diRerence between the experimental Ii center
examined in the laboratory and the idealized I' center
described by Eqs. (38) and (39). The experimental F
center is a complete quantum system for all ions (s=1
and s)~ 2) and for the defect electron. lt does not have
any obligation to satisfy the Born-Oppenheimer ap-
proximation and the Franck-Condon principle. The
final state of a zero-phonon transition which occurs in
the laboratory is a totally relaxed state. Because the
experimental F center emits no additional phonons
after a zero-phonon transition, the distant ions, which
behave quantum mechanically, also relax during the
optical transition. Unfortunately, because we are forced
for practical reasons to treat the distant ions classically
and the nn ions quantum mechanically, we destroy our
ability to describe the zero-phonon transition in an
entirely satisfactory manner. Given the HFPI model,
we must calculate correctly within its framework the
zero-phonon transitions. The idealized F center (the

HFPI model considered here) satisies the Born-Oppen-
heimer approximation for all states. Because the distant
ions have behave classically in the HFPI model, they
exhibit no zero-point motion and hence must satisfy the
Franck-Condon principle during any optical transition.
Also, as a result of this classical treatment of the distant
ions, the HFPI model contains no direct mechanism for
relaxing the distant ions during an optical transition.
That is to say, the probability that the distant ions are
at positions other than their positions appropriate for
the relaxed state A for absorption or the relaxed state C
for emission is zero. This is not the case for the nn ions.
Their quantum behavior gives them a fmite (nonzero)
probability to be at positions other than op(absorption)
or o~(emission). This classical aspect of the model in-
troduces a surprising behavior in view of present
thought when we treat the zero-phonon transition within
the restraints of the Born-Oppenheimer approximation
and the Franck-Condon principle for the distant ions.
The model allows the zero-phonon transition energy
and the Huang-Rhys factor in absorption to diRer from
the corresponding quantities in emission LEqs. (63)—
(66)].Experimental data on the zero-phonon transitions
for F centers are scarce. The present interpretations of
the experimental data suggest that E(0-ph; abs, expt)
equals to within experimental error E(0-ph; emis, expt)
and that S(abs; expt), the absorption Huang-Rhys fac-
tor, di6ers from S(emis; expt), the emission Huang-
Rhys factor. Ke refer the reader to Table V. This subtle
theoretical and model-dependent feature may be of no
quantitative consequence when we insert numbers into
the model. In fact, we shall show for the crystals studied
here that this is the case.

The above discussion suggests that we should consider
modifying the model to treat the zero-phonon transi-
tions in a more realistic manner. However, any practical
modification would destroy the internal consistency of
the present model for some of the states and would add
more unknown parameters. These additional parameters
would be associated with the coupling between the im-
mediate neighbors to the defect and the distant ions.
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We choose instead to calculate within the context of the
HFPI (2) model the zero-phonon transition energies
and the Huang-Rhys factors and then to see what
it then predicts numerically. We shall find that
E(0-ph; abs, theory) =E(0-ph; emis, theory) to within
2%%uo. Hence the model does agree with present experi-
ments on the near equality of E(0-ph; abs) and
E(0-ph; einis).

Other researchers might prefer altering the model in
order to treat more realistically the zero-phonon tran-
sitions. But unless their resulting model is completely
quantum mechanical and treats all ions in the same
manner, they also will be forced by practical consider-
ations to choose between equally and physically un-
satisfactory alternatives and to add additional param-
eters. For example, consider the model in which the F
center consists of the one-defect electron and only the
Si-nn ions. The one-electron and S~ ions all behave
quantum mechanically. We neglect completely the
distant ions (s&~2). Let us call this greatly reduced
model the HFPI (nn only, quantum-mechanical (QM))
model. The coniguration diagram for the HFPI (nn
only, QM) model which corresponds to Fig. 1 for the
HFPI (2) model appears similar to Fig. 1 in paper I.
Referring to Fig. 1 in the present paper, we 6nd that
the curves V~ and VD coincide, the curves V~ and V~
coincide, the points A and G coincide, and the points
C and H coincide. In addition, the resulting curves
U~(VD) and Uc(Vs) both lie in the Er oplane. The-
zero-phonon transition for the HFPI (nn only, QM)
model is between states A and C. However, even though
we may calculate now the zero-phonon transition
correctly and without any ambiguities, the HFPI (nn
only, QM) model is not physically satisfactory for the
optical transitions from A to8 or from C to D.These tran-
sitions are greatly influenced by the more dista, nt ions
which are neglected in the HFPI (nn only, QM) model.

Such problems associated with the distant ions plague
all theoretical treatments. Also, the theories on the
zero-phonon transition depend upon the validity of the
Born-Oppenheimer approximation. The concepts by
which researchers attempt to overcome the distant-ion
problem are one of the main features which distinguish
the many models for the F center from one another.
We shall return to this in Sec. VII.

A zero-phonon transition occurs within the limited
context of the idealized quantum lattice of model HFPI
whenever the quantum number n does not change dur-
ing the transition, and whenever the distant ions (s&~ 2)
do not move in accordance with the Franck-Condon
principle. A finite probability that the nn ions for state
A may be at f72 instead of at 0-0 exists because of the
zero-point motion. If during an optical transition from
state A (or C), the nn ions (quantum) move to &r2(or to
03) because of their zero-point motion, then a zero-
phonon transition is possible. Hence, the existence of
zero-phonon transitions for the HFPI models means
that the nn ions (quantum) may violate the Franck-

E(0-ph; emis, theory) =Ec Eg. — (64)

The probability for the zero-phonon-absorption tran-
sition from state A, with n~=O, to the state H, with
n~ ——0, relative to the entire F-center absorption band
is e»s, where S,b, is the absorption Huang-Rhys factor
Similarly, the probability for the zero-phonon-emission
transition from state C, with n~=O, to state G, with
ng=O, relative to the entire F-center emission band is
e eblis, where S, ;, is the emission Huang-Rhys factor.
We derive in Appendix B the expressions for S,b.- and
for S, ;,. From Eq. (B11)we have that

Sb =Sn'oui (r2 &0) /(1+V b )
aild

Semis SlY1 rl (03 Kl) /( +Yemi» ) &

(6S)

(66)

where 'Ysbs Yo/'Y2 and Yemls 71/73.
We list in Table V the oscillator quantum numbers

n~ and nD, the idealized-zero-phonon transition ener-
gies, and the Huang-Rhys factors for the HFPI (2)
Inodel and compare them with their experimental
values. We observe that

E(0-ph; abs, theory) =E(0-ph; emis, theory) .

This agrees with the limited number of experiments
reported.

VII. COMMENTS AND DISCUSSION

The author uses in both the SCP models of paper I
and the present HFPI models a variational procedure
with trial F-electron wave functions to approximate the
exact solutions to model Hamiltonians. The variational
ground-state energy is known to be greater than the
exact ground-state eigenvalue. But, it is not known
whether an excited-state energy will be greater than or
less than the exact excited-state eigenvalue. The test
ratios vair(f, o) indicate to what extent the trial wave
functions approximate the exact solutions of the model
Hamiltonians. Another feature which is common to both
the SCP and HFPI models is the implicit assumption
that radial changes in the F-electron wave function
dominate in determining the energy levels and the life-
times of excited states. Recent experimental data" and
preliminary theoretical studies" suggest that radial and
angular changes may be both equally important.

~2 L. D. Hogan, thesis, Cornell University, 1968 {unpublished)."H. S. Bennett, Bull. Am. Phys. Soc. 13, j.474 {1968).

Condon principle, but that the distant ions (classical)
(s&~ 2) must satisfy the Franck-Condon principle. The
transitions from states A to H and from states C to G
correspond, respectively, to the idealized zero-phonon
transition in absorption and to the idealized zero-
phonon transition in emission. The optical energy for
the idealized zero-phonon transition in absorption is

E(0-ph; abs, theory) =Err E~, — (63)

and that in emission is
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TABLE VI. Comparisons of the longitudinal-optical phonon energy Ace& and the localized-oscillator energies AQ)p, Acof,

~2, and Aau3. All the energies are expressed in terms of a.u. )&10 ' (10 ' a.u. =0.0272 eV =4.133)&10"rad sec ').

Acct

ACd p (CXp, O'p)

AO)g(np)0 g)
AeuI(PI, ~I)
AO)3(PI, Cr3)

NaCl

1.18.
0.903
0.909
0.914
0.892

KCl

0.955'
0.527
0.542
0.554
0.525

MgO

4.80'
2.73
2.64
2.58
2.69

CaO

3.16'
1.70
1.68
1.68
1.70

SrO

1.95.
1.02
1.03
1.03
1.04

CaF,

0.334b
1.20
1.28
1.30
1.23

SrF2

0.27lb
0.738
0.779
0.775
0.748

BaF2

0.236b
0.509
0.542
0.550
0.525

a M. Born and K. Huang, Dynamica/ Theory of Crysta/ Lattice (Oxford University Press, Oxford, England, 1954), p. 85, Table 17.
b W. Kaiser et al. , Phys. Rev. 127, 1950 (1962).

The SCP and HFPI models di6er in many ways. One
advantage which the HFPI models have over the SCP
models is that no ambiguity exists in calculating the
distant ionic polarization within the framework of the
Franck-Condon principle. Because the SCP models
allow the distant ions to violate partially the Franck-
Condon principle, researchers must decide under what
conditions and to what extent the distant ions may
violate the Franck-Condon principle during an optical
transition. This decision, which depends upon physical
intuition, is the source of ambiguity and of differences
among recent studies" and requires further study. The
HFPI models have the advantage that they use less in-
put data than the SCP models use but, at the same time,
they require substantially more computer time than
the SCP models require. A most important difference
between the SCP models and the HFPI models is that
the former predict spatially diffuse states for state C
in XaCl and in KCl and for state 8 in CaF2, SrFi, and
BaF2, while the latter predict that all states are corn-
pact. This should be the case if the HFPI models are
to be internally consistent with their assumptions. Ob-
servations, based on the predictions of the HFPI
models and the SCP models (compare Table II of paper
I and Tables II—V of the present paper), indicate that
the spatial extent, the lifetime of state C, and the
Huang-Rhys factor are closely interrelated. Keeping in
mind that these models allow only radial changes in the
J -electron wave function for state C, we note that
Huang-Rhys factors greater than about 20 appear to
be associated with at least one spatially diffuse state.

We see from Tables II and V that the HFPI (2)
models for the F center in XiaCl and in KCl agree well
with the experimental absorption energies and with the
fact that zero-phonon lines are not observed LS(abs) & 6
and S(enus))6), but disagree with the experimental
emission energies and with the lifetimes of the relaxed
excited states. We constrast this with the good agree-
ment between the SCP model and experiment (Table II
of paper I) for the above four quantities.

Both experimental and theoretical studies of the I'
center (one-defect electron) in the alkaline-earth oxides,
particularly MgO and CaO and more recently SrO,
contain many uncertainties. Tables III and V show
that the HFPI (2) model for CaO predicts reasonable

"R.F. Wood (private communication); and R. F. Wood and
U. ()pik, Phys. Rev. 179, 783 (1969).

values for the absorption and emission energies, the
zero-phonon transition energies, and the Huang-Rhys
factors. We lack sufhcient data on SrO to judge the
agreement between the HFPI (2) model and experi-
ment. At first sight, one may conclude that the HFPI
(2) model fails to explain the F center in MgO, par-
ticularly, the large Huang-Rhys factor estimated by
Henderson. Recent experimental studies" on MgO in-
dicate that perhaps the F (one-defect electron) band
and the F' (two-defect electrons) band lie sufficiently
close to one another to obscure details of the spectra.
This means that if the Ii band had zero-phonon struc-
ture on its tails (5&6), it would be most difficult to
observe due to the presence of the Ii' band. We might
conclude then that the possibility of a Huang-Rhys
factor less than 6 has not been excluded by present
experiments. One unsolved mystery is why experiments
on the Ii center in MgO seem to be qualitatively differ-
ent from those in CaO. The F and F' bands in CaO are
thought to be well separated. We compare this with
what the HFPI (2) model seems to say. Except for the
fact that the free-cation electronic polarizabilit~ of MgO
is one-hfth that of CaO and one-ninth that of SrO, the
input data in Table I is qualitatively the same for these
three alkaline-earth oxides. Tables III and V reveal that
the HFPI (2) models for MgO, CaO, and SrO predict
qualitatively similar results. One might conclude from
this that the ionic polarization is much more important
in determining the optical properties of the I' center in
the alkaline-earth oxides than the electronic polariza-
tion is. We must wait for the completion of additional
research before we might hope to resolve the above
uncertainties.

It is most difFicult to compare theory and experi-
ment for the alkaline-earth fluorides because sufhcient
experimental data are not available. At present, we
may only remark that the SCP(HF) model (Table III
of paper I) gives much better agreement with the ab-
sorption experiments than the HFPI (2) model gives.
Also, we observe that state 8 is diffuse for the SCP(HF)
model and compact for the HFPI (2) model. Again, this
dramatizes the need for further studies, both theoretical
and experimental.

We conclude by comparing the present paper with
Ref. 14. The researchers of both efforts examine the

~ J. E. Wertz (private communication).
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behavior of the distant ions in some detail and must
choose among various alternatives, none of which are
completely satisfactory. The researchers of Ref. 14 study
only the alkali halides and calculate the absorption
and emission energies, some of the matrix elements
which might appear in a lifetime calculation, the hyper-
fine interaction of the F electron with the nn ions in the
ground state, and the relative positions of the 2s- and
2P-like levels which are important for the Stark effect.
We do not calculate the latter two but instead calculate
the zero-phonon transitions and the Huang-Rhys fac-
tors. They use a variational F-electron wave function
which is orthogonal to the electronic orbitals of the
neighboring ions. The orbitals are free-ion (unpolarized)
Hartree-Fock orbitals. Both theories inlcude the classi-
cal ionic lattice to determine the relaxation of the nn
in a breathing mode. They treat the ionic and electronic
polarization in terms of the effective-mass approxima-
tion for the F center. %'e both rely upon the Franck-
Condon principle to suggest the polarization during
any optical transition. However, our respective methods
differ substantially. They represent the ionic and elec-
tronic polarizations by a polarization potential written
as the sum of the ionic polarization potential and the
electronic polarization potential. These polarization po-
tentials are not explicit functionals of the F-electron
wave function and contain two additional parameters.
Choosing reasonable values for these parameters is a
troublesome process. The Fra,nck-Con don principle
and assumptions about the spatial extent of the F-
electron wave function suggest various alternative pro-
cedures. One of the more successful ones states that the
ionic polarization potential is zero for states A and 8
and that it contains for states C and D an effective di-
electric constant determined by the effective-mass
theory and the thermal ionization energy. On the other
hand, our self-consistent polarization potentials for the
HFPI models introduce no additional parameters into
the theory and thereby do not require parameters whose
values change when going from the absorption states to
the emission states.

Both models attempt to satisfy the Franck-Condon
principle during any optical transition. The ionic and
electronic polarizations in the HFPI models respond for
all states to the average F-electron charge density. The
models of Ref. 14 allow the ionic polarization for the
relaxed state C to follow to some extent the J electron. If
the effective dielectric constant for the relaxed state C
lies between the high-frequency dielectric constant and
the static dielectric constant, then the ions must follow
partially the F electron. But during an optical transi-
tion, the distant ions of both models do not follow the
F electron because otherwise this would imply a change
of the ionic polarization. Hence, the HFPI models
compute state C in a different manner than do the Ref.
14 models. It is only when we treat the zero-phonon
transition within the limitations of the Franck-Condon
principle for the distant ions (classical) that the HFPI

(2) model strains our physical intuition by allowing

E(0-ph; abs, theory) to differ from E(0-ph; emis, theory).
If the researchers of Ref. 14 had computed the zero-
phonon transition, they would have encountered the
same result. But this is of no quantitative consequence.
The HFPI (2) model for the eight crystals studied here
predicts quantitatively that the absorption and emis-
sion zero-phonon energies are essentially equal.
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lV=SU=8(gm. ) ' E Dd'r, (A1)

which occurs when a point charge —Z„moves to the
surface of the crystal is expressed in the semicontinuum
models by the relation

lV= —Z„'-(1—c ')(2R)—'

where R is the Mott-Littleton radius, and e is the ap-
propriate dielectric constant. The electric held is K, and
the displacement vector D=K+4mP, where P is the
polarization vector (dipole moment per unit volume).

The author has previously discussed the ionic and
electronic polarizations which a charge density pd(r)
induces in an ionic crystal. "We therefore shall apply
those results to the F-center problem. We consider an
ionic crystal which contains one molecule M„X„per
volume ~, of the crystal. The volume of the unit cell is
v„=4a' and the lattice constant a is the cation-cation
distance. The nn distance (cation-anion) is rq

——~2a for
NaCl structures and r~ =4'V3a for CaF2 structures.

We view the anions (e.g., X=O) and the cations (e.g. ,
M=Ca) as polarizable point charges occupying the
lattice sites. The anion ionicity is Z and the cation
ionicity is Z+. The unit cell is electrically neutral,
n+Z++nM =0 We also .associate an ionic polariza-
bility n " or o.+" and an electronic polarizability n ' or
o.+' with each ion in the lattice. These polariz@bilities
determine the response of the crystal to weak-static and
high-frequency electric fields, respectively. In general,
the polarizability is a tensor. However, we assume here
for convenience that it is diagonal. This is a very reason-

"H. S. Bennett, J. Res. Nat. Bur. Std. 72A, 475 (1968).

APPENDIX A: POLARIZABLE LATTICE

Both of our polarizable-ion models require a study of
the polarization about the defect. Polarizable-ion models
contain an explicit evaluation of the polarization energy,
while semicontinuum models relate the polarization
energy to the Mott-Littleton radius. The change in
electrostatic energy
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p(r) = (47r) ' dp sin8 d8 pq(r), (A5)

where r= ~r~. The electric field F~(r)r at the point r
due to the defect charge density p(r) is

Eg(r) =r ' p(t)tsdt. (A6)

We then define the average defect charge Q(r) con-

~~ J. R. Tessrnan eI, a/. , Phys. Rev. 92, 890 (1953).

able assumption for cubic crystals such as CaO and
CaF2.

We compute the ionic polarizability from the repul-
sive interaction energy between the ionic cores E„.
When the rth ion moves a distance

~
r„~ &r. towards one

of its neighbors, it experiences a restoring force F„due
to the repulsive interaction E„, i.e., F„=—p„r„o-„. The
position of the vth ion in the perfect lattice is r„and r„
is a dimensionless quantity which represents the dis-
tortion. The force constant p„ is a linear combination of
first- and second-order derivatives of the repulsive in-
teraction E, evaluated at a„=o. When we neglect the
electronic deformation due to ionic motion and assume
that the crystal is isotropic, the displacement (ionic)
polarizability of the vth ion assumes the form

(A3)

We determine for both model HFPI (1) and model
HFPI (2) the ionic polarization of the first shell of ions
explicitly, and we determine the ionic polarization for
all the remaining shells of ions from Eq. (A3). The ionic
moment [Z„r~&r/(1 o))r„ for th—e rth ion on the first
shell (s =1) represents the ionic polarization and is that
moment which minimizes for a given F-electron state
the total F-center energy. We obtain the electronic
polarizabilities from Ref. 17.

We therefore represent an ion which is located at the
lattice site r„and which experiences a static electric field
E(r„) as a point charge Z„ located at r„and upon which
we superpose a point dipole moment

(A4)

When the period of the electric field is much shorter
than the characteristic period for ionic motion, but also
longer than the orbital period for the electrons about the
ion, the point dipole moment is y(r„) =o„'E(r„).When we
view an ionic crystal as a dielectric continuum, the
static dielectric constant e0 and the high-frequency
(optical) dielectric constant e„give us information
about the ionic and electronic dipoles which are induced
by weak electric fields.

In order to make the present computations feasible,
we shall consider only the spherically symmetric part
p(r) of the F-center charge density pd(r), i.e., we average
p~(r) over the unit sphere

tained within a sphere of radius r centered about r=o,
namely,

(A7)

We also define the average F-electron charge Qr(r; rt)
contained within a sphere of radius r by the relation

sin8 d0

vAvg

(A9)

The Mott-Littleton procedure is an approximation
which attempts to overcome the formidable task of
solving the system of equations given by Eq. (A9).
Following the first-order Mott-Littleton procedure, "we
divide the crystal into two regions. Region I contains
all the ions on shells centered about the F center and
having a radius less than or equal to r, . The radius r,
is the radius of the sth shell of ions centered about the
F center. Region II contains all the remaining ions. The
first-order Mott-Littleton procedure states that region
I contains only the first (s= 1) shell and that region II
contains all the remaining shells.

We first outline the prescription for the dipole mo-
ments in region II. We view region II as a dielectric
continuum. The electric field R and the displacement
vector D are related in region II by the constitutive
equation for a dielectric continuum.

D =E+4zp =~K, (A10)

where ~ is the appropriate dielectric constant and the
polarization P is the dipole moment per unit volume,

P(r) =((&—1)/4~)K(r) . (A11)

The dipole moment per unit cell at r~ is F,(r~) =v,P(r~).
The Mott-Littleton prescription asserts that all dipole
moments point in a radial direction from the defect
and divides the dipole moment per unit cell among the
(n++n ) ions contained in the unit cell in proportion
to their individual polarizabilities,

(
terr(rv) =

(n+n++n 0. ) 4n-e~

"N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34,
485 (1938).

&&4'(t)4 (t), (Ag)

where P„(r) is the F-electron wave function.
The total electric field which the polarizable ion at

r„experiences is the sum of the electric field due to the
defect charge density Ed(r„) and the electric field due
to the dipoles induced on all the other ions except the
ion at r„
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When studying the F center, one must distinguish be-
tween the electronic polarizations and the ionic polari-
zations. The electronic polarizations respond to rapid
changes in p~(r) which occur whenever the F electron
undergoes a transition from one state and another state.
However, the ionic polarizations may not respond to
such rapid changes in pd(r). Hence, when pi= p„, then
e must be e„.%hen only electronic polarizations occur
n„=o.„,and when both electronic and ionic polarizations
occur n„=n.'+n„e. Referring to Eq. (A12), we define
the polarizability of an ion in region II by the quantity

n„v, (p —1)
Mr i(v) = . (A13)

47I pi(nyn++n n )

in the first shell points in a radial direction and has a
magnitude p~. The radial electric field at the site r~ due
to the dipole moments fair„of the (n+ —1) other ions on
the first shell is

Ej7j =fj IJyCyt j (A15)

where the same shell dipole coefficient C~ is a constant
for a given lattice structure. The system of equations
represented by Eq. (A9) reduces in the first-order Mott-
Littleton approximation to one equation for the one un-
known dipole moment pjr&, namely,

iri ——nL{ri 'Q(ri)+Ep«(ri)}/{1 —ri 'niCi}]ri. (A16)

The potential at the point r due to all the dipoles y(v)
at r„ is

We introduce for convencince in discussing the region
II the following notation:

n~'p, (p~ —1)
M~(~; e) =

47rp„(n+n~'+n n ')

y(r) =2 t(v) r'(v)/Ir'(v)
I
p,

where r'(v) =r r„N—ot.ing the identity

r'(v)/Ir'(v)I'=V. lr'(v)I ',

(A17)

ny e (ep —1)
Mg(0; e) =

4npp(n+n+r+. n n r)

n~rv. (p p 1)—
M~(0; T) =

4prpp(nant. r+n n r)

where

we have

V, =z(8/Br. )+P(8/8r„„)+z(8/Br. ,),

&(r)=Z s(v) V. lr'(v)l ' (A18)

and
Mg(0; i) =Mg(0; T)—Mg(0; e),

%'e introduce for use in Sec. III the quantities

where o, =e '+o„.
The radial component of the electric field at a site

ri in region I due to all the dipole moments in region II
may be written in the form"

~.(n) ={r./Ir. l'} v. d'rlr'(v)
I 'lp (r) I'

and

(A19)

E,«(ri)=rp ' P Q(r.)Mii(s)D(s; ri), (A14)
a&&2 d'rlr'(v)

I 'IA(r) I'

where
I ri

I
=rp is the nn distance in the perfect lattice.

Each shell s of ions has the same type of ions, and each
ion of shell s exhibits the same polarizability Mii(s)
=Mrs(v). The dipole coeKcients D(s, ri) for each shell
are tabulated in Ref. 16 for values of s&21. We also
define the following partial sums over cations only and
over anions only:

s &~ 2 cations
(anions} only

a= Q D(s ri),
s &~ 2

cations only

b= Q D(s; ri).
s&)2

anions only

The first shell about an anion defect contains n+
rations at a distance r3 =ro from the F center. Again,
we assume that the induced dipole moment on an ion

V. d"
I "()I-'l«(r) I' (A20)

The integrals which appear in Eqs. (A19) and (A20)
have been evaluated for the hydrogenic wave func-
tions. 'P Because the trial wave functions (5) and (6) are
linear combinations of hydrogenic wave functions, we
use the evaluations tabulated in Ref. 19 to compute the
electronic and ionic polarizations of the HFPI (2) model.

The two models, HFPI (1) and HFPI (2), differ in
the way we treat the polarization potential as given by
Eq. (A18). We use in the HFPI (1) model only the
spherically synimetric part of the polarization potential
which arises from the dipoles induced on the ions. We
consider rigorously in the HFPI (2) model the polari-
zation potential which arises from the dipoles induced
on the first two shells (s=i and s=2) and consider
only the spherically symmetric part of the polarization

' C. A. Coulson, Proc. Cambridge Phil. Soc. 38, 210 {1942).
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potential which arises from all the other dipoles on

shells s~& 3. We illustrate this difference by writing the
potential p(r) in terms of summations over shells. We
define the polarization potential operator which arises
from the vth dipole zb„(r), namely,

e.(r) =t(v). & Ir —r
I

'.
%'e write

@(r)=@ (r; 44)+@ (r; n),
@&here

on shell s, and r, is the radius of the sth shell. Similarly,
the spherically symmetric part of the potential which
arises from the polarizations induced by the F-electron
charge density pv(r; z)) [Eq. (3)j is

zf)v(r) = Zr—P(s; M„(0;e);Qr(, z))) for r, &r&r„+„
where when s=0,

P(0; M„(0; e); Q r( . ; )z))

= P r, 4M)(0; e)Q F(r„z))S4

a,nd

4)(r;n)= P P y„(r).
s=n+1 vgs

+rz 'Szn+'(1 —rz 'Czn+') '{QF(r; z))

—rz '[M+(0; T)F+(zz)+M (0; T)F (z))]} (A23)

for 0&r&r1', and when s~&1,

The prescription for the model HFPI (1) is to approxi-
mate @(r) by the expression

@(r)=y „,,(r;0).
The prescription for the model HFPI (2) is to approxi-
mate @(r) by the expression

4(r)=4 (r 2)+4»," (r 2)

where zb), vh(r; n) is the spherically symmetric part of

4b)(r; m).
Using only the spherically symmetric part of the

polarization potential is equivalent to treating the
polarized medium as composed of dipole shells centered
about the anion vacancy. The effective charge Q(r, )
induces a dipole moment {Mzz(v)S,Q(r, )/r, '}r"„on the
sth shell and the spherically symmetric part of the polar-
ization potential due to this dipolar shell is

P(s; M„(0; e); Q v( ; z))) = P rz 'M ,(0; e)
t~& s+1

XQv(r, ; g)S,

for r, (r(r,+z. We observe from Eqs. (A22) and (A23)
that the first-order Mott-Littleton procedure gives the
electronic polarizability of the ions on the first shell
(region I) which arises from the effective vacancy
charge Z,, in the form

nz'(Z„) =n+'(1 —rz 'Czn+') '

X{1—rz '[zzM~(0; T)+bM (0; T)]} (A24)

and that it gives the electronic polarizability which
arises from the angular average of the F-electron charge
density ZrQv(r; ))) in the form

nz'(Qv(; zz)) =n '[1—rz 'Czn+'] '[Qv(rz, )z)

—rz '(M4. (O, T)Fv+(z))+M (O, T)Fr ()z))j,

=0 )

where

F r,,( )(g) = P Qv(r, ; g)D(s; r,).
(A25)

Ke shall list here the additional notation which we
have used in Sec. III. The spherically symmetric part of
the potential which arises from the polarizations in-
duced by the e6ective vacancy charge Z, [Eq. (4)]
becomes

4&„,(r) = P(s; M„(0; T—); Z,) for r, &r&r,+z,

where when s=0,

P(0; M„(0; T);Z„)

=Z„{Pr, 4M, (0; T)S—,+rz 'Szn+'[1 rz 'Czn„'j '—
X[1—rz '(aM+(O, T)+bM (O,T))j} (A22)

for 0(r(r1', and when s~& 1,

P(s; M„(O,T); Z.)=Z„P rz 4M)(0; T)S)

for r, &r(r,+&. The quantity 5, is the number of ions

s & 2 cations
(anions) only

When we allow the nn ions to move, we are in fact
explicitly computing the ionic polarization of the first
shell. Because the core electrons on the ions of shell
s=1 can respond to rapid changes in the total electric
field which they experience, we use the total polariz-
ability of the ions in region II, M+(0; T), in Eqs. (A24)
and (A25).

APPENDIX B:TRANSITION MATRIX ELEMENTS

In order to compute the Haung-Rhys factors, we
must compute the dipole transition matrix elements

Tf, '(T) r(rzf 9f f nf I
s

I
rz', zz'; ',I)zr, r''

where the total initial state is given by

I
~,,~;;{;,n;&r =

I n;; f„)vI~n;; n;)i.

Because the distant ionic polarization always obeys the
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Franck-Condon principle in the idealized model of Sec.
VI, it does not change during an optical transition, and
we have gf=P;. The dipole transition matrix element
becomes

Tf„(T)=Tv„(F)Tr;(L,) =v(nr, f'', «I&I!n'; f',~*)v

Xr,(ef, r/f! I;; g;)r. , (B2)

where the lattice overlap integral

square of the exponent and use the notation

t={l(1+7')}'"(y—3o), yo=v' (1+7') '=&ko,

(1(1+y2)}—I/2
g y2s(2(1+y2)}—1/2

and y=l!($+jo). We find that the lattice-overlap in-

tegral for the vth ion becomes

+00

Tr;(L,v)=yf 'X., ~, f/e &"'"&'+&" d$e t'

T,„(L)=,(e, , g, ~e, , g,&, XH.,(f!(f+$o))H.;(y(&($+$o)+s}) (.B7)
ls

81 +

Tr, *(L)= II
"E~& —oo

U„, , „f(X„)U„;,.;(X.)/IX, . (B3)

We are interested in the case for which e; =0. Refer-
ring to Ref. 20, we reduce Eq. (B/) to the expression

Tr (L v // =0) =m'/2yr 'iV„O!!e &'*'/'&'+&"

We define

T~, '(L,v) = U„/ „r(X„)U„,. „;(X„)dX,. (B4)

tn(n//2 (2f!] )nf—2m// f g~ (g 1)/22m —l

x p -p, (B8)
(nf —2m)! /=~ (2m —f)!(l—rN)!

Using Eq. (54), we write

Tf;(L,v) =X„,(r;).I' /hf) H.,(y&y, )e '»'»'-

XH„,(7~y,)e '*& "v"dX. ,

Tf,(L,v) =rr '.V f H. /(y)e lv'

XH.;(v(y —s))e *'"' '"dy, (B6)

where /V„~, „,=.V„,(y;)A„/(yr). We then complete the

where yf =rr(o af), y, =r~—(a —/r;), and dXr=rqdo. In-
troducing the notation y=y;/yf, s=yfr&(o, ~/), and

y=yfyr, we have y;y;=y(y —s), and we obtain

SgyPr P(o;—gf)'

1+(v'vf)'
(B11)

"P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953), Part l, pp. 786—787.

& = (y/2 "fr//!)~/~ When Nr
——0

have

Tf„(L,v; n;=0, nf =0) =y/3e —&'"/'&'+&'&. (B9)

The square of the matrix element gives us the transition
probability. The transition probability for a zero-
phonon transition from state 2 to state II or from state
C to state G is proportional to

~
Tf,;(L;n;=0, mz

——0)
~

'&

namely,

T &cc (yg)2s&e —Byy z /(1+y / (B10)

We obtain from Eq. (B7) or from Eq. (B10) the
Huang-Rhys factor


