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Then in the stationary state the number of particles

being scattered into (p) in time dt can be written in

two ways:

1Vep (p)dt =g P(v)Q(p
~
v)XgQ,

For isotropic scattering, instead of the momentum-

space cells, energy cells dE can be introduced. This
leads to Eq. (3).
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The electronic self-energies in degenerate semiconductors due to interactions of electrons and holes with

optical and local-mode phonons (of energy heep) are evaluated using second-order perturbation theory. Both
(screened) polar and deformation-potential interactions are considered, as are the eBects of optical-phonon
dispersion: Aco{q) = Sicko —aq'. One-electron models of tunneling in metal-oxide-semiconductor junctions are
constructed. Their consequences are investigated numerically for indium-Si02-silicon junctions. The results
of these calculations are parametrized by simple models of the barrier penetration factor for use in evaluating
fine structure at eV—+~o due to electron-phonon interactions. The transfer-Hamiltonian model is utilized
to classify such Gne structure as due to either inelastic tunneling processes or (electrode) self-energy sects.
The analytical and experimental distinction between these two types of eftects is described. The combined
model obtained using second-order self-energies characteristic of the semiconductor electrode and simpli6ed
approximate barrier penetration factors is utilized to interpret experimental data on indium-Si02-silicon
and Au-CdS junctions. The satisfactory description of these data suggests that d'I/dV' measurements on
junctions in which one electrode is a very heavily doped semiconductor can provide a direct experimental
determination of the energy-shell electronic self-energies in the semiconductor electrode.

I. INTRODUCTION

HE first clear observation via electron tunneling
of the inhuence of electronic interactions with

other elementary excitations characteristic of a tunnel
junction was the identification in 19&9 of phonon-
assisted tunnel. ing in p-e tunnel diodes. ' ' In order to
relate this "inelastic tunneling" process to the "self-
energy" effects considered in this paper, it is convenient
(but not necessary) to utilize the transfer-Hamiltonian
model. ' ' Within the framework of this model, a tunnel
junction is regarded as two electrodes, described by X,l.
and X&, respectively, weakly coupled by a transfer
Hamiltonian T which transfers electrons from one
electrode to the other. The total Hamiltonian is given
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3C —Xl +X++1
The tunneling current I is evaluated' via obtaining

the linear response of the isolated electrodes, described
by 3CO

——(Kz+Ka), to T.
An inelastic tunneling process is defined to be one de-

scribed by a term in the transfer Hamiltonian of the
form"

'1;,= Q LA.k, ,(p)cg~c, (a,t+u, )+H.c.j. (1.2)

The cl, are the annihilation operators of electrons in the
right-hand electrode, the c~ are those of electrons in the
left-hand electrode, and the u, (a,t) are the annihila-
tion (creation) operators of the (boson) elementary ex-
citation created during the inelastic tunneling process.
In terms of a diagrammatic description of tunnel-
ing,"inelastic channels are described by diagrams like
that shown in Fig. 1 in which solid lines denote elec-
tron propagators in the electrodes and wavy lines denote
boson propagators describing excitations (e.g. , phonons)
created by a tunneling electron. If the tunneling elec-
trons create excitations in a narrow energy region
E=hcoo, then for values of the bias V across the tunnel
junction such that

~
e V

~

—Acro, the conductance
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q, iraq

FIG. 1. Diagrammatic description of the contribution to the
tunneling current due to a single-boson-emission inelastic process.
A detailed description of the evaluation of the contribution to the
current denoted by this diagram is given in Sec. 19 of Ref. 3 and in
Ref. 6.

T =P LA k,cg et'+ H. c].
k, q

(1.3)

We refer to the consequences of the electron-phonon
interactions in this limit as "self-energy" effects. They
result in the transfer-Hamiltonian model from inter-
actions in the "bulk" electrode. The diagrammatic
representation of these processes (as described in this
paper) is shown in Fig. 2. The consideration of electron-

dI/dV exhibits sharp increases. ' '67 If the electrons
are coupled to a wide band of excitations 8&~0,
approximately symmetric conductance minima occur
at zero bias."The outstanding characteristic of in-
elastic tunneling predicted by the transfer-Hamiltonian
model is the threshold nature of such processes resulting
in approximately symmetric increases in the con-
ductance for both polarities of the bias voltage.

This paper is devoted to an investigation of the con-
sequences of electron-phonon interactions in the elec-
trode Hamiltonians Kl. and BC' rather than in the
transfer Hamiltonian T. For simplicity, we consider
electron-phonon interactions to occur in only one of the
electrodes @Ca] and treat the transfer Hamiltonian in
the (customary) elastic limita 4

where $, is the energy of the qth state measured rela-
tive to the metal Fermi energy. For the right-hand elec-
trode, we utilize the model Hamiltonian

where

+P (V,b,eq+, tcq+H c ], (.1..5)
k, p

(1.6a)

(1.6b)

(1.6c)

The density. of mobile carriers is n and the effective mass
in the semiconductor electrode is m*. The b p are phonon
annihilation operators for the semiconductor optical
phonons of energy A~0. The electron-phonon interaction
in the electrode is described using the Frohlich
Hamiltonian. '

If we apply linear-response theory, ' '" we find that
the tunneling current I is given by

phonon interactions only in a single electrode provides
a reasonable description of metal-semiconductor and
metal-insulator-semiconductor junctions because the
eGects of electron-phonon interactions in the semi-

conductor often are considerably larger than those of
the interactions in the metal (or insulator).

Let us assume that the left-hand electrode is a metal
and the right-hand electrode is an n-type semiconductor.
(The results can easily be generalized to the case where
the right-hand electrode is a p-type semiconductor. )
For simplicity the electrons on the left are taken to be
noninteracting so that

ar, ——Q 4c, t(.„,

%re
deaf(e) f(e+eV)—]b(e fq+eV)—

q, iffy&-V„l

(a)
1

X—ImG~()g, e), (1.7)

FIG. 2. (a} Diagrammatic description of the contribution to the
tunneling current due to elastic transfer processes including the
presence of electron self-energy corrections in the right-hand elec-
trode. A detailed description of the evaluation of the contribution
to the current denoted by this diagram is given in Secs. 19 and
20 of Ref. 3 and (in less detail} in Ref. 6. (b) Dyson equation
illustrating the description of electron-phonon self-energy effects
utilized in this paper. A more detailed account of this description
is given in Sec. 20 of Ref. 3.

' J. Lambe and R. C. Jaklevic, Phys. Rev. 165, 821 (1968).
C. B. Duke, S. D. Silverstein, and A. J. Bennett, Phys. Rev.

Letters 19, 312 (1967).

in which e denotes the total energy measured relative
to the Fermi level in the semiconductor, f(e) the Fermi
function at T=0'K, V the bias voltage applied to the
metal, and G~()~, e) the retarded single-particle Green's
function' in the semiconductor electrode.

The general characteristics of self-energy sects may
be exhibited by considering the expression for the
tunnel conductance obtained using a simpli6ed model
in which the barrier-penetration probability Li.e., A~, ,
in Eqs. (1.3) and (1.7)) does not depend explicitly on
the bias voltage V. Ke lnd that in this case the tunnel

' H. Frohlich, Advan. Phys. 3, 325 (1954)."A. A. Abrikosov, L. P. Gorkov, and l. E. Dzyaloshinsky,
Methods of Quantum Field Theory in Statistka/ Physics (Prentice-
Hall, Enc. , Englewood Cliffs, N. J., 1963), Chaps. 2-4.
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conductance is given by"'

dI 2e'A
(V, T=O) =

dV mh
d]k ImGs(&k, —eV)

d'ill
X D(k„,)k,O) . (1.8)

(2s.)'

(1.10a)

dI 2e'2 P—e v

pi) D(Eii eV 0)dE)] (1.10b)
dV h p

p„=m*/2n. A'. (1.10c)

Use of the approximation that D is a constant gives
the linear threshold rise in the (single-particle) con-
ductance for eV(g characteristic of specular tunneling
into a single band as described by the %KBJ approxima-
tion. ' '4 This result is indicated schematically in
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4 k /2m =$k+t
eV
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Fro. 3. (a) Schematic potential energy versus distance diagram
for a metal-insulator-semiconductor junction. Energies are
measured from the bottom of the semiconductor band. (b) Dis-
pe sion relation for electrons in the (degenerate) semiconductor
electrode interacting with optIcal phonons of energy ~.-0.
heavy dahsed line indicates the dispersion relation in the absence
of electron-phonon interactions. (c) The conductance of the metal-
insulator-semiconductor tunnel junction shown in Fig. (a)
evaluated using the constant-barrier-penetration factor model
t see Eqs. (1.10) in the text and Ref. 14j. The dashed line shows
the conductance predicted by this model in the absence of elec-
tron-phonon interactions in the (bulk) semiconductor electrode.

"L. C. Davis and C. B. Duke, Solid State Commun. 6, )93
(1968).» J. Frenkel, I hys. Rev. 36, 1604 (1930).

"W. A. Harrison, Phys. Rev. 123, 85 (1961).
'4 D. J.BenDaniel and C. B.Duke, Phys. Rev. 152, 683 (1966);

160, 6/9 (1967).

(c)

The boundary condition of specular reQection has been
used so we have taken'

i&k,g('=—&k[, ,g, [D(kll, kk, h, )/(2~)' (1.9)

LEquation (1.9) is valid for bias functions normahzed

by b functions in energy. ') A is the area of the planar
junction.

The results of the noninteracting-electron model are
readily obtained from Eq. (1.8) by taking

ImGs(gk —eV) =~b()k+eV),

Fi . 3(c) by the dashed line for the junction whose

potential-energy versus distance diagram is shown in

The influence of electron-phonon interactions in the
electrode may be illustrated conveniently by use of the
quasiparticle approximation' in which

ImG (&k,e) =Z(e)s hL&k —P(e)$. (1.11)

Using perturbation theory, if Zs(k, k) =Z(pk, e) is the
retarded' electronic self-energy, then g(e) is de6ned to be
the solution of the equation

e—$(e) —ReZ($(e), c) =0 . (1.12a)

The quasiparticle renormalization factor Z(~) is given by

Z 8 ' -,|. (1.12b)Z(e) (I+8 / $k) gk S(

If Z(e) =1, a result which occurs if Z(k, k) is a function
of e alone, then the entire eGect of electron-phonon

12ainteractions is due to the fact that $(e)&e in Eq. ( . a).
The energy-momentum relation for the electrons inter-
acting via a deformation-potential interaction with
optical phonons is shown" in Fig. 3(b). It is evident
from Figs. 3(b) and 3(c) that even if D is constant, the
phase-space restrictions due to the k» integral in
Eq. (1.8) cause a reduction in the conductance for hole
injection into the semiconductor (eV=Akio) an en-
hancement of the conductance for electron injection
(t.'V= —Ak&0). Therefore, if Z is a function of e alone,
then the self-energy sects in the transfer-Hamil-
tonian model occur as structure at eV=&A~p which is
approximately untisymmetric about zero bias as shown
in Fig. 3(c). Inelastic tunneling with optical-phonon
emission would cause approximately symmetrical in-
creases in the conductance at eV =+Acop. As noted in a
preliminary report of this work, " such antisymmetric
structure has been observed in tunneling characteristics

~ ~ I 5of indium contacts on air-cleaved p-type si icon.
It subsequently has been reported due to hole-To
phonon interactions in p-type GaAs. "

The first interpretation of antisymmetric structure in
the tunnel conductance (near the LO phonon energy) in
terms of self-energy effects (in the barrier region of the
semiconductor) was given by Conley and Mahan'" for
dV/dI measurements performed using gold contacts on
n-type GaAs. More recent measurements" for indium
contacts on n-type GaAs reveal a more complicated
structure in d I/dV near the Lo phonon energy than
the simple symmetric dispersion curves characteristic of
p-type sihcon" and GaAs. "This phenomenon may be
due to the confluence at k 0 of the TO and LO phonon
ener ies"" when $&Akizo(Ace&=A(4irne in' k I/a

"E.L. Wolf, Phys. Rev. Letters 20, 204 (1968)."D.C. Tsui, Phys. Rev. Letters 21, 994 (1968).0 J. W. Conley and G. D. Mahan, Phys. Rev. 161, 681 (1967).
C. B. Duke, M. J. Rice, and F. Steinrisser, Phys. Rev. 181,

733 (1969)."R. A. Cowley and G. Dolling, Phys. Rev. Letters 14, 549
(1965).

0 G. D. Mahan and C. B. Duke, Phys. Rev. 149, 705 (1966).
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However, the interpretation of self-energy efFects due to
polar coupling of holes (electrons) to LO phonons" also
is complicated by the fact that the electronic self-energy
depends on k as well as o, so that Z(o) exhibits a mini-

mum at &=heep and a minimum or more complex
structure at o = —Aooo (if Aooo& t'). Although some of the
experimental data suggest that this renormalization
efFect may not be large in very heavily doped n-type
GaAs, "a complete analysis of the electronic self-energy
due to dynamically screened polar coupling has not been
given. In this paper, we follow the static screening
model of Refs. j.7 and 20.

It is important to recognize that the qualitative dis-
tinction between inelastic tunneling and self-energy
effects based on the symmetry of the structure in dI/d V
about zero bias is a distinction which is predicted only
by models in which the k dependence of Z(k, o) is either
weak or absent. Such a weak k dependence of the elec-
tronic self-energy is characteristic of nonpolar or heavily
screened polar electron-phonon interactions. However,
it is not characteristic of electron-electron interactions.
For example, in the case of electron-plasmon inter-
actions" the renormalization factor Z(o) causes the
peak at eV= hooo in —Fig. 3(c) to be replaced by a dip.
Therefore, in this case the self-energy effects cause fine
structure with the same symmetry about zero bias as the
inelastic-tunneling processes. As the detailed difFer-
ences in line shape associated with the two phenomena
are diQicult to determine unambiguously from the ex-
perimental data, considerable caution must be exercised
in interpreting in terms of polar electron-phonon
coupling line shapes obtained using semiconductor
electrodes for which f'&hooLo (so that dynamic screen-
ing occurs for some contributions to the self-energy for
electron-phonon momtum transfers tof~ &ko).

It a1so is important to observe that none of the above
arguments involve the dependence of D(k„,)o,p, ) on
either k&~, $o, or $o. This result constitutes another one
of the distinctions between our analysis and both the
Conley-Mahan model of metal-semiconductor contacts"
and models of self-energy efFects in metallic elec-
trodes. ~' "These latter model calculations rely solely
on the P~ (and $o) dependence of the barrier penetration
probablity in order to obtain a nonzero self-energy
efFect. In Sec. II, we examine the sensitivity of the model
predictions to the form used for the barrier penetration
factor. However, in metal-insulator-semiconductor junc-
tions, the constant-D model is often an adequate ap-
proximation to the more realistic one-electron calcula-
tions of D including space-charge effects. '4 In such
junctions, the failure of particle-hole synnnetry, caused
by phase-space restrictions on the kfi integral in Eq.
(1.8), provides both the necessary and suKcient condi-
tion for the prediction of a conductance characteristic
of the form shown in Fig. 3(c) if the model self-energies

~' H. Herman and A. Schmid, Z. Physik 211, 313 ($968).~ J. M. Rowell, W. L. McMillan, and W. L. Feldmann, Phys.
Rev. 180, 658 (1969).

depend only weakly on the electron momentum variable
k.

In order to keep the presentation as simple as possible,
we have arranged the paper in three main sections fol-

lowed by three appendices. Section II consists of a
quantitative evaluation of the tunneling line shape
using the simplest reasonable model of a metal-
semiconductor contact: the uniform-Geld model of the
barrier and deformation-potential coupling of electrons
to optical phonons. The detailed application of a model
to the experimental situations of metal-oxide-silicon
and metal-CdS junctions is also described in Sec. II.
Section III contains a summary of our results and a
critique of our models and of the utility of tunneling
measurements as a direct experimental measurement of
the phonon-induced hne structure in electronic self-

energies. Those additional details whose presentation is
required in order to permit independent reproduction of
our calculations are given in three appendices. In
Appendix A, we describe our model calculations for the
electronic self-energy which are obtained by using
second-order perturbation theory. Both deformation-
potential and statically screened polar coupling of the
electrons to optical phonons are considered together
with a model for electronic interactions with local-
mode phonons associated with a light (charged) im-

purity ion in a degenerate semiconductor.
A description of the transfer-Hamiltonian formalism

and some of the diQiculties associated with it is given
in Appendix B. In Appendix C, the consequences of a
numerical calculation of the one-electron conductance
of a metal-insulator-semiconductor junction are dis-
cussed. A reasonably accurate, simple form of the
barrier penetration factor is proposed and compared
with the numerical calculations.

kok~~o )D =Do exp
2m*x.)

(2.1)

Do and Eo are constants which can be determined by
htting the background or one-electron conductance.
The uniform-held model is useful because it avoids the
difhculties associated with the oB-diagonal elements of
AQ q as discussed in Appendix B. Since D does not de-
pend upon the bias V, Eq. (1.8) for the conductance is
exact. Performing the k~~ integration in Eq. (1.8), we
Gnd

dI 2e'3 00

piiDoso d$o ImG()q, —eU)
dv xh

X{1—expt —($q+f")/Eoj}, (2.2)

II. EVALUATION OF SIMPLE MODELS AND
COMPARISON TO EXPERIMENT

The simplest reasonable model of a metal-semicon-
ductor contact is the uniform-held modep of the barrier
defined by
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«G. 4. Diagrammatic representation of the second-order electronic
self-energy due to single-phonon emission.

where

p„=ppp~/2prA' (1.10c)

rd
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Pro. 5. Calculated d'I/dVi versus V for deformation-potential
coupling of electrons to optical phonons of energy Ac00 (Appendix
A 2) for the uniform-Geld model of the barrier. I'p(kaue) character-
izes the strength of the coupling. F is a phenomenological param-
eter characterizing the width of the structure {voltage separation
of peak and dip ~2F /e} due to acoustic phonon and impurity
scattering. Both weak and strong coupling are shown. The vertical
scale is arbitrary. The expression for the self-energy used in these
calculations is given by Eqs. (A2.2)-(A2.6) arid the harrier-
penetration factor is given by Eq. (2.1).

"E. M. Conwell, High Field Transport in Semi~ondz&ctors,
(Academic Press Inc. , New York, 1967), Chap. 6.

» addition to being useful for avoiding the difficul-

ties of Appendix 8, the uniform-field model contains
the essential physical ideas which can explain the
various self-energy eGects observed in metal-sernicon-
ductor and metal-insulator-semiconductor contacts. To
understand these self-energy efI'ects, let us consider the
effects on the tunneling conductance of the deformation-
potential coupling of electrons to optical phonons. We
used the expressions (A2.3) and did the integral in Eq.
(2.2) numerically on the IBM 360 at the University of
Illinois. The self-energy is calculated using second-order
perturbation theory as shown in Fig. 4. The e8ects of
the finite lifetime of the electrons (holes) due to their
interaction with impurities and acoustical phonons"
have been accounted for by the use of an additional
phenomenological width parameter r, I Eqs. (A2.5),
(A2.6)$.

In Fig. 5, we show the results of a numerical calcula-
tion of d'I/dV' versus V for both weak and strong
electron-phonon coupling. The strength of the inter-

action oI coupling is characterized by

Fp(A&pp) =pr+Pp(l') (2.3)

which is the value of
I ImZ(p) I at p =&Au&p. p(I ) is the

semiconductor density of states at the Fermi energy.
The intrinsic width of the dispersion structure in
d'I/dl' is characterized by I' . Its peak-to-peak height
for a given I', is approximately proportional to I"p(Appp),

while the separation of the peaks in voltage is given
approximately by 21',/e. In the weak coupling limit,
the dPI/dV' curve is nearly symmetric about zero bias.
This is due to the fact that the ReZ(p) is approximately
an odd function of p and that ImZ(p) is small. We have
shown numerically that in the weak coupling limit the
pole approximation for deformation-potential coupling,

1
imG(tk p) 8$$k p+ReZ(p}] (2 4)

gives a curve of d pI/d V' versus V virtually indistinguish-
able from that shown in Fig. 5. The bias voltage cor-
responding to the center, or steepest, portion of the dis-
persive line shape in forward (reverse) bias is equal to
(A(up/e) (—Aa)p/e).

In the strong coupling limit, the structure is not only
larger than that of the weak coupling limit, but also
there are differences between forward and reverse bias.
This is because the imaginary part of the self-energy is
important in this strong coupling limit. Large lifetime
eifects occur for

~
pI )Asap because an electron of energy

~ has an appreciable spectral weight in regions of higher

fp Since t. he tunneling probability is larger for higher
)I„ the effect of the spectral weight in regions of higher

(p is to open up more probable tunneling channels.
This gives a behavior similar to a threshold eGect at
&coo which would give a peak near eV =A~0 and a dip
near eV= —Atop in d'I/dV' The lifetim. e effects occur
in addition to the symmetric structure due to the real
part of the self-energy.

Although the center of the reverse bias structure is
given approximately by —Asap/e in the strong coupling
case, the peak in the forward bias structure occurs at a
bias only slightly greater than Atop/e.

In both the weak and the strong coupling limits, the
structure in d'I/d V' is approximately the same magni-
tude in forward bias as it is in reverse bias. This is a
consequence of the fact that structure in the self-
energy is of nearly the same magnitude above and below
the Fermi energy in a second-order perturbation
calculation.

Measurements of the eGects of the deformation-poten-
tial coupling of holes to optical phonons on the tunnel-
ing current are most extensive in p-Si."'4 Such mea-
surements have also been made for p-Ge, "but similar
sects have not been reported for n-Ge because the

'4 W. D. Compton and D. Cullen (private communication)."F.Steinrisser, I.. C. Davis, and C. B. Duke, Phys. Rev. 176,
912 (1968).
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coupling is an order of magnitude weaker. "Due to the
symmetry of the conduction-band wave functions in
n-Si, the matrix element describing the interaction of
electrons with optical phonons in this material is of a
diferent form. 3" It has also been suggested that the
observation of the TO phonon in p-GaAs tunnel junc-
tions is due to deformation potential coupling. "

In Fig. 6, a comparison of a model calculation to the
experimental data (d'I/dV' versus V) for an In-Si02-Si
system'4 is shown. The calculation was done for a
barrier penetration factor of the form

e V $, h'kI I'
D=Dp exp —+———

Eg Ep 2m~Ep
(2.5)

Equation (2.5) is appropriate for a metal-insulator-
semiconductor junction where the tunneling is via a
conduction band in the insulator and the semiconductor
is p type (see Appendix C). For simplicity, we take the
efI'ective mass in the insulator to be the same as the
hole mass ms* in the semiconductor. Corrections to the
conductance of the form specified by Kq. (C11) were
included in the calculation to account for the bias de-
pendence of D. These corrections are, in general,
rather small and give only minor modiacations of the
line shapes. The form of Z(e) was taken to be that given
by Kq. (A2.3) with an additional width parameter F,
(as in Fig. 5).

The values of I'0(hcoo) and I'o were chosen to give a
reasonable fit to the experimental line shapes. The value
of Atop in this calculation was taken to be 64 meV which
is less than the measured value for k =0 phonons in Si,
64.9 meV."This smaller value of Asap was chosen to
account for the effects of phonon dispersion on Z(e).
Dispersion tends to shift the structure in Z(~) to
lower values of lel. Other parameters were chosen to
agree with the one-electron or background conductance.

It can be seen in Fig. 6 that the qualitative features
of the model are in good agreement with experiment. In
particular, the structure in d'I dV' is of the proper
symmetry, namely, symmetric with respect to zero bias.
The outstanding feature of these self-energy eGects,
the syqnmetric line shape in d2I/dVI, is clearly dis-
tinguishable from the antisymmetric line shape expected
in d'I/dV' when inelastic phonon emission occurs. The
correctness of the symmetry predicted by our calcula-

tionn

constitutes the strongest evidence for the validitx
of the self-energy mechanism. YVe reemphasize that this
prediction does not depend on the model used for the
barrier penetration factor.

Although the shape of the calculated reverse bias
structure closely resembles the experimental curve, the
size of the calculated structure appears to be too large.
There are, however, important corrections to the ex-
perimental line shapes due to the fact that the con-

~' W. A. Harrison, Phys. Rev. 104, 128 (1956).
~~ G. B. Wright and A, Mooradian, Phys, Rev, l.etters 18, 608

{1967),
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FIG. 6.The model calculation for deformation-potential coupling
of optical phonons to holes in p-Si (dashed curve) is compared to
the experimental data (solid curve) for In-SiIO&-Si junction see
Ref. 24). Si electrode doped with 10"B impurities. No correc-
tions to experimental curve due to low-junction resistance in
reverse bias have been made (see Ref. 28). The vertical scale is
arbitrary. The expression for the self-energy used in the model
calculation is given by Eqs. (A2.2)-(A2.6) and the barrier-penetra-
tion factor is given by Eq. {C9b) with E&=2EO. The model
calculation also includes the contribution to the conductance due
to the voltage dependence of the barrier-penetration factor
t see Eq. (C11)j.
ductance dI/dV is rapidly increasing in reverse bias."
The corrections are much smaller in forward bias where
the conductance is lower. A comparison of the calculated
line shape to the corrected experimental line shape is
shown in Fig. 7. The apparent discrepancy in the size
of the reverse bias structure in Fig. 6 is much less
when these experimental corrections are considered
(Fig. 2).

The omission of the h dependence of the self-energy
(Appendix A 5) is probably the most serious simplifica-
tion of the m.odel. The dip in the calculated d'I, /dV'
near eV= —Atop is due to large k transfers in the self-
energy, which are eliminated in a more realistic model.
In Fig. 8, we show a calculation for statically screened
polar coupling in which the 1/q' factor in the vertex
function electively cuts ofI' the large k transfers
(Appendix A 3). As is apparent in Fig. 8, this cutoff
substantially reduces the dip in reverse bias.

Also shown in Fig. 8 are experimental data for Au
on n-CdS. " Yo attempt was made to describe the
background accurately in this calculation, so the
forward bias experimental curve has been shifted down
for a comparison to the calculation. The value of 0. is
approximately the appropriate value for CdS,"and the
value of F, was chosen to give the proper width. The
agreement between the calculation and the experiment

II J.G. Adler and J.E.Jackson, Rev. Sci. Instr. 37, 1049 (1966);
R. T. Payne, Phys. Rev. 139, A570 {1965)."D. L. Losee {private communication)."D. Berlincourt, H. Ja8e, and L. R. Shiozawa, Phys. Rev.
129, 1009 (1963); Vf. S. Sacr and R. N. Dexter, ibid. 138, A1388
(1964); B. Tell, T. C. Damen, and S. P. S. Porto, ibid. 144, 771
{1966),
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tion) instead of being due to the self-energy. The
similarity of the results for statically screened polar
coupling to the results for deformation potential cou-
pling is evident upon comparison with Fij.. 7.

We conclude that the inQuence of the optical-phonon
interactions in the semiconductor electrode, via self-

energy effects, on the tunneling conductance is the most
convincing interpretation of the experimental observa-
tions in p-Si p-Ge 5 ~-CdS and GaAs' ~ metal-
semiconductor or metal-insulator-semicondcutor junc-
tions. The approximate expressions for the self-energies
used in this paper reproduce the qualitative features of
the experimental data, but are not accurate enough to
allow precision comparison to experimental data.

IH. CONCLUSIONS
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FIG. 7. Comparison of model calculation of Fig. 6 {dashed curve)
to uncorrected experimental data of Fig. 6 (solid curve) and to
experimental data with corrections (dotted curve) due to low-
junction resistance in reverse bias (see Ref. 28). The strength of
the experimental structure in reverse bias relative to the forward
bias structure is in better agreement with the model calculation
of Fig. 6 when these corrections are accounted for.
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FM. 8. The model calculation for statically screened polar cou-
pling of electrons to optical phonons (Appendix A 3) is shown as
dashed curve. Experimental data for Au on n-CdS (see Ref. 29)
is shown as solid curve. Since no attempt was made to 6t the
background conductance, the forward bias experimental structure
has been shifted for comparison to theory. The interesting feature
of the calculation is the substantial reduction of the dip at
eV& —Aoup as compared with deformation-potential coupling.
This reduction is due to cutting off the high momentum transfers
in the self-energy. The expression for the self-energy used in this
calculation is given by Kqs. {A3.7) and {A3.8) and, the barrier-
penetration factor D=Dp expf —eV/2Zp+gq/Zp —A'%II/2m*Epg,
where Ep=37S meV. Parameters used in this calculation are
peasonably close to those appropriate to CdS (see Ref. 30).

is reasonable. The rapid rise of the experimental curve
of d'I/d V' for e V& —Acro appears to be associated with
a rising background (not accounted for in the calcula-

We have demonstrated explicitly that the alteration
of the electronic states due to the interaction of elec-
trons (holes) with the optical phonons in a degenerate
semiconductor electrode of a tunnel junction (either
metal-semiconductor or metal-insulator-semiconductor)
can influence appreciably the tunneling conductance.
These many-body effects in the semiconductor electrode
manifest themselves in the tunneling conductance
through the spectral weight (1/vr) ImG" ($q, e) and,
hence, through the self-energy Z(k, e). We have given
analytic forms in second-order perturbation theory for
deformation-potential coupling, statically screened polar
coupling, and polar coupling to local-mode phonons.
These simple forms are adequate to compare model cal-
culations qualitatively to experiment, but more
realistic expressions of the self-energy are needed for
detailed comparison. For example, the influence of
phonon dispersion and the existence of a maximum
phonon wave vector must be accounted for in the self-
energy due to deformation-potential coupling to optical
phonons.

Experimental confirmation of these self-energy effects
has been demonstrated most convincingly in the
In-Si02-Si system"" for which the data clearly shows
an antisymmetric conductance (dI/dV) with respect
to zero bias and a nearly symmetric curve of d'I/dV'.
The symmetry of the line shapes with respect to zero
bias is significant because it clearly distinguishes the
structure due to self-energy effects associated with
optical phonons from that expected for inelastic
tunneling processes, such as phonon-assisted tunnel-
ing.""Owing to the threshold aature of inelastic
tunneling, symmetric conductance (dI/dV) and anti-
symmetric d'I/d V' are found, which is opposite to that
found for the self-energy effects due to optical phonons.

The striking modification of the conductance of a
tunnel junction in which one electrode is a degenerate
semiconductor is due to two features: (a) The Fermi
energy & is comparable to the phonon energy Acro which
results in large modifications of the spectral weight
(1/s) ImG" ($q, e), and (b) the shape of the conductance
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is dominated by phase-space restrictions in the semi-
conductor electrodes (i.e., the k„ integration). It is,
therefore, clear that any collective excitation of a
degenerate semiconductor electrode can„ in principle,
be probed directly by tunneling. Such is the case for
pla, smons'" and for acoustic phonons" in which the k
dependence of the self-energy is important. This is to
be contrasted to case of optical phonors where the ~

dependence of the self-energy is the dominant feature.
The observation of these self-energy eRects provides a
useful spectroscopic probe of the inhuence of elementary
exritations in degenerate semiconductors because the
line shapes are not strongly dependent upon the details
of the barrier penetration factors or background
conductance.

As discussed in Appendix B, the dependence of A~, q

on k or q, or equivalently the dependence of D(k~ ~, $&,$q)
on Pk or &„ is not well deflned in the transfer-Hamil-
tonian model. In the discussion of self-energy eRects
in degenerate semiconductor electrodes, the ambiguity
in AQ, q is not signi6cant, but in the rase of metal elec-
trodes, the observation of any self-energy effect (other
than those due to the many-body density of states)
depends critically on the && dependence of D(k~[ $t $q),
where $p is the energy associated with the metal elec-
trode in which the many-body interactions occur. This
fact appears to us to constitute a serious flaw in previous
anal'. ses of metal-semiconductor contacts" and in more
recent ones"" of metal-insulator-metal junctions. We
have avoided such difhculties by virtue of good fortune
rather than by resolution of the underlying ambiguities
associated with the transfer-Hamiltonian model. This
resolution is an important prerequistie to the utilization
of tunneling as a precision spectroscopic probe of elec-
trode self-energy eRects. Once it is achieved, ho~ever,
the process of analyzing the experimental data in terms
of model electronic self-energies can be reversed. An
appropriate form of D(ki~, &~, &q) can be inserted in
Eq. (1.7) t or Eq. (1.8) if D is independent of the bias],
and this equation can be utilized to extract directly
from the experimental d'I/d U' the single-particle
spectral weight (1/p. ) ImG ($k, p).

1Vote added in proof Some of the difl. iculties associated
with the transfer-Hamiltonian model have been resolved
recently. "' It has been shown that in the WEB approxi-
mation the exponential factor in the barrier penetration
probability depends upon the energy variable e, and
not (q or (i,. Since we have assumed that the left-hand
electrode is noninteracting in the present work,
p=fq eV Theref—ore, .because we have written the
exponential factor in Eq. (2.5) in terms of $q, and not
(~, the analysis in this paper is correct.

"H. J. Deuling (private communication).'~ J. A. Appelbaum and W. F. Brinkman (to be published);1.. C. Davis (to be published).
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APPENDIX A: EVALUATION OP ELECTRONIC
SELF-ENERGY

1. General Formulas

We con6ne our attention to expressions for the
phonon-induced electronic proper self-energy given by
second-order perturbation theory. "The diagrammatic
expression for this contribution to the self-energy is
shown in Fig. 4. In degenerate semiconductors typical
phonon energies are of the same order of magnitude as
the Fermi energy Amph f'. Therefore, only the small
value of the electron-phonon coupling constant permits
us to restrict our consideration to the second-order ex-
pression shown in Fig. 4. In particular, vertex correc-
tions cannot be shown to be small in a strong coupling
model. "

We consider the interaction of electrons both with
optical phonons, characteristic of the bulk semiconduc-
tor, and with local-mode phonons, characteristic of a
light impurity in a lattice of heavier ions. A phenom-
enological model of the phonon propagator D.e., the
wavy line in Figs. 1, 2, and 4) is adopted in both cases.
This propagator is given by

$(pl&ippp) = —2A(op/((ap'+(A(op)P] (A1.1)

in which Argo is the phonon energy. For optical phonons,
in group-IV and -III-V semiconductors, typical phonon
energies are Acoo 30 meV and typical dispersion of the
phonon energy across the Brillouin zone is d(Acop)&5
meV. Therefore, the neglect of dispersion in the model
phonon propagator leads to the consequence that the
line shapes predicted in the tunnel characteristics are
expected to be more sharp than those measured experi-
mentally, especially for e V &hcoo.

A free-carrier propagator,

(A1.2a)

p p A'p'/2np—*—f, —(A1.2b)

is used for the electronic propagator associated with the
solid line in Fig. 4. In a model in which the electronic
energy spectrum is taken to exhibit particle-hole sym-
metry, the substitution of the full propagator g in lieu
of gp in Fig. 4 causes no alteration of the expression for
the self-energy Z in the limit that Z(p, ice„) depends
only on ice„."However, the violation of particle-hole
symmetry in degenerate semiconductors is the primary
reason why the tunneling eRect discussed in this paper

'~ A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 5438 {j.958)
I English transl. : Soviet Phys. —JETP 7, 996 (1958)g.'3 S. Englesberg and J.R. SchrieGer, Phys. Rev. 131,993 {j.963).
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is large. A solution of the integral equation obtained
when g» —k g in Fig. 4 has been considered elsewhere"
in the case of deformation-potential electron-phonon
interactions.

The characteristics of a model description of the
electron-phonon interaction depend upon the nature
of the chemical bonding in the semiconductor, its
electronic energy-band structure, and the type of
phonon under consideration. In the remaining parts of
this appendix we specify various model interactions
and their concomitant second-order electronic self-
energies. This subappendix is concluded by a discussion
of some general features of a phenomenological Frohlich-
type model' of the electron-phonon interaction.

The noninter acting electron-phonon Hamiltonian
associated with Eqs. (A1.1) and (A2.2) is

KO=+ )kCk Ck+AKO p (6» f »+2) |
k q

(A1.3)

in which c~ and b~ are the electron and phonon annihila-
tion operators, respectively. The Frohlich Hamiltonian
is speci6ed by assuming that the electron and phonon
interact via an instantaneous interaction

~r =Z LV»b»ck+»'ck+H. c.]. (A1.4)

n((k )—1 —i (&~»)

0 —AMP —
&fr~

n(x) =Lexp(x/«T)+1] '

X(x) =)exp(x/«T) —1] '.

(A1.5)

(A1.6a)

(A1.6b)

The first term in Eq. (A1.5) is the contribution to the
self-energy due to (single) phonon absorption and the
second term is that due to (single) phonon emission.
Four properties of Eq. (A1.5) are significant. First, for
low temperatures, «T(A»0» (i.e., T(300'K), iY(Au&»)

=exp/ —A'»»»/«T]~0 and, hence, its contribution in

Eq. (A1.5) can be neglected. This approximation is
made in all of the analyses given below. Second,
Im&(k, ») vanishes identically for all values of » in the
"quasiparticle window"

—AGop( 6'( Atop (A1.7)

in the zero-temperature limit. Third, the abrupt in-
crease in ImZ(k, ») to a finite value at » =Ah»»» results
in a logarithmic divergence in the real self-energy at
this value of ». This result remains true if g» is replaced
by g in Fig. 4 (the Hartree-Fock approximation for the

Using this model, the contribution to the retarded
electronic self-energy shown in Fig. 4 is given by" '

n(&k )+X(hCOP)
&(k,») =2

I
&''-kI'

»+~»0O —tk'

self-energy). However, it does not remain valid if fre-
quency-dependent vertex corrections'P are introduced
into Fig. 4 or if phonon dispersion is incorporated into
the model. "Fourth, the k dependence of the self-energy
is a consequence of the dependence of the electron-
phonon vertex on q=k —k'. If the q dependence of the
vertex is weak, the self-energy will be almost in-
dependent of k '" "

E1,op ~MP E
2Qpe2 0

(A2.1)

in which E1,,„ is an optical deformation-potential con-
stant 0 is the crystal volume, p is the mass density of
the crystal, and e, is an average speed of sound in the
crystal. The fact that the vertex function given by
Eq. (A2. 1) is a constant has the dual consequences that
the sum over k' in Eq. (A1.5) can be performed ana-
lytically and that the electronic self-energy is essentially
independent of k. The expression for the self-energy at
zero temperature already has been given":

Z»(») =2K»8(»+)p(»+) tan '( t/»y)'—~'

—2K'8( —» )p( —» ) tan —'(—f/» )'~2

1/2+$1/2
+K'8(»+)u(»+)»

1/2 gl/2

—K'8(» )p(» ) ln
1/2+$1/2

1/2 $1/2

—i».K'8(»„)p(»+) 8(—A(op —»)

i7rK'8(» )p—(» )8( Acap+»), —(A2.2a)

Ey =6+f&AG) p )

p(») =(2m*&A ) t'(2w) '»'&2.

(A2.2b)

(A2.2c)

These equations express those contributions to the
self-energy which do not depend on the cutoff momen-
tum q, which must be imposed to limit the sum over k'
in Eq. (A1.5) to a finite value. This cutoff is imposed by
converting the sum over k' to an integral over $k and
taking the upper limit of the latter to be E~))|,
A~p. The complete second-order expression for the
self-energy is given by

2. Deformation-Potential Hole-Phonon Coupling
in Silicon and Germanium

The case of the deformation-potential coupling of
holes to optical phonons in p-type silicon and germanium
is described by use of the Froh)ich Hamiltonian. "The
vertex V, is specified bv"

'4 C. B. Duke and C. E. Svrenberg (unpublished). ~'"'(») =-o(»)+&n(»), (A2.3a)
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Zg)(p) = —2E'p(En)

+2&P8(— )p( —«) tan '(—En/e ) 'l'

1/2+ 6 1/2

+K'8(p )p(p ) ln
P &/o

~ I I'-'
(

(A2.3b)

Frohlich Hamiltonian and the interaction"

I/ (p)— hGOp ~

Qq2 2m*cop
(A3.1a)

The complete expression for Z&"(p) given by Eq. (A2.3),
in which Zp is speci6ed by Kq. (A2.2), satisiies all of the
appropriate sum rules and limits. The second term of
Kq. (A2.3b) is incorporated into numerical calculations
of the self-energy according to

Z„~(p) =Zp(p)+n. E'8(—p )p( —p ). (A2.4)

The logarithmic singularities in the real part of the
self-energy at p=&Aa&p (i.e., p~=f) are evident from
Eq. (A2.2). In an actual semiconductor, these singu-
larities do not occur because the holes have a finite
lifetime due to their interaction with impurities and
acoustical phonons" even in the absence of their inter-
action with optical phonons. This eGect is simulated
in numerical calculations of the tunneling line shape by
making the replacement

in [i.l(p p 1/p( ~ & inL(f 1/2 p 1/p)2+F 2/4f j (A2 5a)

in the real part of the singular terms in Eqs. (A2.2) and
(A2.4), and

n-8( —Acup& p) —+ pn. +tan 'L( —Appp& p)/I'~] (A2.5b)

in the imaginary part of Zp(p) in Eqs. (A2.2) and
(A.24). The widths I"~ of the peaks in the real part of
the self-energy are taken as adjustable parameters used
to incorporate the inQuence of the other mechanisms
causing 6nite-hole lifetimes. The form of Eq. (A2.5) is
chosen so that the logarithmic divergence is that as-
sociated with an energy variable p-+ &A&op+iI'+ at
the two divergences. Evidently F+/ F in general,
although for numerical calculations we use

(A2.6)

/To be complete, we also add to Z„„„,(p), in Eq. (A2.4),
the term —iI'o.j

Finally, we note that Eq. (A2.2) reduces to that ob-
tained by Engelsberg and SchrieGer33 in the limit that
all terms are expanded in powers of (p~ —f')/1 and only
the leading terms are retained. This particle-hole sym-
metry limit is not applicable for the description of
degenerate semiconductors used as tunnel-junction
electrodes because in this doping range A~p f. How-
ever, for many of these semiconductors Acop&1.5$ and,
hence, only the divergent logarithmic terms in Eq.
(A2.2) contribute to Z(p) in the region of interest (i.e.,
p Avdp).

3. Polar Electron-Optical-Phonon Coupling

The interaction between electrons and optical
phonons has been studied extensively" using the

(A3.1b)

in which ep is the static and ~„ is the optical dielectric
constant of the semiconductor. The second-order self-
energy for both intrinsic" and degenerate" semi-
conductors has been evaluated using Eq. (A3.1). The
self-energy calculated using Eq. (A3.1) exhibits'p two
additional divergences to those at

~
p~ =&A&up resulting

from a deformation-potential interaction. The q
'

divergence in Kq. (A2. 1a) leads to a divergence in th~
real part of Z(k, p) at k=k~. The imaginary part of
Z(k, p) diverges for p =)~—Acop if the two conditions

—Sloop —f+6( —~0,
k(kp (A3.2a)

are satisfied. Primarily because of these divergences, the
h dependence of the self-energy is significant2p for the
unscreened polar electron-phonon coupling given by
Eq. (A3.1) and for electron-plasmon interactions. "

If free carriers are present in a semiconductor, the
Frohlich Hamiltonian is no longer adequate to describe
the electron-phonon system in the presence of polar
coupling. The electron-electron interactions must be
included in the model Hamiltonian. However, analy-
ses'~ 3' of this extended Hamiltonian in the random-
phase approximation indicate that a diagram of the
form shown in Fig. 4 still contributes to the electronic
proper self-energy provided one defines the vertex
function to be

V(q, ~p) =I'p"'/p(q, ~p), (A33)

in which p(q, ippp) is the dynamic dielectric function
characterizing the electron Quid. Mahan and Duke"
have studied the second-order contribution to the elec-
tronic self-energy using the vertex given by Eq. (A3.3).
They found that both the divergence in the real part of
Z(k, p) at k=kp and the divergences in its imaginary
part at p= $~&A&op disappear when the general vertex
given by Eq. (A3.3) is used in the analysis.

In order to perform an analysis of the tunneling
characteristics, it is possible to utilize a simple model of
the dielectric function (e.g. , static screening") and

"See, e.g., G. WhitfIeld and R. PufF, Phys. Rev. 139, A338
(1965), and references therein.

'6H. Frolich, H. Pelzer, and S. Zienau, Phil. Nag. 41, 221
(1950)."A. Ron, Phys. Rev. 132, 978 (1963)."J.R. SchriefFer, Theory of Superconductivity (W. A. Benjamin~,Inc. , Near York, 1964), Chap. 6.

are satisfied and for p = $g+Appp if the conditions

~)Acop, k&kp (A3.2b)
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Z(k, «) =Zps(k, «)+Zp(k, «)+Z„(k,«), (A3.4a)

evaluate Z(k, «) exactly. However, the quantity of most
interest is the k dependence of the remaining singularity
in Z(k, «) at «=Ah&ps. Therefore, it is convenient to
revie~ a few of the considerations given by Mahan and
Duke" which lead to a simplified formula for this
divergent contribution to the self-energy.

When the dynamic vertex given by Eq. (A3.3) is
used in Fig. 4, the self-energy at zero temperature is
given by'g

AGJg —tl

ReZ.;„,(k, «) =G(k, kF) ln
AG)g+ 6

gg(k, «) =G[k, q=(2«ps*«+hs)'~'j

ImZ(k, «) = n—rr g+(k, c)8( hr—op «)—0(«+)

(A3.7a)

(A3.7b)

Although the integrals in Eq. (A3.6) can be performed
analytically, the singularities in Z(k, «) occur because
of the (« —)«&heep) ' factors at the endpoints of the
integrations. " Those terms contributing singularities
at the edge of the quasiparticle windo~ are given by

Zps(k, «) =Q
~

Vp&p&
~

s Re
-«(q —hrpp)-

6y =5+f~AMg.

+g (k, «)0( hrp—p+«)5, (A3.7c)

(A3.7d)

X
« —$p+p —happ

Z~(k, «) = —2 I
I'p"'I s« '(q « —(p+p)~(]p+p)

(A3.4b) As in the deformation-potential coupling calcula-
tions (Appendix A 2), the effect of the Quite life-
time of the electrons (holes) is simulated by making the
replacements

XL(.—&. ,—h )-'—(.—&.„+h o)-'j. (A3.4)

«(q,0) = 1+(k /q)'

k, ' =6rrnep/f'«p,

(A3.5a)

(A3.5b)

in Eq. (A3.4), the electronic proper self-energy becomes

Z(k, «) =Zp(k, «)+Z, (k, «),

h' P~
q dqG(k, q)

ZI, (k,«) =
p « —$p+hppp

(A3.6a)

(A3.6b)

Z.(k, «) =
m4

" qdqG(k, q)
7

7gy t —fq —AMg

(A3.6c)

0!A07g AGog k,~

G(k, q) =
4s $p+1 k, '+(k+q)' k, '+(k —q)'

The contribution Z.(k, «) is due to the cuts and poles of
«s(q, ipp„) It w. as analyzed in Ref. 20 and causes no
phonon-induced singularities in the self-energy so we do
not consider it further. If «(q, fpp, ) is taken in the static
approximation to be real and independent of iver„ then
Zpb and Zs combine in Eq. (A3.4) to yield an expression
identical to the Frohlich-model result given by Eq.
(A1.5). It should be noted that the combination of
Z„g and Zp always occurs for the contribution to the
self-energy due to the pole of the (« —$p+p —h«pp) '
factor. This combination is important because it is
responsible for the quasiparticle window in the energy
range —heug(e&Aaug, at zero temperature. It does not
occur in a model in which dynamic screening is utilized.

Using the static dielectric function

ln
~
hrppa«( ~ -z, lnL(hcdpa«) s+I',sj, (A3.8a)

pr8( —h«pp~ «) -+ —,'s-+tan —'((—hrppa «)/r. ), (A3.8b)

Z(k, .) ~ Z(k, .) —pl'. , (A3.8c)

where I', is an adjustable parameter. Equation (A3.7a)
is identical to an interpolation formula for Z(k, «)

given by Conely and Mahan (CM)" (corrected for
a sign error in the third term). Their analysis of the
tunneling line shape is recovered by making the further
approximation

q~(k) ~ g~(kp). (A3.9)

Comparison of Eqs. (A3.7) and (A3.9) with Eq. (A2.2)
indicates that their approximations render the CM
analysis" of polar coupling identical to an approximate
analysis of deformation-potential coupling in which the
lifetime of the electron is set arbitrarily to infinity and
the logarithmic terms in Eq. (A2.2) are evaluated in the
limit of particle-hole summetry" (see Appendix A 2).

4. Polar Coupling to Local-Mode Phonons

The single-Boson propagator for a localized vibronic
mode is identical to that given by Eq. (A.11) in which
Acing is taken to be the energy of the local mode. Our
interest in these modes is motivated by the observation
of the localized mode associated with boron impurities
in silicon in tunneling" as well as infrared absorption"
measurements. In this case, we can estimate the elec-
tron-localized-mode coupling in degenerate silicon by
using a model in which the boron impurity is treated as
a harmonically oscillating point charge in a degenerate
hole (electron) Quid. The vertex function resulting from

k,s+(k+q)s
+ln

k.'+(k —q)'

'~ J. Tarski, J. Math. Phys. I, 149 (1960).
(A3.6d) 4'M. Balkanski and W. Nazarewicz, J. Phys. Chem. Solids

27, 671 (1965).
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in the expressions for the self-energy.

5. Inhuence of Maximum Phonon Wave Vector
and of Phonon Dispersion

The inhuence on the electronic self-energy of the
existence of a maximum phonon wave vector and of
phonon dispersion, i.e.,

lcd(cl) =Acoo —ccq (A5.1)

such a model is given by

(47.e')' Pi 1
i V, (cco,) i

'=n, , (A4.1)
flqo elf ccoo oo(q, ccoo)

in which rs; is the concentration and M, is the mass of
the (charged) impurity. The associated second-order
electronic proper self-energy is obtained by use of
(A1.1) for the propagator and (A4. 1) for the vertex in
Fig. 4.

A comparison of Eq. (A4. 1) with Eqs. (A3.1) and
(A3.3) indicates that the bulk hole-local-mode coupling
in silicon is essentially identical in form to the polar
hole-I. O-phonon coupling in a polar semiconductor.
The scaling of the vertex function with n "is in qualita-
tive agreement with the observations of adolf. " The
quantiative expressions for the self-energy can be ob-
tained from Appendix A 4 by making the identification

47M Bi A 215 cop

~i= (A4.2)
picoo) o ccoo

actions. """The finite value of q, ' inQuences primarily
Z (k, o), in which case it substantially reduces the
magnitude of the self-energy for k) q, . This result was
artificially inserted in Appendix A 2 by introducing an
upper limit on the integral over g~ .However, the restric-
tion is on the value of k, not e. This fact has the con-
sequence that the contributions to the tunneling line
shapes involving large k electrons are modified from the
predictions of the model developed in Appendix A2.

For deformation-potential interactions the imaginary
part of Z(k, e) can be evaluated exactly as the sum of
two arc lengths in the k'-x plane. "The x integrations
for the real part yield

k' e —&o &Aco(k —k')
I~(k,k', o) =&—ln . (A5.3)

QB e—goi&kcd(q„)

At T=O the subsequent k' integration in Eq. (A1.2)
also can be performed analytically in terms of ele-
mentary functions Lalthough careful attention must be
paid to the limits due to both Eq. (A5.2d) and the
exclusion-principle restrictions]. These calculations
have been carried out and the resulting expressions
evaluated numerically leading to the results stated in
the previous paragraph. In numerical calculations of the
tunnel characteristics we usually use the simpler self-
energies developed in Appendix A 2 in order to reduce
the computation time.

APPENDIX B: TRANSFER-HAMILTONIAN
FORMALISM

may be investigated by writing Eq. (A1.5) as

Z(k, o) =Z+(k, o)+Z (k, e), (A5.2a)

In this appendix, we discuss some of the difhculties
inherent in the transfer-Hamiltonian formalism. For
clarity, let us repeat Eq. (1.7) for the tunneling current:

-+(k, o) = d$o rc($o )
8m'h'k

i V(x) iod*
(A5.2b)

deaf(e) f(e+eV)]—

&(b(o—$o+e V)—ImGe(gc„o) .
ca-o') ' &+oooo —4' —ccx

Z (k, o)= dna ~(—$k )
8x'h'k

(A5.2c)
&o o'& ~ o kcoo kk'+e'&

q '=minL(k+k')' q '] (A5.2d)

We have used q, to denote the maximum phonon wave
vector and have assumed Aco(q, )/ccT»1. Our previous
results for the deformation potential LEq. (A2.2)] are
recovered if q ') (k+k')' cc=O, and

i V(g) ('=K'/Q
The occurrence of phonon dispersion removes the

logarithmic singularity in the self-energy at 6=WAG)p
and spreads the peaks in Z(k, o) over a range of o values
from recco(q.) to fccoq, as found. for electron-plasmon inter-

In a noninteracting-electron model of the semiconductor
electrode,

s ' ImG"(Q, o) =8(g—o). (B1)
This has the consequence that for any initial state

i cf)
on the left, there is only one possible final state

i k) on
the right consistent with the conservation of energy
and specular reflection (kic conservation):

kic=qic, g=$, —eV. (B2)
(Specification of k„and Pc, is equivalent to specifying
k. ) We refer to A&, o for such a pair of states related by
conservation of energy and k» in the noninteracting

"L. Hedin, B. I. Lundqvist, and S. Lundqvist, Sohd StateCommun. 5, 237 (196'l).
4~ B. I. Lundqvist, Phys. Kondensienten Materie 6, 193 {19@');

6, 206 {196'I).
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where (in our notation)

(see~see (36a)

model as a diagonal element. Similar considerations

apply for transfer from right to left.
%hen many-body interactions are present, k«and

the total energy ~ are given conserved. However, the
term

1 (1/w) Img(ep, e)—ImG" (Q,e) =— (83)
[(,—e+Rex(&s, e)]'+Im'Z((s, e)

which appears in Eq. (1.7), has the consequence that
for each initial state ~q), which has total energy
the tunneling electron can make a transition to any
final state ~k) of arbitrary $s (but with k„=q„).The
most weight according to (83) is then given to those
states with $k~$(e), where

e(e) —e+ReZ($(e), e) =0 . (1.9')

Not only does the most probable final state have an
energy $(e) different from that of the noninteracting
case (g=e), but also there is in general a spread of
energies about $(e) which are possible final-state ener-
gies. Therefore, the electrode interactions probe the off-
diagonal elements of A», q

These off-diagonal elements are not well defined. For
instance, if we were to use the expression4

As, ,———iii(kt J jq), (84)

where J is the current operator, we ~ould find that this
expression is not position-independent for the oR-
diagonal elements. If we were to use a more general
expression4

A, ,=(1 ~a—II', ,~q), (»)
would 6nd that p» q Q pq» for the oR-diagonal

elements. Such non-Hermitian character follows from
the nonorthogonality of the basis functions.

The problem of determining the matrix elements
A&, q has been considered by several authors. '4' 4' For
example, Schmid4' asserts that

the symmetry, present when V=O, is broken when
VWO, the case that must be considered if current is

Rowing.
The prefactors usually are well defined in terms of

phase-space variables on one side of the junction or the
other side. It is the energy variable which appears in the
%KB exponent which is uncertain.

In the analysis of the inQuence of phonons in a
normal metal upon the tunneling current, " an ex-
pression such as (86), in which appears the energy
variable of the side in which the interactions take place,
is essential for there to be any effect. For the experi-
ments discussed in this paper, however, this is not the
case.

In metal-semiconductor and metal-insulator-semi-
conductor junctions, the phase-space integral

D(k((, (k) =D(k„,&s $s —$ +seV) . (87)

That is, we have approximated the o6-diagonal ele-
ments of A&,„(for fixed k„, &k) by a diagonal element.
This approximation has two disadvantages. (1) It
superficially appears that the $s of D(k„,)s) is responsi-
ble for the observed eRect, whereas the eRect is pri-
marily caused by the alteration of the available area
in phase space due to self-energy effects. (2) For certain
models of D, the extremely high momentum transfers
cause an unphysical divergence in the conductance for

~
e V

~
)Aa&e unless the associated integrals are arbitrarily

cut oG at some point.
In this paper, we shall approxirrmte the oG-diagonal

elements by a diBerent diagonal e1ement

d-'k
f

-D(k„,&s, 4)
(2e.)'

is the principal factor in determing the shape of dI/d V.»
The available area in phase space, (2irws*/fi')(]&+t),
is the most important quantity, and not the variations
of D with k„, $q, e~, or eV, which are small.

In our original letter, " we (arbitrarily) chose to
write D as D(k„,)„),where

b ( ~2/1 1& ) &/&

I &(~)—t,+ +.V
~

e &s & 2m'

D( „k,k,) =D(k„,g=(,—eV, g,).
Since the electrons on the left are noninteracting,

$, =e+eV. (39)
A'k '

ns = -- —
~
4(*)—&s+

2m*
(86c)

4' R. E. Prange, Phys. Rev. 131, 1083 E,'1963)."A, Schmid, Z. Phygk 205, 35 (f967),
's B. E. Deal, E. H, Snow, end C, A, Mead, J. Phys. Chem,

Solids 27, 18g t1966),

The eRective mass in the barrier is mb, the potential is
qh(x), and the width is b. These expressions follow from
the particular choice for the basis functions made in
Ref. 45. An objection to these basis functions is that

Hence, we have written the barrier penetration factor
in terms of the two quantities conserved across the
junction, e and k, ~. The choice (Bg) is, of course,
arbitrary, but it is not subject to the difficulties (1) and
(2) discussed above. In addition, for metal-semiconduc-
tor and metal-insulator-semiconductor, this choice does
treat the principal effect (alteration of the available
phase space) properly.

In Fig. 9, we show a comparison of d'I/d V' calculated
for the two approximations (87) and (38) for a simple
model barrier penetration factor and deformation-
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FxG. 9. Calculation of d'I/dV' versus V for deformation-po-
tential coupling for two approximate forms of the barrier-penetra-
tion factor [see Eqs. (B7) and (BS)].The solid corresponds to
the choice of writing D in terms of the two quantities conserved
across the junction, g&=e+eV and k» (see Appendix B). The
dashed curve corresponds to the choice made in Ref. 11. The
self-energy is given by Eqs. (A2.2)-(A2.6).

APPENDIX C: METAL-INSULATOR-SEMI-
CONDUCTOR BARRIER-PENETRATION

FACTOR

To accurately analyze the structure in the experi-
mental d'I//dV~ curves resulting from the electronic
self-energy effects, it is necessary to have a model of the
barrier-penetration factor and, hence, an understanding
of the one-electron or background conductance. Also,
it is convenient to have a simple form or model of the
barrier-penetration factor that permits accurate line

shape analysis. In this appendix, we describe how such
a model may be found from considerations of the more

potential coupling. Each calculation was carried 30 I"s
off the energy shell

(B10)
where

(B11)

The two curves are qualitatively similar, except that we

see that the choice (b) emphasized the off-energy-shell
integration or lifetime effects more than choice (a) for

i
e V

i
)Aa&o. This result occurs because these off-energy-

shell integrations contribute to dI/dV in the same
manner as a threshold effect which gives a step up in the
conductance for ieVi )Aa&o and a peak up (down) in
d'I/dV' at eV=+Aooo( —Aooo).

In conclusion, we observe that it has not yet been
demonstrated unambiguously (either theoretically or
experimentally) that many-body effects in the electrodes
have altered the tunnel current through the energy
variable appearing in the %KB exponent in D. All junc-
tions" ' ~ ' in which electrode self-energy effects due
to optical phonons have been observed clearly are those
in which the phase-space factors can account for the
qualitative features of the observations.

l/l
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FIG. 10. Numerical calculation of the one-electron conductance
of a metal-insulator-semiconductor junction is shown as dashed
curve. The barrier-penetration factor is given by Eq. (C2)
and the current is given by Eq. (C2). Solid curve is experimental
data for P-Si (Ref. 24).

4' J. VV. Conley, C. B.Duke, G. D. Mahan, and J. J. Tiemann,
Phys. Rev. 150, 466 (1966).

4 C. A. Mead and %. A. Spitzer, Phys. Rev. Letters 10, 471
(1963).

4g E. H. Snow, Solid State Commun. 5, 813 (1967).

detailed numerical calculations of the one-electron
conductance.

It has been shown that for metal electrodes deposited
upon vacuum-cleaved n-oe, " the calculations of the
Schottky-barrier tunnel conductance" adequately de-
scribe the shape and the magnitude of the conductance-
versus-bias curves. The observation of the self-energy
effects due to deformation-potential hole-phonon
coupling has, however, been in air-cleaved heavily
doped p-type Si ""and Ge."The local-mode phonon
coupling has been seen only in the Si junctions. ""
The simple Schottky-barrier calculations are invalid
for the Si junctions because both the vacuum-cleaved
samples, and the Schottky-barrier calculations indicate
that intimate metal-semiconductor contacts on such
heavily doped Si behave essentially as electrical shorts.
Such low resistance is the result of a low barrier height4'
and high doping levels ( 10'o cm '). Therefore, in
these junctions it was necessary to take into account the
insulating layer formed on the Si surface due to air
cleavage. The nature of the barrier in the p-type Ge
junctions which are cleaved in air is not known

In Fig. 10, we show a comparison of the data for In
data deposited on air-cleaved B-doped Si'4 with a
numerical calculation of the conductance of a metal-
insulator-semiconductor (MIS) junction in which the
tunneling takes place through a thin insulating layer
with a high potential barrier. Parameters for the barrier
heights were chosen to agree with typical barrier
heights for thick (500 A) thermally grown oxides
(p~ 3 6eV, ps——=4..35 eV)." The electron effective
mass in the barrier, nsy, was taken to be 0.47 mo" and
the thickness b =11 A was chosen to give the proper
magnitude of dI/dV for the measured contact area



778 L. C. DAVIS AND C. B. DUKE

3 =4.5&10-' cm'. For these highly doped samples,
6eld penetration into the semiconductor was found to
be unimportant and was neglected. The contributions to
the conductance of both the light hole band and the
heavy hole band, but not the split-oG band, were in-

cluded in the calculation.
The current for the light (heavy) hole band was cal-

culated from4'

2e.4I=

where

d nfl
de(f(c eV—) f(e—)) D(k„,(),), (C1)

(2v)'

v s, E(0)
D(k„,g~) =16 — exp —2 E(x)dx

vr, X(b) () )

2m/
It(x) = y(x)+ ~,+

A' 28$ Q

((.".2b)

@(x)=es+F(x b), —
F= (1/b) (4 s 4.v «—)— (C2c)

s = —$g. (C5)

The velocity of the holes is denoted by ez, whereas the
velocitv of the metal electrons is given by vl., which is
taken to be the metal Fermi velocity Aksq/mq. Con-
servation of k&l was assumed as is appropriate for
elastic specular tunneling through an average potential
barrier (see Sec. 'I of Ref. 3).

Three important consequences of the calculation
should be discussed.

(a) For changes of the barrier thickness from 10 to
15 A, it was found that the conductance varied by a
factor 10', but the shape or the normalized conduct-
ance was found to be virtually independent of the barrier
thickness. Hence, only the shape or the normalized

'9 K. H. Gundlach, Solid State Electron. 9, 949 {1966).

The applied bias V is positive when the )b-type semi-
conductor is positive relative to the metal electrode.
For a metal-insulator-semiconductor junction, the
kfl integration is over the region

0&5'kii'/2m*&(&g+I ), (C3)

where vs* is the effective mass of the light (heavy) holes.
The Fermi level falls a distance f below the valence-band
edge, and the light (heavy) hole band energy is given by

E(k) = —k'k'/2m* = —($g+1 ) . (C4)

The variable e is the total energy measured relative to
the Fermi level in the semiconductor, so that (in a one-
electron calculation for holes)

conductance was significant in determining the appro-
priate value of the Fermi degeneracy f. The magnitude
of the conductance should be fit easily with the proper
choice of the barrier thickness b =11A.

(b) We can determine the Fermi degeneracy f un-
ambiguously by fitting the slope of the normalized
conductance curve in the linear region (V&60 mV). In
the example shown in Fig. 9, if we had taken f&120
meV, the calculated curve mould have been flatter, or
if we had taken /&120 meV, the calculated curve
would have been steeper than the experimentally
measured curve. The resulting value of the effective
number of free holes is n=7.9&(10" cm ', neglecting
nonparabolicity of the bands.

(c) The calculated conductance was found to be
slightly negative for biases greater than 108 mV.
Including the field penetration into the semiconductor
in this calculation gave values of the conductance in
this region which were positive. It should be noted
that even the rather large value of pz —&~=0.75 eV
used in our calculation did not give positive values of
dI/dV in this region of the magnitude observed experi-
mentally, unless the doping was assumed to be some-
what less ( 5X10"cm'), however. This result is prob-
ably due to the occurrence of incoherent fluctuation-
potential channels for current, flow in air-cleaved
junctions (see Sec. 'I of Ref. 3).

%e should state that the numerical calculations
provide only a convenient parametrization of the ex-
perimentally measured conductance, and do not provide
an independent check of the one-electron tunneling
theory as did the measurements on rs-oe."

Let us now derive a simple expression for the barrier-
penetration factor D based upon the results of Appendix
B. (a) The invariance of the conductance line shapes to
small changes in the barrier parameters indicates that
the height of the barrier ( 4 eV) is large enough so that
changes in $q, eV, and k'k~~'/2m* (&100 mV) can be
treated bv expanding the WEB exponent. " From
Sec. 2, we recall that the phase-space integration

d'kf&

D(k„,(,)
(2s.)'

determines the general shape of the conductance curve.
In fact, since the barrier-penetration factor is slowly
varying in the region of interest

d'k(( D(0, tg) 2m~
—D(k„,h) v (&,+f') . (C6)

(2v-) ' (2x) ' It'

We note that 7r(2m~/k')($~+f) is the available area in
phase space and that such a form is readily derived from

E. L. Murphy and R. H. Good, Jr. Phys. Rev. 102, 1464(1956); R. Stratton, ibid 135, A'/94 (1964.).
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the WLX8 approximation. "The prefactors of the %%8
exponential are slowly varying except near the band
edge. The important value of $1, in determining the
conductance is

Q= —eV. (C7)

Substituting Eq. (C7) into (C6), we fmd that in this
approximation

dI/dV ~ (—eV+1). (cs)

eV (Q+eV) A.'b„'
D=Dp exp (C9a)

E» 2mbEpEp

eV $, it'kiP
=Do exp +——

E» Ep 2mbEp
(C9b)

where Dp is a constant and

/ $o i 1/o

42mo) 2b(d e'Io —y~'i')
(C9c)

( b, ' )'"y —y 2ye'I'
Pe"' — — (C9d)

E2mo) 2b - 3 It e—pu.

$ = —
$o

—eV. (C9e)

For the barrier shown in Fig. 10, -', E»—Ep—500 mev.
In general, we have regarded Ep and E» as adjustable
parameters to be determined from the experimental
data. To limit the number of parameters, however, we
always take E» =2Ep.

Neglecting the bias dependence of D, it can be shown
that for the barrier-penetration factor (C9), the con-

This prediction describes the observed behavior of the
experimental dI/dV in the region (V&60 mV), al-

though, in the analysis of the line shapes, we used a
more accurate approximation than Eq. (C6). Equa-
tions (C/) and (CS) illustrate the important fact that
for the injection or extraction of carriers near the band
edge in an electrode in which only one band contributes
to the current, the conductance is determined primarily
by the avaiable area in phase space.

If we now take into account the dependence of D
upon tq, eV, and bloo/2'* to 6rst order in the ex-
ponent, we can write

2 OxlO
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E

a
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F»G. 11. Comparison of the conductance resulting from the
model barrier-penetration factor (dashed curve), as given by
Eq. (C9b) with E»=2Bp and the self-energy given by Kqs.
(A2.2)-(A2.6), to the numerical calculation of metal-insulator-
semiconductor conductance (dotted curve) of Fig. 10 and to the
experimental data (solid curve) for P-Si (Ref. 24).

ductance is given by

dI 4n-e'mbEpA
D+e vIEj,

dV h'
m* ( eV+—1 )

1—exp (C10)
mb Ep

In Fig. 11,we show a comparison of the model conduct-
ance (C10) with experimental data and with the numeri-
cal calculation shown in Fig. 10. For simplicity we have
taken mo=oao (which holds quite well for the heavy
holes), and —,'Ei =&o=375 mev. Also shown is the effect
of strong hole phonon coupling near ev=&hcop, the
phonon energy, which is discussed in text of this paper.

To obtain a more accurate expression for the one-
electron conductance, we can account for the contribu-
tion due to the voltage dependence of D by adding, to
the right-hand side of Eq. (C10), the correction term

dI &
—47re'motto'A eVi

exp —
i

exp
d V), O'Eg Eo& E,)

/'2eVi—oe rj ' exp( —
i
—1, (C11a)

EE. /
where p»

(C11b)


