
P H YS I CAL R EV I EW VOLUME 184, NUM BER 3 g 5 AUGUST

Conical Refraction in Second-Ha ~onic Generation
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(Received 28 June 1968; revised manuscript received 5 May 1969)

The second-harmonic generation in an optically nonlinear biaxial crystal is discussed, when the fundamen-
tal laser beam propagates along the direction of an optical axis for the harmonic wave. It is shown that in
the case of phase mismatch, the harmonic radiation will be emitted in a cone mantle, which is the nonlinear
analog of internal conical refraction. In the case of momentum matching along the optical axis, a more com-
plex intensity distribution results which fills the entire apex angle of the cone.

I. INTRODUCTION

HE parametric generation of light in uniaxial
crystals has been the subject of extensive investi-

gations. ' '%hen a homogeneous plane wave of infinite
cross section with a wave vector %L, propagates in a
nonlinear piezoelectric crystal, it creates a harmonic
polarization with wave vector 2RL, . The harmonic Geld
inside the crystal is generally described by the super-
position of two harmonic waves. One corresponds to
the solution of the inhomogeneous wave equation and
has a wave vector K= 2kL, .The other corresponds to the
free wave with wave vector k(2~). The direction of this
wave vector is Gxed by the condition that it has the
same tangential component along the boundary of the
crystal as 2kL, . The momentum mismatch is described
by

hk = 2kr, ((v) —k(2') = (w/f h) i,
where a is unit vector normal to the boundary. The
amplitudes of the two waves are determined by the
continuity of the transverse components of K and 8 at
the boundary. In order to avoid unnecessary compli-
cations, we may for the purposes of the present paper
put the rejected harmonic amplitude equal to zero,
and obtain to a good approximation

will make an angle p with the wave vector. ' The direc-
tion of energy propagation, or the ray direction, does
not coincide with the direction of the phase velocity,
or normal to the phase front. In this case the situation
shown in Fig. 1 develops which is the nonlinear analog
of optical birefringence. For normal incidence of the
laser beam propagating as an ordinary ray, two second-
harmonic beams will emerge from the uniaxial crystal
slab. The ray corresponding to the wave packet of
homogeneous solutions makes an angle p inside the
crystal with the driven solution of the inhomogeneous
wave equations. It should be noted that the harmonic
source polarization in the crystal is spatially confined
to the region of latter, which coincides with the laser
beam.

This "walk-off" or "aperture" effect was noted early
in the development of nonlinear optics and shows some
sirrBarity with the spatial separation of the homogeneous
and inhomogeneous solutions in a cubic crystal, if the
angle of incidence deviates strongly from the normal. '
The effect was carefully analyzed in great detail by
Boyd, Ashkin, Dziedzic, and Kleinman. Their paper,
which will henceforth be referred to as BADE, pays
particular attention to the case of practical importance,
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More precise and complete expressions will be developed
in Secs. II and III. For a laser beam of finite cross
section one has a distribution over a small range of
transverse components of the wave vector K~, and the
resulting harmonic Geld must be obtained by an inte-
gration of K~ for both the homogeneous and the inhomo-
geneous solution. If the harmonic polarization direction
created by a fundamental wave with ordinary polari-
zation corresponds to the extraordinary ray in the uni-
axial crystal, the group velocity of such a wave packet
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FIG. 1. SH birefringence and internal conical refraction. A laser
beam is normally incident on a uniaxial crystal and propagates as
an ordinary ray. The SH is polarized in the extraordinary direc-
tion. There is a driven SH ray normal to the platelet, while the
free SH wave packet gives a ray propagating at an angle p inside
the crystal. If the coherence length is short, these two harmonic
rays have equal intensity. This figure may also be used to de-
scribe internal conical refraction in a biaxial crystal, if the SH
optic axis OO' is normal to the platelet. The SH intensity propa-
gates along a cone mantle inside the crystal, and emerges as a
cylindrical mantle with a base diameter OE.
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in which momentum matching occurs. In this case the
laser beam contains the direction, for which Ah=0 or
l oh becomes infinite. The second-harmonic (SH) fieid
may, of course, still be calculated from the known
spatial distribution of the nonlinear source polarization,
by introducing the appropriate Green's function. The
solutions have been described in detail and have been
verified experimentally. ' 4

The results of BADE are also applicable to biaxial
crystals, except when the wave vector 2kL, has a direc-
tion in the immediate vicinity of the optical axes. It is
the purpose of this paper to extend the analysis of
3ADK to this special situation.

Intuitively, one may expect the following situation to
develop. Because of the frequency dispersion of the
optical axes it is possible to propagate a laser beam of
finite dimension with a small range of wave vectors
hL, , which do not include the direction of the optic axis
at the laser frequency, but encompass the optic axis
for the second harmonic. The energy propagation of the
packet of homogeneous waves containing the direction
of the optic axes is known from linear optics to lie on the
mantle of a cone. ' The homogeneous wave solution
thus leads to a circular harmonic intensity distribution
at the exit face of the biaxial nonlinear crystal plate.
Figure 1 may still be used to illustrate this case, if we
consider the distance OE as the diameter of a circle.
The angle p now has a value

28—p(63 —62)(62 6g)/EyEaj (3)

where ~3&e2&ei are the three principal values of the
dielectric tensor at the SH frequency.

In addition to the inhomogeneous solution which is a
SH beam coinciding with the laser beam, there will
now be a cylindrical mantle of SH intensity coming
out of the crystal with a diameter 2aL, where L is the
thickness of the crystal. This result will be conirmed
by the Green's function formalism, which will be de-
veloped in Sec. II. In Sec. III several details of the
application to conical refraction in biaxial crystals are
discussed, including the rather special case of exact.
mornenturn matching along the optic axis and the efI'ects
of misalignment.

The harmonic conical refraction, as depicted in Fig. 1,
should be detectable, if a pulsed laser is used with a
suitable biaxial crystal of reasonable dimensions.
Sufhcient harmonic intensity can be generated in a non-
phase matched direction. The physical conditions for the
observation of a simple ring pattern at the exit face are
the following:

(1) The diffraction angle of the primary laser beam
should be small compared to the cone apex angle 2a.
For a difI'raction limited laser beam of width mo, this
impl es X&&2azoo.

(2) The angular dispersion between the optic axes
at the fundamental and SH frequency should be larger
than the difI'raction angle.

(3) The thickness of the crystal I. should be suffi-
ciently long, to obtain a dark center of the circle,
2aL Q R'0.

(4) The coherence length should be smaller than the
length over which the homogeneous and inhomogeneous
solutions in Fig. 1 overlap, /noh((wo/2a.

These conditions can be met with a diGraction limited
neodymium glass laser beam of diameter ma=0. 05 cm
in a crystal of n-iodic acid (n-HID~), 3 cm long. This
orthorhombic crystal belongs to the space group D24-

P2,P2,P2, and is piezoelectric with large nonlinear co-
efficient dq4 for second-harmonic generation (SHG). '
It has principal values of index of refraction n~ = 1.8547,
F2=1.9829, n3=2.0103 at X=0.533' and n~=1.8123,
n2=1.9275, n3=1.9508 at 3=1.065'. In this ortho-
rhombic crystal the direction of the principal axes of the
index ellipsoid are, of course, 6xed along the ortho-
rhombic axes. One may calculate the direction of the
optic axes' at these two wavelengths and one finds an
angle of 0.8X10 ' rad for the frequency dispersion of
the direction of the optic axes. The coherence length is
estimated from the dispersion in index of refraction
along the optic axis to be l„h 5 p. The cone aperture is
calculated from Eq. (3) to be 6)&10 2 rad.

For ethylenediamine tartrate (edt), the situations are
less favorable, owing to smaller nonlinear coefhcient and
smaller cone aperture. One has for the index of refrac-
tion, ' n&=1.5175, n2=1.6035, n3=1.6095 at ) =0.45@,
and nj ——1.5010, n2= 1.5780, n3= 1.5809 at A, = 0.9p, One
calculates 2a—3X10 ' rad, l„h 9p. and the angular
dispersion of the optical axes is of the order of 6X10 '-

rad.
For Rochelle salt, the numbers are even less favor-

able. ' ni= 1.4991, n2= 1.5006, n~= 1.5050 at X= 0.4554p,
and ni= 1.4874, n2= 1.4892, n3= 1.4928 at X=0.649@.
One calculates 2a 3/10 ' rad, l„h 20p, and the dis-
persion of the optic axes 70(10 ' rad. Although con-
ditions 2—4 may not be met, one should still expect a
characteristic intensity pattern which may be calcu-
lated by the method described in Secs. II and III. The
calculations are valid for an arbitrary thickness L and
the case of infinite coherence length is also considered.

When the incident laser beam propagates along the
direction of the optic axis at the fundamental frequency,
the fundamental light will be refracted into cone mantle,
and so will the resulting nonlinear polarization. In this
case, the forced solution of the inhomogeneous SH wave
equation will be spread into an overlapping cone, while
now the homogeneous solution gives rise to a single
direction for each direction of polarization. VVhen the

'S. K. Kintz, T. T. Perry, and J. G. Bergman, J. Appl. Phys.
Letters 12, 186, (1968).

P. Mason, Piezoelectric Crystals (Van Nostrand, Inc. ,
New York, 1950); G. D. Boyd (private communication).

9 Landolt-Bornstein, in Zahlenmerte and Furlktioneu, edited byK. H. Hellwege and A. M. Hellwege (Springer-Verlag, Berlin,
1959), Vol. II, 6, p. 414-422; (Springer-Verlag, Berlin, 1962),
Vol. II, 8.
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solid angle of the incident laser beam includes the optic
axes, both at the fundamental and the harmonic fre-
quency, a superposition of two cone patterns will result.
Thus the case of insufhcient angular dispersion may also
be included. Although the conditions on optical aniso-

tropy, size, and optical quality of the biaxial crystal are
rather stringent, there appears to be little doubt that
experimental demonstration of the eGect is possible.
For this reason and for the sake of completeness, the
detailed theory of BADE of parametric generation of
light in anisotropic crystals is extended to the special
situation of propagation along an optic axis in a biaxial
crystal.

linear polarization in the direction i»

PN~(r) = exp(iE:,s)P(n)e&

1'(r, ) =— dK, exp(iK, r)P(K, ) .
2x

(10)

The Green's function in the parallel beam approxima-
tion may from Eqs. (4-8) be expressed as

Here E, is twice the s component of the wave vector of
the laser beam. 'The transverse distribution maybe
written as the Fourier transform

II. GREEN'8 FUNCTION FOR SH FIELD

The procedure used in this section is the same as that
employed in Sec. 5 of BADE. For simplicity the equa-
tions will only be given for nonabsorbing crystals,
although a weak linear absorption could readily be
incorporated in the same way as in BADK.

Expand the nonlinear polarization into a Fourier
series.

1
P '"(r) =—— Pxe" "dK.

2x

Each component PK gives rise to a solution of the field
which obeys the inhomogeneous wave equation.

V'X V'X E—(2(v/c)'e E= 4a-(2'/c) P '(r) . (5)

One hnds, for one polarization mode,

4m '
Ex= ——L1 —exp( —iDk z)j(y PK~")e'x'. (6)

nc Dk

This is the same form as Eq. (2). Here Dk is given by
Eq. (1), and the dyadic y is given by

1
G(r, r') =— dK, P exe&(2ai/, c)'(1/k. ")i

27r )i=1,2

Xexpt iK„(r—r')+ik, "(s—s')j, (11)

where the summation A. is over the two modes of polari-
zation in the crystal, e), is the direction of the X polari-
zation and k," is the s component of the wave vector
for the SH-6eld component with polarization X. This
result (11) is valid for any medium, isotropic, uniaxial
or biaxial, and the combination of Eqs. (7), (8), and
(10), gives the harmonic field anywhere inside the
medium. In particular, the 6eld at the exit face is
obtained by substituting s= I.. The approximations
that have been made to obtain the simple result (11)
are the parallel beam approximation, ignoring the
rejected harmonic intensity and taking the Inagnitude
of y as unity for near normal incidence and small
anisotropy.

Let us erst apply this formalism to the birefringence
in a uniaxial crystal as shown in Fig. i. The discussion
of BADE shows that we may take in the case of extra-
ordinary polarized harmonic field

y=- ee {tIt"'1—KK —(2u/c)'s2j '(X' —k')} (7)

It, represents the projection operator for the non-
linear polarization component which is effective in
producing the SH growth, e is the unit, vector denoting
the direction of polarization of the electric field. The
term in curly brackets may, near normal incidence, be
replaced by unity for the nearly isotropic case. If the
inverse Fourier transform of Eq. (6) is taken one finds

The Green's function for this case becomes

1 2' '
G,(r—r')—'— dK. fK„e,e, — i--

2m- c' k, ('")

Xexp(ik, "'(s .-')+ik„.(y y—')—
+ik (x x' ps+ p—s')]—

2' " 2x
=e~.i — exp[ik &'"'(s—s') j

(12)

E(r) =—E& exp(+iK r)dK= dr'G(r, r')PN "(r'),
27r

(8) Xb(y —
)yb (Cx

—x') —p(s —s') j, (13)

where we have introduced the Green's function G(r, r').
In the parallel beam approximation the SH polari-

zation has the same transverse spatial distribution in
each cross section 0&g'&I. of the crystal. Assume a

where e. is the direction of the polarization for the ex-
traordinary ray.

In the limit of phase matching b,k=E,—k, &' '=0,
the SH fields observed at the exit plane of the crvstat is
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simply

dz' dx'dy'G, (L z',—x—x', y —y')

XP (x',y')exp(iX, z')
(2')' 1

=e.i4n. — exp(ik, ' L)
c' 2k, &'"&

L

X dz'e, ezP[x p(I. —s'),y—] (14)

dz'8. P""Lx—p(L —z'),y]e'z'*'

which agrees with Eq. (5.51) of BADE, who concen-
trated their discussion on the phase-matched case.

In the limit of large phase mismatch, however, the
middle of the column is essentially "dark" and it is
degenerated into just two spots of dimensions mo.
This can be seen as follows: Kith the phase-mismatch
parameter Dk included, Eq. (14) becomes

(2(u)' 1
E.(x,y, L)=e,i4vr —— exp(ik. &z"iL)

c' 2k.('")

sists of two beams. One propagates in the same way as
the parallel fundamental beam along the 2' axis, the
other propagates in the x-s plane and makes an angle

p with the s axis. Both beams have equal intensity and
the same transverse intensity distribution. This solu-
tion thus con6rms the physical reasoning in the intro-
duction which led to the situation shown in Fig. 1.

Turning now to the case of propagation along the
optic axis in a biaxial crystal, the geometrical relation-
ship given by Eq. (12) is no longer valid. Describe a
wave vector k in the neighborhood of the direction of
the optical axis by its deviation from h,~= 2~c 'e2'"z,
namely, by K& and bk, as defined in Fig. 2 and Eq. (18).
It is characteristic of a medium that the transverse
part E~ is sufhcient to specify the total wave vector
kq. In addition, it also determines the direction of
polarization i&. Reference 5 may be followed and a
detailed geometrical derivation is given in the Appendix.
One finds that instead of the geometrical relation Eq.
(12), we may now express k&, to first order in EC& as
follows:

k), ——K,+8k,",
k,"—kz —ak'LcosQk —(—1)"],

(2id)' 1
=e.i4x — exp(ik. &z"&L)

where

k2 ——(2co/c) (zz) ' ",
a = —,

'
L(ez —z2) (z2 —z,)/z, e,]'".

(18)

dK,
—(e. ez)P(K, )e**i'

2'

Here e3&~2&~~ are the principal values of the die-
lectric constants at the SH frequency 2'. The polari-
zation ei is, to 0th order in Ei/kz, given by

X ds' exp{iLhkz' —K.p(L —s')]) . (15)

Carrying out 6rst the s' integration, we have

with

eg—S cosQg+p slnQ)t

Qg = zi 14'+-'z (li —1)n. .

(2id) 1
E.(x,y,L)—e.4x ~iKgL

c' 2k.&'")

P(K,) e'*i' —exp(ik. &'"&L)
Ak+E p

dK,
-(e, e2)

2'
dK~

—8, e2
2~

It has been assumed that the optic axis is in the normal
or i direction. The g direction is taken parallel to the
medium principal axis, along which the dielectric con-
stant is, ez and x=zXfl.

P(K,)
iKyzy iIze(xCpL) (16)—

6k+K,p

If we have suflicient phase mismatch so that Dk))p/wo
or pl, „h(&2xmo, then the term E p may be neglected in
the denominator of the above integral. Ke thus have

k)

Z

p k~

(2')' 1 1
E„(x,y, I.) i,.4m. —

@2 2k„(-'") Dk

X(eiiigLi", . PNI, (r v) z'i, )Li", .PNL(» pi v)} (17)

Since PNL(x, y) vanishes for x'+y'))wo', this result
may be interpreted as follows. The SH intensity con-

y, x&

I'"iG. 2. Jf, X2, and 23 are the set of three principal axes of the
dielectric tensor such that the dielectric constants satisfy the con-
dition e1(~2&we. x, y, and z form a set of orthogonal axes with y
axis antiparallel to J2 and with z axis parallel to the optical axis
(which lies in the x1-x3 plane}. It is also normal to the crystal
boundary. OA is the projection of the wave vector kq onto the
x-y plane, and specifies KI.. ez is the polarization vector (which
lies in the x-y plane).
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The Green's function Eq. (11) now becomes with where

Eqs. (18) and (19)

G(r, r') (2—s) 'e'—"'&'

g= R cos(Q~' —Q) —D(cosQa'+1),

D= a(s —s'),
4=cos '(9 e2).

Xg k'dk' dQ~'(2n. ) '(i cosQ~+g sinQq)'

Qg=cos '[(rg r, '—) l/Rj,
and the square of the vector is the dyadic (outer)
product.

The substitution of the first-order approximation
for k," as given by Eq. (18) is valid only if the obser-
vation plane is close enough to the source point so that

(s —z')/2k2«nrp',

where 'No is the effective beam width. Note that this
condition restricts us to the region where beam dif-
fraction is negligible, and is equivalent with the near-
field criterion for parallel beam approximation. ' %ith
Eqs. (4), (8), and (20) the harmonic 6eld at the exit
face of a biaxial crystal platelet, with the optic axis
in the normal direction, can be written

2'' 1
E(*,y, L) =Q dKi(2~) 'e'*~'P(K,)i—

c k,"

X6(6 4) ds' exp(iK, s') exp{ik,"(L—s')

—iak'[cosQL' —(—1)"1(L—s') }. (21)

In Sec. III we shall discuss the detailed directional and
polarization properties of this field and show that it
indeed corresponds to a conical refraction.

(2~)'
Xi47r (2k2) ' exp(ik'R cos(Q, —Ql, ')

C2

—ika[cosQq' —(—1)"j(s—s')), (20)
where

To emphasize essential directional eGects, the follow-

ing integral, which ignores the polarization features and
the factors in front of the integral of Eq. (22), is con-
sidered first:

gp=(2m) ' kldkfsIs ~ (23)

Integration over k' gives

2x

dQ~'(2s. ) '—PP i7r—b(—g) +c.c.
0 ling

=lim (27ri) ' dQI, '(i) '[(q+ie) '+(g ie) —'j,
& ~+0

where PP means the Cauchy principal part. Ke have
used the well-known identities

dke"*=7lb(x)+iPP(1/x)

lim (x—x &ie) '=PP(x —xo) 'W"~(x —xo) (25)e~o

in the above derivation.
I.et us fix z, z' and consider the pattern of go in the

z—z'=d plane. The functional form of the integrand
in Eq. (24) implies that essential contributions to go
are from p=0. According to the definition of p in Eq.
(22), this corresponds, in the z —s' = d plane, to a straight
line which makes an angle (2w —Q~') with the a axis as
shown in Fig. 3. As QI,

' is varied from 0 to 2x, the tip A
traces out a locus OH= p'=D(cosQ~' —1). As we add
their contributions together, corresponding to the
Q~' integration, it is clear that they reinforce each other

III. HARMONIC CONICAL RADIATION

The Green's function given by Eq. (20) implies that
the SH field from each slab of harmonic polarization dz
is radiated into a cone. If the harmonic polarization is
linearly polarized in the direction e2, then the contri-
butions to the normal modes, modes X= 1,2, are com-
plex conjugates, as follows from Eqs. (18)—(20),

Us of p'= D(cosQk+1)

LocUs of p =2D(cos Qk+1)

2'
G(r, r') e2 i —k,—'e"&&——*—"& d Qp'(27r)

X(e cos-', Ql„'+P sint~(4') cos(~QI..' —4)

X k'dk'(e'"'"+e '~ &), (22)'

Frc. 3. Schematic diagram for geometrical features of the go
integral, given by Eq. (23). The locus p'=D(cosQI, '+1) is the
envelope of the circle p'=2DcosOk' (p' measures the distance
from the origin O. Qk' is the angle between the x axis and the radius
vector). B denotes the projection Rz of the point R in the trans-
verse plane OB=R and O'B=p.
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only in the region described by the envelope of this
locus. This envelope is easily shown to be a circle of
radius 2D, with its center lying along x direction and a
distance D away from the s axis as shown also in Fig. 3.
Therefore, go gives a field pattern which is a cone whose
intersection with the transverse plane is a circle as just
described. Its radius is proportional to its longitudinal
distance s—s' from the radiative source. It is clear from
the conservation of power fiux that go is inversely
proportional to s —s'.

I et us define p, q as the coordinates with respect to
the center of the circle 0' instead of 0 as shown in Fig. 3.
It may be shown that go is independent of the angular
variable p and we may therefore write

integration of Eq. (20) over s' yields the SH Geld

(2')'
K(x,y,L) —(1/k2) P dEC, (2x) 'e'K—i'P(K, )

C2

X{6k+uk'I cosQk' —(—1)~j) 'ei, (8i. e2)

XLe'~* —exp{k2 —uk'LcosQi' —(—1)"7jLj. (30)

For M))2u/ii~o, where ii~0 is a characteristic transverse
dimension of the beam, the following approximation is
valid:

2' ' 1
K(x,y, L)—— e,P(x,y)e*

c kgAk

a~&= [1/(s —s') jgo'(p) e'~'~ —dQ&'(2ir) 'P(k', Qi')(x cos~Q&'+y" sining Q&')

To include the polarization effects, Eq. (22) is now
integrated to give Xcos(-', 14'—4&) k&dk&L" ie'qi'+ haik'q' j (31)

G.e2=i(2~/i;)2k, lgik2—(z z i—'

where
g' = r, cos(Q —Qi,")—uL(cosQa'+ 1) .

dQi '(2n). '(i .cos2Qi'+g sin~Qi, ')

8
Xcos(2Qi' —C)2 —PP— . (27)

ting

Ke next apply arguments similar to that used in the
paragraph following Eq. (25). There is, however, one
modification, that the straight lines considered pre-
viously are not of equal magnitude but have an angular
dependence on Qi' namely, cos(4 ——,'Qk'). This same
dependence is still valid in the 6nal result with 01,-

replaced by p for the "conical circle" of the radiation
in the s plane. This is obvious from the way by which the
circle is constructed.
Therefore,

6 e.=i(2co/c)'(1/k2)e' "' "'(x cos-,'ip+ j sin-,'u)
Xcos(-', g —4)g,'(p)/(s —s'). (28)

iXote that its amplitude

IG '. I=(2~/~)'-'k 'lc»(l~ —~)ll~(p)l/I.-—"I (»)

The erst term represents a beam which propagates
in the same way as the fundamental beam along the
s axis. In other words, it has the same phase velocity
2i0/k as the fundamental beam, and the same cross-
sectional distribution as the polarization. The second
term represents a beam of entirely different character-
istics. It may be written in a little diGerent form, by
inversely fourier transforming P(Ki) to P(r,) as

(2co
K(x,y,L) = —

I

—(k2hk) 'e*"'~
kc

X dr&'(2') 'P(ri')G'(r& r&', L) eu, (32)—
where

G'(r, r, ', L)—
(i cos2Qk'+y sin~Q&') cos(~Q&' —4)

2x

k~dk~(eiL'q" +~ ik'q")—
ha, s an angular dependence of cos(if& —2y) around the
circle in the transverse plane for the case of linear
polarization.

A. Conical Refraction for Harmonic Generation
vrith Momentum Mismatch

Usually the direction of the optic axis will not corre-
spond to a direction of momentum matching. Ke must
3dd the radiation fields of each slab ds with the appro-
priate phase. If hk=E-. —k," denotes the mismatch,

q" =R cos(Q —Qi') —uL(cosQi'+1) .

G' is recognized as a special form of the Green's
function G with s'=0, as given by Eqs. (24) and (28).
The implication of the above form is then very clear.
It represents a conical pattern, starting from the plane
of entry. If the crystal is thick enough, 2aJ&)zoo, the
SH intensity at the exit face will be in the pattern of a
ring with diameter 2aL and width mo. The polarization
and intensity distribution around the ring is given by
Eq. (28). This confirms the heuristic argument of the
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introduction. It is the nonlinear analog of internal
conical refraction.

B. Phase-Matched Case

For 6k= 0, the z' integration of Eq. (22) leads to the
harmonic fields,

easily be shown to be proportional to (cosQ) '. It is then
multiplied by 2a cosQ/r& to give 2a/x as the resultant
dependance. When the integration of Eq. (31) over a
transverse cross section is carried out, Eq. (33) is
recovered.

For a Gaussian transverse distribution and a thick
crystal, L))wo/2a, Eq. (33) reduces, in the region x))wo,
to

E(x y L) ~ e~KgL'
2h

dy'P (x',y') 1/ (x x')—
E(x,y, L) ~ r, cos(C' —Q) dx dp

X[i(x—x')+g(y —y') j[(x—x')cosC+(y —y')sinC]

X[(x—x')'+(y —y')']-', (33)
where

h = aL m = [(x—x') (2h —r+ x') j"-'

This result may be made physically plausible by the
following argument. Consider the first contribution due
to a source field which is infinitesimally thin in the
transverse directions and is of length L in the z direction,
i.e., we let

ger
r, cos(C' —Q)

2
dx

—4 (.r'2+y'2) /n 02e
/x—x

e 4 ~&2/n. 02

P"L(r) = e28(x)b(y)e'»"- for 0(z(L
=0 elsewhere.

From the discussion of the Green's function at the begin-
ning of this section it follows that each point (0,0,z')
radiates into a circle

r,/cosQ= (L z')2a—
in the exit plane. On this circle, the nonuniformity of
the field amplitude around its circumference is given by
the factor

i, e,= [x cos4+y sin4j/(x'+y') "-',

whereas the vector character of the held is indicated by

&I,=XX+//

The dependence on s is clear; the field amplitude is
proportional to (L—z') ' or 2a cosQ/r, , and the phase
is determined by the factor

e*'&&z "'=exP(ikzr, /[2a cosQj) .

Inside the circle (x—h)'+y'(h' and away from its
circumference so that the region which is a distance of
the order of mp away from it is excluded, K is further
reduced to

E(x,y, L) ~ r", cos(C' —Q) dx' --e 4"""'"
oo X X

X dy'e '"""'" (36)

—r",P(gn. )woj' cos(C' —Q)/x

Note that its amplitude would have been propor-
tional to 1/x and independent of y if the beam is un-
polarized. EGect of the linear polarization, on the other
hand, gives rise to the factor cos(C —Q). This implies
that we could observe a dark line at the angle 0= 4 ——,'~
for the linearly polarized laser input.

Near the circumference, (x,h)'+y' h', we have
instead

As we move the radiating element away from the
exit plane, with the value of s' decreasing from L to 0,
the diameter of the circle increases from 0 to 20J. It is
clear then that total contribution to the SH field due
to the line source is

cos(C —Q)
E(x,y, L) ~ r, (-,'gx)

—2h

d~& —4x'2/v 02dx e

/ 4y 2/~. 02

dE~O for r~/cosQ) 2aL
~ 1 /(xrx+y )y(x cosC+y sinC)/(x'+y')

for r,/cosQ(2aL. (35)

Note that we have the dependence of 1/x here rather
than L z' or 2a cosQ/ri. This is b—ecause the circles in
the exit plane are clustered closer and closer together
as we move away from the x axis in the increasing 0
direction. The density of such clustered circle lines can

cos(C —Q)
fJ p 1l (zwo )z

x—2h—-', worn. erf
2 %OP x—2h

dx'e 4'""'"

2ZOP
1

y —[x(2h —x)+xx'j'~'

(Xerf — . (37)
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It falls oR nearly as an error function of width zoo as
the observation point (x,y) is moved out of the circle,
but one may expect some intensity everywhere inside
the circle in the phase-matched case.

The Green's function may therefore be written

2cal

G(rr') —i —(k ) 'e"'&' *'
C

C. Effect of Misali~~ent
X=1,2

dK&ez'ez' exp(iK& (r—r')

The preceding results are valid for a parallel source
beam directed exactly along the optical axis. As we have
already mentioned, the optical axis corresponds to a
singular point k,~ in the k space so that physical results
depend critically upon the specific form of the source
PNL. We expect that essential changes in the results
will occur even if there is only a small amount of mis-
alignment oR the optical axis. In the case of large mis-
alignment, i.e., when the optic axis is not contained in
the bundle of k directions of the incident beam, one
should, of course, revert to the case of optical bire-
fringence. The polarization should also vary drastically
during the transition from the aligned to the misaligned
case. These eRects will now be analyzed somewhat more
quantitatively.

Let us consider the normal incidence of fundament a
laser beam on a biaxial crystal plate. Assume that the
resulting nonlinear polarization for SHG is a parallel
beam of the form given by Eq. (9). While s still denotes
the normal to the plate, it no longer coincides with the
optical axis k,~ corresponding to misalignment. We
shall use the angular parameters 8~ and o. to specify
uniquely the s direction with respect to the set of crystal
fixed axes x~, x2, x3. Here 8~ denotes the angle between
9 and the optical axis, while 0. is the angle subtended by
the xi-x~ plane and the s-k,~ plane. Or

Hd= cos 2' k&)p,

a=cos 'P'2 (9Xk,&)/(zXk, ~~).

In the limit of small misalignment 8~&1, it is straight-
forward to show from Eqs. (18) and (19) that kx' and
ez' may be expressed in terms of 8& and o, as

—ia(s —s') icos(Q~. +n) —(—1)')
X/k" +2k'k28e cos(Qq'+n)+(k28e)')'i2) . (20')

Consider now the limit when the deviation of the s
direction from the optical axis is much smaller than the
effective beam spread, i.e., k28d«(ICi), «where (E'i).ff
is eRective radius of the sphere in k space over which
the above integral is carried out. It is of the same
order as the inverse beam width mo '. For a source
field linearly polarized in the e2 direction, we may
impose the same conditions and employ the same
techniques, which enabled us to reach Eq. (28), to yield

2'
G e2 i. ——k2 'e' "* *'~P cosz(&p )n+—P isn(zp —n))

C

Xcosl.",(y —n) —@)(s —z') 'go'(p) cos(a(z —z')k, 8e

Xcos(&p+n) icos(p+n) —1)). (38)

Comparison with Eq. (28) shows that the last cosine
factor is the essential modification due to the small
misalignment of the beam. Therefore, the conical form
of the harmonic radiation is still preserved but the angu-
lar distribution around the cone is modified.

In the case where the misalignment angle is so large
as to be greater than the eRective beam spread, i.e.,
ks8&)(E'g), ff we have, instead of Eq. (38),

1
G(rr')=(2~) 'e'"'* z' Z dQ~'4'6'—

Xexp{ ia(s z—') [cos—(QA, '+n) ( 1)"—)k~—8e)

lrx'= K+z(kz —8e(E' cosa+K~ sinn) k'dk' exp(ik'R cos(Qq' —Q) —ik'a(s —z')

with

and

and

—aLcos(Q~'+ n) —(—1)"7

XLk'z+28ek2k' cos(a+Qq')+ (8ekz)27'i') (18')

Qp = cos (Kz z)

k'=
/ K~/,

X(cos(Qq'+a) —(—1)"7cos(Qa'+a) ) . (39)

Note that the exponential term preceding the k'
integral has a faster varying phase than the term inside
the integral. It may thus be replaced by a term fz
which has the property that

fq= 1 for
~
cos(Qq'+a) —(—1)"

~
& L8ek, a(s —z'))—'&&1

=0 otherwise.

The k' integral in turn may be approximated by

e),
'—9 cosL-', (Qp' —n) +-,'(X—1)s.)

+g sinPQg' —n)+-,'(X—1)s.). (19')

k'dk' exp f ik'R cos(Q —Qz') —(—1)"ik'a(z z')—
XLeos(Qs'+n) -(-1)")),
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APPENDIX

A proof of Fqs. (18) and (19) is presented here. It is
well known that the wave normals hq satisfy Fresnel's
equations. It has also been shown that the velocity of
propagation is given by

Fio. 4. External conical refraction of SH radiation. The aper-
tures 0 and 0' are so placed that 00' is an optic axis of the bi-
axial crystal at the SH frequency. The convergent incident lasser
beam fills a solid angle containing the direction 00'.

in the region QI, +o.=km. which is of main interest due
to the presence of fq. This is of similar form as that of
the integral in Eq. (23).It can be evaluated in the similar
fashion as previously and the picture of Fig. 3 is once
again appropriate here. There is, however, one impor-
tant modification. That is, that only a small fraction of
the locus p= a(s —a')Leos(cp+cc) —(—1)~j, which corre-
sponds to y=hx —o., will add up coherently. The
resultant field pattern in x-y plane will therefore not be
a circle as in Fig. 3 but instead just be two points on the
circle with & equal to x —n and —o,, respectively. In
other words, double refraction type of SHG instead of
conical refraction will result.

IV. CONCLUSIOÃ

Detailed calculations confirm the existence of the
phenomenon of internal conical refraction in SH
generation. It is clear that the same arguments hold
for any parametric generation process, e.g., third-
harmonic generation, sum or difference frequency
mixing when the wave vector of the nonlinear polari-
zation is parallel to the optic axis at the newly generated
frequency.

The case that the incident light beam(s) propagate(s)
along an optic axis at the incident frequency was
mentioned in the Introduction. In this case the non-
linear polarization source is itself spread into a cone
mantle. Detailed calculations could again be carried
out by the Green's-function technique.

There is also a nonlinear analog to the phenomenon
of external conical refraction. In this case the funda-
mental beam is focused onto a pinhole at the entrance
face of the crystal. Harmonic polarization is created with
a distribution of transverse k vectors. A pinhole at the
exit face selects the contribution from those Fourier
components that give rise to energy propagation along
the optic axis defined by the two pinholes. The resulting
harmonic radiation at the exit face will emerge in a cone
mantle, as shown in Fig. 4.

These effects are accessible to experimental obser-
vation, but the polarization effects will be obscured by
natural optical activit~. , which occurs for example in
a-iodic acid near the optic axes.

v '3= (24))3/(k&)3= (1/2)LvP+v33

+ (V33 —V33) COS(83 —83)j, (A1)

in terms of the angles 8i and 82 which the wave vector
k makes with the two optical axes as shown in Fig. 5.
e~, e~, and e3 denote the principal velocities of propa-
gation with v&&e2)e&. They are characteristic of a
particular biaxial crystal and are simply related to the
dielectric constants e~, e2, and e3 of the three principal
dielectric axes by v;= c/Q3; with i= 1, 2, 3. When the
wave vectors are close to one of the optical axes,
namely, axis OP in Fig. 5, it is apparent that we have
Hy«1 and 82=2P—8& cos0&'. It is then straightforward
to show that Eq. (A1) reduces to

vP =v33+3 (vc3 —v 3)(sin2P)(cosQ3'3 —(—1)"8&), X= 1,2.

This implies, following the relation v= (2c0)/k, that the
wave number is

For small transverse component E~, however, the longi-
tudinal component k." will be to 6rst order the same as
the wave number. Thus, we conclude, recognizing
k3= 2co/v3= 2cdV'33/c and k'=k38~ that

lc'= Kc+z(k3-k'a'tcosQ3' —(—i)'j},
a'= —,'L(vc3 —v33)/v33jsin2P.

It is identical with Eq. (18) provided a =a. This can
ea,sily be verified by recalling the definition v;=c/g3;
and using the relation

tanp= D~3/3c 1)/(1 ——33/63)$" (A3)

P

X2

Fzo. 5. Diagram showing the geometrical relation of the wave
vector k), and the optic axes OP and OP'. These lie in the plane
normal to x2 and make equal angles P with Iz.

(2(o) 1 —,'(Vc' —V3') Sin2P
k" = (2co)/vg= 1—

V2 2 $)92

XL(cos03'+1)]8i . (A2)



904 H. SH I H AN D N. B L OEM BE RGEN 184

indeed, then

i vy —v3"
Q sin2P

4 vg

1 v~' —v~' tanP

2 z'zz (1+tan'P)

1 z)zz pzz L(z)zz z)&z)(pzz zt3z) jz/z

2 vo (z)z2 z)zz)

Equation (A3) determines the angle P between the
optical axis and the axis x3 in terms of three principal
dielectric constants. It can readily be veri6ed.

We now proceed to establish Eq. (19). To find the
polarization directions d), of the displacement vectors
associated with a given wave propagation direction

k, we employ the geometrical method of ellipsoid. ' The
ellipsoid under consideration is described by

Xl /zl+gz /E'z+XS /f3 1 ~

X
Jz

,e,

xI, x2, and x3 are the coordinates along the three princi-

pal dielectric axes. We thus draw a plane, passing
through the origin (0,0,0) and perpendicular to the
direction k. The intersection of this plane and the ellip-
soid is an ellipse, its major and minor axes give the
desired directions aq. When k is along the singular
direction of the optical axis, the ellipse degenerates into
a circle of radius Qez. If, however, k deviated infinite-

sinally from z, the ellipse is described by

xz'z/ez'+xz'z/ez' ——1, (A4)

where the major and minor axis e&', e2' are given by the
Fresnel's equation. Namely,

Qei' = c/ri' = ck "/2co = (c/2co) {k2 —ak'LcosQq' —(—1)"j)
x&', x&' are orthogonal coordinates linearly related to
x&, x2, and x3. To 6nd such relation explicitly, we refer
to Fig. 6. The y axis coincides with x2 axis and z is the
direction for the optical axis as in Fig. 2. OQ denotes the
direction of the k vector under consideration. Its
deviation from i is described by parameters 8&, 0I,' ~

The ellipse associated with the vector OP is shown in
Fig. 6(b). It lies in the plane MOL in Fig. 6(a). Its
intersection with the x-y plane is denoted by 035 which
is, of course, Qe2 in length. With the knowledge of the
length of the ellipse axes Qez', Qe&', and 03E=+~z
we can determine the angle &3fOB. Referring to Fig.
6(b), we can see that OH and OK satisfy the following
set of equations:

(OH)'+ (OK)' = eg,

(OH)'/ez'+ (OX)'/e. '= 1,

which have solution

y, x&

(a)

X)

K

OH = c(1 vz'z/s—22) zjz/(e " vz") z"—

OIL = c(r, "/zz, ' 1)' I'/(zz "
zz—")'I'—

therefore, using Eq. (A2), we have

&NOH= tan z((OE)/(OH) j
= tan-'((zze'-es')/(eII —ez's) j'I'
= tan '((1—cosQ~')/(1+ cosQ~') j

(b)

FIG. 6. Diagram for the geometrical construction of the polari-
zation vectors, as explained in the Appendix. The plane ONI. is
normal to the wave vector OQ. The intersection of the wave vector
ellipsoid with the plane OMI. is the ellipse shown in Fig. 6(b).

As 8~ approaches zero, the plane OMI, in which the
ellipse lies, tends to coincide with the x-y plane. There-
fore, the major axis x2 which we identify as $, makes
and angle (Qq' ——,zQi') = ~iQ&' with the x axis and minor
axis xz' identi6ed as dz, makes an angle (2Qq'+2zr) with
L Eq. (19) then follows immediately.


