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Calculation of the Temperature Dependence of the Second-Order Elastic Constants of
fcc Ar, Kr, and Xe Using a Two-Body Short-Range Interatomic Potential*

C. FELDMAN, 'f M. L. KLEIN, ) AND G. K. HQRTQN

Department of Physics, Rutgers, The State University, Near Brunswick, New Jersey 08903
(Received 1 April 1969)

The temperature dependence of the second-order elastic constants of fcc Ar, Kr, and Xe have been studied
using phenomenological {ns-6) Lennard-Jones potentials acting between nearest neighbors and fitted to
the zero-temperature zero-pressure lattice constant and the sublimation energy. The theory of the second-
order elastic constants is briefly reviewed, and the second-order strain dependence of the quasiharmonic
free-energy density is derived using perturbation theory. The resulting expressions for the temperature
dependence of the elastic constants involve both third- and fourth-order force constants, and require a
single scan of the Brillouin zone, which is carried out to give an accuracy of about 1'P&. We find that the
contribution of the third-order force constants is comparable to that of the fourth-order ones and in some
cases predominates. Adiabatic and isothermal results are presented both for constant volume (O'K M
volume) and for the experimentally observed equilibrium M volume. We did not solve the equation of
state. Wave velocities derived from our elastic constants are compared with recent experiments on crystals
of Ar and Kr. Our results show that there are large anharmonic contributions to the temperature dependence
of the elastic constants. Consequently, our Ne results are quantitatively unreliable {except at T=0) and we
omit them. For T) 0™„/2there are indications of the breakdown of perturbation theory. The way our
results may be affected by including higher-order anharmonic terms is illustrated by considering the tem-
perature dependence of the zero-pressure bulk modulus of Ar.

1. INTRODUCTION
' 'N a recent paper' the thermodynamic properties of
~ ~ solid fcc Ar, Kr and Xe were investigated using a
short-range central force and the conventional per-
turbation expansion of the partition function. Here we
present a study of the second-order elastic constants of
the same solids in an essentially similar order of ap-
proximation. This means that we shall mostly work
with a quasiharmonic partition function and hence
speak oi quasiharmonic elastic constants (i.e., second-
order strain derivatives of the quasiharmonic free-
energy density). Because the quasiharmonic frequencies
are a function of strain, these elastic constants contain
a contribution from both cubic and quartic force con-
stants. They reduce, at T=O'K, to the elastic constants
of Barron and plein' and, when suitably averaged,
yield the 00' (anharmonic) first studied by Flinn and
Maradudin. ' The present work represents a rederiva-
tion of Barron and Klein's results by a different and, in
principle, more accurate method as well as an extension
of their work to nonzero temperatures. Previous work
on the elastic constants of the fcc lattice has been
reviewed in a thesis by one of us (C.F.).' We shall,
therefore, make only brief reference to earlier work.

This paper is based, in part, on a thesis submitted by C. Feld-
man to the Physics Department of Rutgers University in partial
fulfillment of the requirements for the Ph. D. degree.

t Present address: Research Department, Grumman Aircraft
Engineering Corporation, Long Island, New York 11714.

f Present address: Division of Pure Chemistry, N. R. C.,
Sussex Drive, Ottawa, Ontario, Canada.

'M. L. Klein, G. K. Horton, and J. L. Feldman {to be
published).

~ T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. (London)
82, 161 (1963); S5, 533 {1965).' P. A. Flinn and A. A. Maradudin, Ann. Phys. (N. Y.) 22, 223
(1963}.' C. Feldman, Ph.D. thesis, Rutgers University, 1967
(unpublished).

Since it is now possible to grow large-grained single
crystals in these solids that are either free standing or
under pressure, quantitative measurements of the
elastic constants are now within reach. Indeed, some
preliminary data have already been reported and these
provide an additional motive for our investigation.

There has been much speculation about the inter-
atomic forces in the heavier rare-gas solids. In addition
to the two-body central interatomic potential familiar
in the theory of rare-gas crystals, Chell and Zucker and
others' have suggested that the triple-dipole dispersion
force plays an important role in the thermodynamic
and elastic properties of heavier inert-gas solids, es-
pecially with regard to the Cauchy relations. However,
Lucas' has argued that for the heavier rare-gas solids
the dipole-dipole perturbation series is slowly con-
vergent (implying that calculations based solely on the
triple-dipole term may be misleading). Other authorsr
have argued that at least for Ar the triple-dipole term
is dominant. Jansen' has claimed that the exchange
interactions give even more important contributions,
although Swenberg' appears to have refuted this claim.
VVhile there is no doubt many-body forces are present
in the heavier rare-gas solids, their exact nature is
still very contraversial. Thus in spite of certain obvious
deiciencies, we have chosen to work with heuristic

' G. G. Chell and I. J. Zucker, Proc. Phys. Soc. (London) 1C,
35 (1968);J. C. Rossi and F. Dannon, Discussions Faraday Soc.
40, 97 (1965};M. L. Klein and R. J. Munn, J. Chem. Phys. 47,
1035 (1967).' A. A. Lucas, Physica 35, 353 (1967};Phys. Rev. Letters 21,
A16 (1968).' D. A. Copeland and N. R. Kestner, J. Chem. Phys. 49, 5214
(1969); J. A. Barker, D. Henderson, W. R. Smith, Phys. Rev.
Letters 21, 134 (1968); J. A. Barker and A. Pompe, Australian
J. Chem. 21, 1683 (1968).'L. Jansen, Phys. Rev. 135A, 1292 (1964).

s C. E. Swenberg, Phys. Letters 24A, 163 (1967).
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two-body interatomic potentials of the type

@(R)= (6m&/(m 6)j[(1/m) (Ro/R) z'(R&/R)'5,

with m= 11, 12, and 13. There is no a Priori reason to
believe that allowing @(R) to act between all neighbors
in the crystal lattice is superior to restricting it to
nearest neighbors only. "Moreover, this latter assurnp-
tion, in addition to simplifying some of the numerical
work, allows us to compare with previous studies on the
elastic properties of the fcc lattice with nearest-neighbor
forces. We have chosen the parameter e and Ro in the
potential to fit the sublimation energy and the zero-
temperature zero-pressure lattice constant. "

Recent developments in lattice dynamics of rare-
gas crystals have centered on the application and exten-
sion of Born's self-consistent phonon theory. For
example, Gillis, Werthamer, and Koehler" have calcu-
lated (among other things) the temperature dependence
of wave velocities in Ne and Ar using the lowest-order
self-consistent scheme, i.e., in the Hartree approxima-
tion. These calculations omit the explicit contribution
of odd-order anharmonic force constants and so tem-
perature dependencies found by Gillis, Werthamer, and
Koehler have little to do with the properties of the
real crystals. Horner" has derived expressions for the
elastic constants that include the leading odd-order
force constants in a self-consistent fashion. While this
paper is mostly concerned with the results of conven-
tional perturbation theory including both cubic and
quartic anharmonic force constants, we have devoted a
section of this paper to a comparison of the conventional
perturbation theory and the method of selfconsistent
phonons using the temperature dependence of the
isothermal bulk modulus of Ar for illustration.

In Sec. 2 of this paper, we brieQy recall the various
definitions of elastic constants and hence establish our
notation. The strain dependence of the quasiharmonic
free energy density is derived in Sec. 3, and in Sec. 4
we present expressions for the elastic constants based
upon two-body central forces. Details of the calculation
are outlined in Sec. 5 and specific application to Ar,
Kr, and Xe and the comparison with experiment are
given in Sec. 6. Section 7 contains the comparison
between conventional perturbation theory and the
method of selfconsistent phonons. The paper concludes
with a summary.

2. ELASTIC CONSTANTS: A BRIEF SURVEY

Elastic constants describe the strain dependence of 8',
the energy density of a solid. The theory of elastic
constants has been thoroughly discussed recently" so

'0 E. A. Guggenheim and M, L. McGlashan, Proc. Roy. Soc.
(London) A255, 456 (1960).

G. K. Horton, Am. J. Phys. 36, 93 (1968)."N. S. Gillis, N. R. Werthamer, and T. R. Koehler, Ph& s. Iiev.
165, 951 (1968)."H. Horner, Z. Physik 205, 72 (1967).

'4 R. N. Thurston, Physics Acoustics 1A {Academic Press Inc, ,

that we shall only give a brief outline of the relevant
results.

In terms of the {u ~), the infinitesimal homogeneous
deformation parameters of Huang, "the energy density
of a solid can be written as

5'—8 =Haplap+-, Hap ~rlapN„+

Alternatively, we may use the (g p}, the finite strain
parameters of Leibfried and Ludwig, "

l'V W~ Catigap+ gCatair'gaptrrr+ ' ' '
~

If the deformation is isentropic and t/t/ is the internal
energy density, then the coeKcients in the above Taylor
series expansions are adiabatic elastic constants. On
the other hand, if the deformation is isothermal, these
coeScients are the isothermal elastic constants. The
isothermal and adiabatic elastic constants are related
thermodynamically. t/V is the energy density in the
undeformed solid; H p and C p determine the initial
stress while H p, , and C p, are the second-order
elastic constants. It follows from their definition that
Huang's constants H p „, unlike the C p, „do not
have the full symmetry of second-order elastic constants.
However, the H p, give a simple form for the equations
of small vibrations of solids under stress. '~ The elastic
constants defined above are related by the condition of
rotational invariance,

Cap Hap p

Cap, ter Hap, ar Hpr~ao' p etc ~

Thus if the H p and H p „are known, we can derive
Cap and Cap, gr ~

It is sometimes convenient to use the elastic constants
c p, ~~ which are derived from the stress-strain relation.
These elastic constants are particularly useful when the
initial stress is isotropic, i.e., H p= —pb p. Thus for
example, the isothermal compressibility is given by

3xr ——( 3/V) (B—V/rip) r c..„'-——+2c„. „„'~,
and

H, ,„=C„„—p=c„, ,
H*,, yy

=C,*,yy
=c„

H*u *u=C*u *v P= ~~a *v.
Hence

(3/X) =c, ,+2c,»=C„,, +2C„,»+P
= &ex,ex+ 2&xx, pu+ 2p ~

For a cubic crystal the adiabatic and isothermal

New York, 1964); R. A. Cowley, Advan. Phys. 12, 421 (1963);D. C. Wallace, Rev. Mod. Phys. 37, 57 (1965)."K. Huang, Proc. Roy. Soc. (London} 203A, 178 (1950)."G. Leibfried and W. Ludwig, in Sol@' Skate Physics, edited byF. Seitz and D. Turnbull (Academic Press Inc. , New York, 1961),
Vol. 12, p. 275; Z. Physik 160, 80 (1960)."T.H. K. Barron and M. L. Klein, Proc. Phys. Soc. (London)
85, 523 (1965).
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elastic constants are related by

g
ad LI' iso + ad II' iso +2/'(' / t/"

&gy gy' —Irg, gy' —0,
where C, is the heat capacity, V the volume, and y the
thermodynamic Gruneisen parameter

p = (V/C. ) (c}S/c)V)r = (V/C. ) (P/xr)

where S is the entropy and P the volume expansivity.
Thus in order to calculate the adiabatic-isothermal
correction we need, in addition to the elastic constants
themselves, P and C,. We recall that for a cubic solid
P = (BH„/c)T).

3. STRAIN DEPENDENCE OF THE QUASI-
HARMONIC HELMHOLTZ FREE ENERGY

Ke have seen how the various elastic constants are
related to the strain derivatives of the free-energy
density. If we adopt the adiabatic hypothesis, the
Helmholtz energy of a solid under strain {u p) can be
written

F=F0++ a+higher-order terms;

except in Sec. 7, we shall ignore the higher-order terms.
Po is the static lattice energy of the deformed solid and

a= a„=', k0&„.
—+kpT -1n}(1 exp( —kc00&/k—pT)]

For two-body central forces, our only concern in
this paper,

S
f'0=—Z (k(l),

2

where the 3 summation is over the E lattice sites of the
crystal under strain {u p). The c00& and their associated
eigenvectors e„are obtained from solutions of the
secular equation

X)aP~CP =Go 8a,

where S p& is the dynamical matrix of Born and
von Karman. For the special case of central forces,

lattice sites and ignore the higher-order terms, we 6nd

1
f&H p'-=-,'Q j (l)lp(l)+ —Q a p,.V

j
6H.p., =Pj..(1)xp(l)x, (l)+ P—a, „

l S ~~

where i is the atomic volume in the undeformed lattice
and, for example,

(l) = Lc)4'(1)/~x (l)j}op}=0

a.P=(aa/au P)} p} 0==(B—a/Bu P)0, etc.

After some rearrangement we 6nd

a.p
——((I/2m') (c}c00/c)u.p) 0,

where c0=c00&., lt—=—ic„=kc0(n+ ,'), w-ith

n=((exp(k, c0/kT) —1j ' and C",= (c)il/c}T)„.

The term i p, „shows clearly how the strain de-
pendence of the individual normal modes contribute to
the temperature dependence of the elastic constants.
To proceed further we must relate the strain dependence
of the individual normal modes to anharmonic force
constants, and this we do by following Feldman" ancl
developing the dynamical matrix as a Taylor series in
the strains {u p),

+a/ +a/ +~a/ ~

To second order

-2
A.p= —P cf&.p, (l)x, (l)g, (l) u.,

M

-1
+ —Q ck ,„p&x(c,(l)x, (l)S (l0) u u„..

where

and

2
m. p0= —P (l.p(l)S, (l),

y p(l) =8'y(l)/c}x (l)c}xp(l),

g, (l) =sin'( —', q x (l)).

The strain dependence of the individual normal modes
follows by treating A p as a perturbation (details are
given in Feldman's paper).

4. QUASIHARMONIC ELASTIC CONSTANTS FOR
CENTRAL FORCES

The c}) p(l) are the harmonic (strain-dependent) force
constants, M is the atomic mass, and x (l) is the uth
Cartesian component of the position vector of the lth
atom in the strained lattice:

x (l)=dp(l)(b p+u p).

The caret denotes a quantity in the undeformed solid.
If we expand F as a Taylor series about the undeformed

The procedure outlined in the previous section leads
to the following expressions for the elastic constants
(for simplicity we have now suppressed the carets):

iso —H (0)+H (1)

+aP, ~r +aP, or ++aP, prr ++a@,r}rr

"J.L. I'"eldman, Proc. Phys. Soc. (I ondon) S4, 361 (1964).
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where ».p"'=2 Z 4-(1)xp(1)

vH p, „'&=—', g &1&,(l)xp(l)x, (1),

venient form for computation. The necessary trans-
tormation properties of the coordinates and polariza-
tion vectors for the fcc lattice are well-known. We intro-
duce the parameters of Feldman and Horton"

vH. p&'& =(~&)-' 2 (Np, o /~') 2 4» -(1)xp(1)g.(1).

The term dH p&'&/dT, required in the calculation of
expansivity, is obtained by simply replacing u by c„ in
the above expression:

vH p, „"&=(3fI&I) 'P (Ne«e&&/&o')

k 1+I+a' I' —n)s' eye'„e„
vH p„,&3&= — Q +

SM2 &»' co+co' (o—co' oxo'

XP y„,.(1)y„„.(h)xp(l)x, (h)g, (1)S,(h).

In this form" it is tempting to think of H p „("as the
long-wavelength limit of the usual cubic anharmonic
frequency shift."However, the point has been discussed
in detail by {owley ' and we note that at finite tem-
peratures the limiting slopes of phonon dispersion
curves LQ(Q) versus Q) (0—+0, Q —+0) yield neither
isothermal nor adiabatic elastic constants.

Our force constants are defined as follows:

aq =A/t'8, aq =r'C/8, a4 =r'E/8,
1&= h/r'(Mf)'" and Ta=hT/hr'8= 2.6T/O~„.

Jn terms of these parameters, one finds

vH p
"& = (r'8) F p&'&,

vVH p"'=(&r'B)F p&'&(a3 a& Tr&)

viVBH p«&/BT= (r'8/ItAo)F p&'&(a3, a&,T»),
'H-p -"'.=(r'8)F-p, -"&( ),

'IvH- -p.-"&= (& r'8)F- p, -"&(a,aa, a&,Tn),
VvH p, „&3&=(&r'8)F p „&'&(a„a,,Ta).

The F& &'s for m/0 can be expressed readily in terms
of single sums over the first Brillouin zone. For example,

Fg«vv 2a412&+a3(2I2&+I&)+2(I2&—2I2),
with

Qg
I2& ——P (e,+e,)«; sin'«r(r +r„).

~j ~a

I& and I& are obtained by replacing (e,+e„)' by unit&
and e,', respectively. The F(3' sums are somewhat more
complicated. Here, 2n~ = (2 '"r)q, un =N(vj )/& r'8,
and coo h&o(~j)/&——&r'8 The red. uced frequencies cu&&

and their associated eigenvectors e (v j) are the solutions
of the reduced secular equations

P (1)=Ax (1), &b (1)=Bx (l)x (l)+Ab „,
&b„(1)=CX (l)x, (l)x (1)

+Box,(1)b, +x, (1)b, +x (l)b„j,
with

(&on' 2agL)e—=L.pep,

I.=P g(l),
y...,(l) =E*,(l)*,(l)x.(1)x„(l)

+C[X,(1)x,(l)b «+x, (1)x (l)b,„
+x,(l)x (l)b, +x,(l)x (1)b,
+*,(l)x, (t)b..+x.(l)x, (l)b.,j

+Bp b, +b, b +b b„j,
with A =Dg, B=D p, C=D p, E=D'&b, D= d/rdr, and-
r the nearest-neighbor distance.

We now restrict ourselves to the nearest-neighbor
model. The parameters 3, 8, C, and E are then unique
and the l and k summations become trivial. We stress
that this restriction is made for computational con-
venience and from our lack of enthusiasm for the all
neighbor Lennard-Jones potential.

5. OUTLINE OF THE CALCULATIONS AND
RESULTS FOR THE GENERAL
NEAREST-NEIGHBOR MODEL

We omit most of the tedious but straightforward work
required to reduce the sums defined in Sec. 3. to a con-

"Our expression for H p, „&'& is closely related to Eq. {58) of

I- p=2r 'Q x (1)xp(l)g(1).
g

The complete expressions for the F( 's in terms of sums
over the Brillouin zone can be found in Ref. 4. We note
that sums like I2~ are functions of Tg and a~. To eval-
uate these sums we first choose a reduced wave vector
~ from the irreducible element of the Brillouin zone and
then use Jacobi's method to solve the reduced secular
equation for &va(r j) and e ( ~j), j= 1, 2, 3. Fortunately,
a single diagonalization is

sufhcient

to determine
&oa(a&). We then compute the lattice sums for six
different values of a&( —0.02(a&(0.1) while holding
T& fixed. Tz is then cycled through the desired range of
values. The whole procedure is then repeated for all the
selected reduced wave vectors in the irreducible element
Ref. 13. However, it differs from it by factors of 2 in the leading
terms.

20A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589
(1962).

» R. A. Cowley, Proc. Phys. Soc. (London) 90, 1127 {1967).~ J. L. Feldman and G. K. Horton, Proc. Phys. Soc, (London)
92, 227 {1967).
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TAnr, E L An example of the convergence of the calculation.

Xo. of points in & zone I1(T~=0.1291, a1 ——0.015),'E

128
1024
3456

11 664

0.383464
0.383379
0.383372
0.383371

Near T=O K this is satisfied to about 0.1%, and at
high T the accuracy falls to a little better than 1%.
'tA'e have also found very good agreement with the
elastic constants obtained by Barron and Klein from
the strain dependence of the zero-point energy. To
illustrate this agreement, 600, the anharmonic con-
tribution to Qo for a general nearest-neighbor model
with central forces, was found by Barron and Klein to be

of the Brillouin zone. Calculations were carried out
using the equivalent of 128, 1024, 3456, and 11664
points in the half zone. The convergence of the sum I~
is shown in Table I; certain less important sums do not
converge quite as well, but in any case are determined
to about s%.

There are various internal checks and test sums in

the calculation. Some of these are generalizations of an
identity used by Stern."Others are internal consistency
relations; one of these is

8(—p) BH„)
~

=H„,„'"+2H,,„„'"+2P.
0 in@ ~ 8 inn) z

with the previous studies on the fcc lattice with short-
raage central forces. A complete tabulation, as a func-
tion of temperature (Ta) and volume (a~), of the various
sums over the Brillouin zone that contribute to the
elastic constants are given elsehwere. 4

5. APPLICATION TO RARE-GAS CRYSTALS AND
COMPARISON WITH EXPERIMENT

In the Appendix, we have tabulated selected values
of the elastic constants of Ar, Kr, and Xe based upon
Lennard-Jones (m-6) nearest-neighbor potentials with
m=11, 12, 13. Ke give the temperature dependence for
both the experimentally observed molar volumes
(approx p=O) and the zero-temperature M volumes.
Results for Ar are also shown in Fig. 1. One interesting
aspect of our calculation is that at constant volume our
theoretical elastic constants show little temperature
variation, even with the inclusion of the strain de-
pendence of the individual normal modes. Thus the
isochoric bulk modulus also shows only a small tem-
perature variation. The temperature variation of the
isochoric bulk modulus of solid Xe is in good accord with
the experimental hndings of Packard and Swenson. "
Ke always 6nd

(d 1ncn' /dT) „)0 and (d Inc44/dT), (0,
which implies, for example, that transverse and longi-
tudinal first-sound propagation in the $001j direction,

600'/0' ~ La4 —aP (0.31w0.04)
+a3(10&0.7)+(21.8&13)j,

50

ARGON Clj ( T
Vesper )

l
'

l

gO~, c/e, cc Lo, o 2(0.2977)+@3(10.68)+20.0].
Flinn and Maradudin, who only retained the leading
terms, found 0.2997 for the coeKcient of a32. In this
comparison we restricted ourselves to the special case
of a~ =0, i.e., the equilibrium volume of the static lattice.
Quantities referring to this volume were denoted by a
tilde.

Finally, we refer to the work of I.loyd'4 who studied
elastic constants of the fcc lattice with nearest-neighbor
central forces using the molecular 6eld approximation
of Bethe. For the high-temperature limit he found

0) pp

(h

O

h20i—

CO

hJ

10—

C'a
ll

C~ II

oa
l2

ClaD
IR

(24v)H„.„' /3ksT=2a4 (5/3)@32+other t—erms,

(248)H„,„„'~/3ksT = a4 (7/6) a32+ other terms-,
(24f7)H, „, „'~/3ksT = u4 —(5/8)@/+other terms,

whereas for O„c/T=0.3 we find —1.669, —1.55, and
—0.636, respectively, for the coe%cients of a3', and
exact agreement for the coeKcients of a4.

Our calculations, therefore, are in good agreement

~ l ~ l ~

0 20 40 60 80
TEMPERATURE K

Fxo. 1. Temperature dependence of the quasiharmonic elastic
constants of Ar. The solid lines refer to the (12-6) Lennard-Jones
potential. Open and full circles, triangles and squares refer,
respectively, to (13-6) and (11-6).

~ K. A. Stern, Phys. Rev. 111,786 (1958). "J.R. Packard and C. A. Swenson, J. Phys. Chem. Solids 24,
~4 P. Lloyd, Australian J. Phys. 17, 269 (1964); 17, 524 (1964). 1405 (1963).
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at constant volume, will have temperature dependences
of opposite sign. For Ne, the temperature dependence
of $001+ and L0011T phonon energies has been

studied, ~' at constant volume, and an eRect similar to
the above has been observed. However, in view of our
remarks in Sec. 4. we must enter a caveat concerning the
relationship" between zero and first sound, etc.

Individual contributions to Cii(V,x,i,T) for Kr based
upon the (12-6) potential are shown in Fig. 2. The con-
tribution of the quartic force constant term H„,„&"is

comparable to, or less than, the term H„, (". This
result has the important consequence (see Fig. 2) that
the sum H&" +H&4&, unlike the total H("+H&'&+H&'),
shows little temperature dependence. The change in
H &'& through thermal expansion of the crystal is
cancelled by the contribution of H(4&. This suggests
that self-consistent wave velocities or elastic constants
that omit the explicit contributions of the type H(') will

show little temperature variation. Thus we have an
explanation for the almost temperature-independent
wave velocities predicted for Ne and Ar by Gillis,
Werthamer, and Koehler. "Our work here indicates that
the cubic term H&+ gives a significant (in some cases
even dominant) contribution to the temperature
dependence of the elastic constants.

There have been comparatively few experiments on
wave propagation in solid Ar, only one in solid Kr, and
none in Xe. The earlier work has been reviewed
recently. " These reviews include comparisons of our

(0) (4)
xxxg ™xxxx

45—

KRYPTON

20

IO

~ I I I I

0 20 40 60 80
TEMPERATURE K

FIG. 2. Temperature dependence of component contributions to
the HII of Kr based upon the (12-6}Lennard-Jones potential.

"J.A. Leake, W. B. Daniels, J. Skalyo, Jr., B. C. Frazer, and
G. Shirane (to be published)."J.Hingsammer and E. Liischer, Helv. Phys. Acta 41, 914
(1969) and Ref. 11.

60—

O
Al 55—

O
50-

)V

40—

20 40 60
TEMPE RAT UR E T K

80

FIG. 3. Temperature dependence of the longitudinal wave
velocity in t 110jdirection of Kr. The experimental data are from
Ref. 28. The upper sol.id curve corresponds to m=13, the lower
one to m=12.

"H. R. Moeller and C. F. Squire, Phys. Rev. 151, 689 (1966}."M. Gsanger, H. Egger, and E.Liischer, Phys. Letters 24A, 135
(1967).

'0H. Peter, P. Korpiun, and E. Liischer, Phys. Letters 24A,
207 (1968}.

g'M. Gsanger, H. Egger, and E. Liischer, Phys. Letters 27A,
695 (1968)."G. J. Keeler and D. N. Batchelder (private communication).

eg V. V. Goldman, G. K. Horton, and M. L. Klein, Phys. Rev,
Letters 21, 1527 (1968); Phys. Letters 28, 341 (1969}.

calculations with the experiments of Moeller and
Squire"; Gsanger, Kgger, and Luscher"; Peter, Korpiun,
and Luscher"; and with earlier studies on polycrystals.
As an example, we show in Fig. 3 a comparison of our
calculations of pVL'[110j for solid Kr based upon
(12-6) and (13-6) interatomic potentials with the
experiments of Peter, Korpiun, and Luscher. These
simple models give a fair account of the magnitudes, but
the predicted temperature dependences are too large
(we shall return to this point in Sec. 7).

Recently Gsanger, Kgger, and Luscher" have re-
ported new measurements of longitudinal 6rst sound for
t 100j and L110] directions. The experiments, which
were carried out on separate crystals, are compared
with our calculations in Fig. 4 and 5. The wave velocity
for the $110j direction is in good agreement with our
calculations, but the wave velocity in the L100) direc-
tion, which yields c» directly, disagrees drastically with
our simple models. In particular, the experimental
result Vi,(110j(Vr, L100j is very strange indeed.
However, this could perhaps indicate substantial non-
central force contributions to the elastic constants.

Most recently, Keeler and Batchelder have mea-
sured both I. and T 6rst sound in oriented single crys-
tals of Ar, and a comparison of their work with ours
will be of interest.

%e have not mentioned the remarkable experiment
of Simmons and his co-workers~ on the isothermal
compressibility of solid Ar, Kr, and Ne, because we have
made detailed comparisons with this work elsewhere. '
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F&G. 4. Temperature dependence of the longitudinal wave
velocity in the $100j direction of Ar. Experimental data are from
Ref. 29.

'7. HIGHER-ORDER APPROXIMATIONS
FOR THE BULK MODULUS

The bulk modulus is de6ned as Br Vd'F/d V'——
and, hence, there are as many approximate ways of
calculating Bz as there are for F. Even if we exclude
cell models (Einstein approximation type of models,
etc.) there are still many possible approximations for F
to be found in the literature. In Fig. 6 we compare the

zero-pressure bulk modulus of Ar derived from four

approximate F's using a (l2-6) ills' pair potential.
The quasiharmonic bulk modulus, labeled QH, is

derived from the quasiharmonic free energy, and we

recall that this includes the contribution of third-and
fourth-order force constants.

The perturbation theory bulk modulus labelled PT,
includes the volume dependence of the conventional
cubic and quartic anharmonic force constants and
hence involves fifth- and sixth-order force constants as
well. ' The bulk modulus labeled SC was derived from
the volume dependence of F~~. This free energy con-
tains certain dominant even-order force constants in
a self-consistent fashion. This result is the one that
corresponds to the approximation of Gillis, Kerthamer,
and Koehler. "The fourth approximation considered by
us is labeled ISC, the improved self-consistent approxi-
mation. This last bulk modulus is obtained from a free-
energy F»c which includes Fsc plus a contribution
from odd-order self-consistent force constants. ~ In
the figure we also show the two experimental points due
to Simmons and co-workers. ~

It is clear that the quasiharmonic approximation
overestimates the temperature dependence of the bull.
modulus (recall Fig. 3). However, for temperatures less
than about half the melting temperature it is good to a
few per cent. It is encouraging that the ISC bulk
modulus which represents the most reliable prediction
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FIG. 5. Temperature dependence of the longitudinal wave
velocity in the L110j direction of Ar. Experimental data are from
Ref. 29.
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34 A. O. Urvas, D. L. Losee, and R. O. Simmons, Phys. Rev.
172, 944 (1968); J. Phys. Chem. Solids 28, 2269 (1967); O. G.
Peterson, D. Q. Batchelder and R. O. Simmons, J. Appl. Phys.
36, 2682 (1965); Phys. Rev. 150, 703 (1966); D. N. Batchelder,
D. L. Losee, and R. O. Simmons, i'. 162, 767 (1967);
D. L. Losee and R. O. Simmons, Phys. Rev. Letters 18, 451
(1967).
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FIG. 6. Bulk modulus of Ar. The two experimental points are
from Ref. 32. QH is the present quasiharmonic calculation; PT
is the result of including Gfth- and sixth-order force constants
using perturbation theory and is quoted from Ref. 1; SC and ISC
are the results of self-consistent and improved self-consistent
calculations quoted from Ref. 31.
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of the model potential is also in the best accord with
experiment. This gives us some added conidence in our
model potential as a reasonable starting point.

Thus our quasiharmonic results must ultimately be
supplemented by further work in which higher-order
effects are properly considered. Such calculations are in
progress and the results will be presented elsewhere.

8. SUMMARY

Ke have studied the temperature dependence of the
quasiharmonic elastic constants of an fcc lattice with
nearest-neighbor central forces. These results have
been used to calculate both the isobaric and isochoric
elastic constants of Ar, Kr, and Xe, assuming a Lennard-
Jones (m-6) interatomic potential (en=11, 12, and
13) acting between nearest neighbors only. m=12 or
13 agrees with certain of the experimental data. Our
results for Ne were not included here because large
anharmonic effects in this solid make the quasiharmonic
approximation unreliable. For the same reason our
calculations on Ar, Kr, and Xe were not extended to
their melting points. To illustrate the importance of
higher-order anharmonic terms, the bulk modulus of
Ar is calculated using the conventional perturbation
theory and by the method of self-consistent phonons.
Deviation from the quantitative predictions of our
model potential can be understood as caused by the
breakdown of the quasiharmonic approximation, except
for the measurement of the longitudinal sound velocity
in the L100j direction in an Ar crystal where there is a

striking disagreement between theory and experiment
that is at present unresolved. It is probably premature
to expect a clear picture of the role of nonadditivity of
interatomic forces to emerge from a comparison of our
work with the available experimental information.
There are indications, both from a comparison of our
work with experiment and our own self-consistent cal-
culations, that the QH approximation predicts tem-
perature-dependent elastic constants correctly to a
few percent below roughly half the melting temperature
of inert-gas solids.
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APPENDIX

Some results of the calculations are shown in Table II.

3 ABLE ll. Selected values of the isochoric and isobaric quasiharmonic elastic constants of Ar, Kr, and Xe based upon Lennard-Jones
(m-6) nearest-neighbor potentials with m= 11, 12, and 13.The quantity pVT1 I 110) is the same as C«.

3.54
3.68
3.80
7.35

16.19
39.79
59.27
60.49
61.45

iao

36.5
39.7
42.8
39.6
38.3
31.6
23.5
24.5
25.4

Cll

39.7
39.0
35.5
29.4
31.3
33.1

18.4
20.0
21.6
20.0
19.4
16.2
12.2
12.9
13.6

Argon C;, (V, ~t„T) in kbars
C12' C12

17.7
19.2
20.6
19.1
18.3
14.4
10.0
10.1
10.0

19.2
19.1
18.1
1$.9
16.9
17.8

Argon C;;(Vr-o z,T) in kbar

24.0
26.0
28.0
25.9
25.0
20.1
14.$
14.9
15.1

p VL~L110]

45.5
49.5
53.3
49.4
48.4
43.0
345
37.0
39.0

p VTp)110j

9.43
10.3
11.1
10.3
10.0
8.69
6.76
7.23
7.67

ii
12
13
12
12
12
11
12
13

7.36
16.35
73.57

118.1
122.6
126.8

39.6
39.0
35.7
31.9
34.5
37.0

39.7
39.7
43.5
43.5
48.0
52.5

20.0
19.6
17.4
14.8
16.1
17.5

19.2
18.9
18.0
17.3
18.3
19.1

19.3
19.6
25.8
28.8
31.7
34.7

26.0
25.6
23.9
22.2
23.7
25.1

49.4
49.2
52.0
50.9
56.0
61.1

10.2
10.0
8.87
7.34
8.12
8.92

12
12
12
11
12
13

2.88
3.00
3.11

13.24
33.63
53.62
?8.48
80.24
81,80

44.8
48.8
52.8
47.7
42.9
37.4
28.4
29.7
30.9

48,2
45.6
42.1
34.9
37.2
39.5

22.5
24.5
26.5
24.0
21.7
19.1
14.7
15.5
16.3

Krypton C;, (V,»t,,T) in kbar

22.1
24.0
25.9
23.4
20.6
17.3
12.4
12.6
12.7

29.8
32.3
34.9
31.5
28.0
24.0
17.7
18.3
18.8

56.0
60.9
65.9
60.0
56.1
51.1
41.6
44.2
46.7

11.4
12.4
13.4
12.2
11.2
10.1
8.00
8.55
9.08

11
12
13
12
12
12
11
12
13
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TABLE II (continued)

5.99
13.30
59.86
95.82
99.76

103.5

2.57
2.68
2.78

11.91
21.25
30.81
50.26
77.66

103.91
106.3
108,3

5.37
11.94
53.73
63.21

{ iso

48.6
48.1
46.1
41.8
45.4
48.9

50.4
54.9
59.2
54.4
53.0
51.2
46.9
40.2
31.7
33.2
34.4

S5.0
54.6
53.3
53.1

Cited

48.6
48.6
51.2
49.3
54.2
59.1

54.7
54.1
53.1
50.3
45.6
38.4
41.0
43.3

SS.O
55.0
56.8
57.3

24.3
24.1
22.6
20.0
21.8
23.7

25.2
27.5
29.7
27.3
26.6
25.7
23.7
20.5
16.3
17.3
18.1

27.5
27.3
26.3
26.2

Krypton C;, (Vz 0 K,T) in kbar

Cl 2180

23.9
23.7
23.3
21.9
23.6
25.2

24.0
24.2
28.4
29.5
32.4
35.3

Xenon C;;(V, ~t, T) in kbar

24.9
27.2
29.3
26.9 27.2
26.1 27.2
25. 1 26.9
22.5 25.9
18.4 23.9
13.9 20.7
14.2 22.0
14.3 23.2

Xenon C;, (T~g o'K, T) in kbar

27.3 27.3
27.1 27.5
26.8 30.4
26.9 31.1

+iso

32.2
31.9
30.9
28.5
30.8
33.1

33.4
36.4
39.3
36.1
35.1
33.8
30.6
25.7
19,9
20.5
21.0

36.5
36.3
35.7
35.6

p VI,'I 110)

60.6
60.5
62.4
59.4
65.1
70.9

62.8
68.6
74.0
68.2
67.2
65.7
61.8
55.3
45.9
48.8
51.4

68.6
68.6
69.9
70.4

p VTpI 110)

12.3
12.2
11.4
9.92

10.9
11.9

12.7
13.9
15.0
13.7
13.4
13.1
12.2
10.9
8.90
9.50

10.1

13.9
13.8
13.2
13.1

12
12
12
11
12
13

11
12
13
12
12
12
12
12
11
12
13

12
12
12
12
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E Center in Ionic Crystals. II. Polarizable-Ion Models

HERBERT S. SENNETT

cVationa/ Bureau of Standards, washington, D. C. 20234
(Received 26 December 1968}

The states of the Ii center are considered on the basis of models which treat the movement of the nearest
neighbors to the F center and the F electron in a self-consistent manner. The lattice is first described in terms
of a classical ionic-crystal theory. The theory is then extended to treat the nearest-neighbor ions in a quan-
tum-mechanical manner. The one defect electron (the F electron) is treated according to polarizable-ion
models. The absorption energy, the emission energy, the lifetime of the first excited state, the zero-phonon
transition energies, and the Huang-Rhys factors are evaluated for two models, which diRer in the rigor used
to compute the polarization of the nearest and next-nearest neighbors. It is found that the model that con-
tains the more rigorous evaluation of the polarization agrees best with the experimental results for CaO and
perhaps MgO. In addition, it is found that both these models are least successful for I' centers in NaCl and
KCl. Not enough data exist to make judgments about the agreement for CaF~, SrF~, and BaF2.

I. INTRODUCTION

HE F center in ionic crystals consists of one
electron (the F electron) localized about a vacant

anion site, regardless of the valency. Even though the
F center is one of the simplest defects which may occur
in ionic crystals, calculations of its optical properties
have been a challenge to theoreticians ever since Tibbs
6rst undertook such calculations for the alkali halides. '
Such calculations are even today unsatisfactory in
many cases when one studies the lifetimes of the ex-
cited states, the phonon structure, and the spatial ex-

' S. R. Tibbs, Trans. Faraday Soc. 35, 147 (1934).

tent of the F-electron wave function. Two basic models
from which we may calculate the electronic structure
of the F center exist. For brevity, we refer to these
models as Hartree (or Hartree-Fock) polarizable-ion
models (HFPf) and semicontinuum (or semicontinuum-
polaron) models (SCP). Both types of models reduce a
many-electron problem to an eRective one-electron (the
F-electron) problem and treat the lattice polarization
and the F electron in a self-consistent manner. They
diHer most profoundly in their treatment of the effective
interaction between the F electron and the anion va-
cancy due to ionic polarization. %e may view the va-
cancy as an infinite-e6ective-mass hole having a charge


