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iVote added im proof T.efft, Bell, and Romero" (TBR)
have recently used the same set of orthogonal functions
(with minor differences in notation) as used in this work

LEq. (2.5)] to calculate effective-mass binding energies.
However, TBR computed only the diagonal elements of
the Hamiltonian matrix. The neglect of the ofI'-diagonal

matrix elements destroys the central principle of the
variational method, namely, that the approximations
to the eigenvalues are upper bounds to the true eigen-

~' W. E. TefFt, R. G. Bell, and H. V. Romero, Phys. Rev. 177,
1194 (1969).

values in a one-to-one correspondence. This becomes
extremely serious when quasidegeneracies occur. There-
fore, the results of TBR bear little or no relationship to
the true eigenvalues of the eR'ective-mass Hamiltonian
except for the ground states of each symmetry (1,S',

2PO, 2P~, etc.).
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The Fq conduction band of the wurtzite-type II-VI compounds has a spin-orbit term linear in k. Effects of
this spin-orbit term in crossed electric and magnetic 6elds are investigated on the basis of a one-band formal-
ism. The effective Hamilto~izn is solvent for four di!Fere~t cases, accor3i~g to the strength of the crosse3 elec-
tric and magnetic 6elds: (A) Strong magnetic field and weak electric field —this is essentially the simple
band case; (8) weak magnetic 6eld and weak electric field (the coupling between cyclotron motion and spin
states via the spin-orbit term plays a dominant role in determining the energy spectrum); (C} strong mag-
netic field and strong electric field. (The major contribution to the spin-orbit interaction comes from a term
representing the inhuence of transverse drift motion upon spin states. As a result, the spin splitting exhibits
a nearly linear dependence on the electric 6eld, and the direction of the spin axis tends toward that of the
electric 6eld with increasing electric field}; (D) weak magnetic held and strong electric Geld /both of the
spi~-orbit effects, which are pre3omiaant either in the case (B) or in the case (C), are equally important, and
perturbation theory is not appli"able. Varixtio~al solutio~s have amplitudes distribute3 over many Landau
and spi~ states, so that the selection rule for the istraband transitions is

relaxed'.

jThe conditions for observing
these spin-orbit effects by means of intraband transitions are discussed for the actual II-VI compounds. It is
found that spin-orbit effects may possibly be observed in magnetic dipole transitions under the condition of
case C for CdS and ZnS, as well as in electric and magnetic dipole transitions under the condition of case A
or C for CdSe. In the strong electric field of case C, the transverse drift velocity is one or two orders of mag-
nitude larger than the velocity of sound in the crystal. Hence, phonon clouds build up around an electron to
cause broadening of the resonance line. This can be avoided by carrying out the resonance experiment before
the phonon clouds build up, i.e., by employing a pulsed transverse electric field.

I. INTRODUCTION
' 'NVESTIGATION of the electronic states in crossed
- - electric and magnetic fields has given valuable in-
formation concerning the band structure of semicon-
ductors. The first theoretical study on this subject was
made by Aronov' on the basis of a simple band model.
The one-band eGective Hamiltonian has a simple har-
monic solution which can explain many qualitative fea-
tures of the interband optical transitions. Later, a more
appropriate theory based on a two-band model was
developed by Lax and co-workers' and also by Aronov, '

' A. G. Aronov, Fiz. Tverd. Tela 5, 552 (1963) )English transl. :
Sov. Phys. —Solid State 5, 402 (19"3)j.

~ B. I.ax, i~ Proceedings of the Seventh International Conference
on the Physk s of Semicoi.ductors Paris, 1964, edited by M. Hulin
(Academic Press Inc. , New York, 1964), Vol. I, p. 253; B. Lax,

giving successful explanations of some critical phe-
nomena" in the strong crossed electric field.

In the case of a complex band, however, we have to
solve a set of diGerential equations resulting from the
effective Hamiltonian. ' The only exact solution obtained
so far is the one derived by Luttinger' for the valence
band of germanium or silicon in a magnetic field along
the L111jdirection with no electric field. When a weak
electric field is applied perpendicular to the magnetic

J. Phys. Soc. Japan Suppl. 21, 165 (2966). Th latter is a review
article i~ which an extensive list of r f rene:s is given.

3 A. G. Aroaov, J. Phys. Soc. Japan Suppl. 21, 608 (1966).
4 W. Zawadzki a~d B. Lax, Phys. Rev. Letters 16, 100 (1966).

E. I. Blount, in SoM State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1962), Vol. 23, p. 306.

~ J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
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field, one observes a small energy shift of the Landau
levels which can be treated by perturbation theory. ~

Most of the II-VI compounds with v urtzite structure
have their conduction and valence-band extrema at the
F point (k= 0), and their assignment to the I'7 conduc-

tion and F9(A), I'7(B), and I'7(C) valence bands has
been almost established by the detailed studies of exci-
ton spectra. ' The one-band effective-mass Hamiltonian
has the form of a simple band with an anisotropic effec-

tive mass and g factor. According to group theory, ' there
is a spin-orbit term linear in k in the Fv band. This spin-

orbit coupling term arises from the combined eHect of

spin-orbit coupling and crystal field, as is shown by
k-P perturbation theory for the original one-electron
Hamiltonian. Owing to the presence of this spin-orbit
term, the energy spectrum of the F7 band has an extre-
mum loop in a plane normal to the F-6-A axis. The effect
of this spin-orbit term on the Fz(B) band has been in-

vestigated for CdS by the interband magneto-optical
absorption'0 and by the anomalous reAection spectra
of exciton. "Thus, the coeKcient of the spin-orbit term
(denoted by C) was determined experimentally for the
F7(B) band of CdS. However, no attempt has success-

fully been made so far for the determination of the spin-
orbit parameter C for the F~ conduction band.

The purpose of this paper is to show that, in the case
of the F7 conduction band, the application of crossed
electric and magnetic fields" mill be a valuable tool for
the determination of the spin-orbit parameter C. Since
no experimental confirmation has been achieved, an
attempt has been made to put the results in a form
which may readily be compared with the experimental
results for the actual II-VI compounds. It is hoped that
the possibility of observing the spin-orbit sects wi]l be
verified by experimental studies along the line described
in this paper.

We introduce, in Sec. II, a one-band effective Hamil-
tonian' for the F7 band in crossed magnetic (along the
c axis) and electric (normal to the e axis) fields and re-
duce it in a convenient form for later calculations. In
Sec. III, we solve the Hamiltonian in some limiting
cases to obtain analytical expressions for its eigenvalues.
It is found that these eigenvalues depend upon the elec-
tric and magnetic fields, and also parametrically upon
the value of C. Then one can determine the value of C
by fitting the electric and magnetic field dependence of
the eigenvalues to experiment. In Sec. IV, intraband
electric and magnetic dipole transitions are discussed.

7 Q. H. I'. Vrehen, W. Zawadzki, and M. Reine, Phys. Rev.
158, 702 (1967);T. Shindo, Phys. Chem. Solids 26, 1431 (1965).

' Physics and Chemistry of IE-VI Compounds, edited by M. Aven
and J. S. Prener (North-Holland Publishing Co. , Amsterdam,
1967);II-VI Semiconducting Compounds, edited by D. G. Thomas
(W. A. Benjamin, Inc. , New York, 1967).

9 J. J. Hop6eld, J. Appl. Phys. Suppl. 32, 2277 (1961); R. C.
Casella, Phys. Rev. 114, 1514 (1959).

'0 E. Hanamura, Phys. Letters 13, 116 (1964).
» G. D. Mahan and J.J.Hop6eld, Phys. Rev. 135, A428 {1964).
"K.Ohta, Phys. Letters 17, 91 (1965).

Owing to the presence of the spin-orbit term, there are
many additional electric and magnetic dipole transitions
other than those of cyclotron and spin resonance, re-

spectively. Intensities of these additional transitions,
contrary to those of cyclotron or spin resonance ones,
depend critically upon the value of C. In Sec. V, the
spin-orbit parameter C for the wurtzite-type CdS,
CdSe, and ZnS are estimated from the known band pa-
rameters on the basis of quasicubic model. ' "A more
subtle estimate for CdS is derived from the value of
C' "for the F7 valence band which was obtained by the
analysis of anomalous reRection spectra of exciton. On
the basis of these estimates, conditions for observing
the spin-orbit e6ects on the F7 conduction band are
discussed for CdS, CdSe, and ZnS. In Sec. VI, summary
and conclusions are given.

+-', g((PHo. +eEy. (1)

Here, o. , o-~ and cr, are Pauli spin matrices; x= —i4
+(e/ch)A; A=( —Hy, 0,0); C is the coefficient of the
spin-orbit term; and other definitions are as in conven-
tional use. a, and ~„satisfy the following commutation
relations:

La„a„j= i (eB/cubi) = —i»', —

EKW, K~j= LK»K~j=0.

(2a)

(2b)

In our gauge for the vector potential, we can take a
plane-wave representation for the motion along the x
and z axes, regarding the operators iB/Bx and— iB/Bz-
as scalars k and k.. Eliminating y by the relation
y=(k, —x,)/~' and introducing operators a and at
defined by

1 m, cE)
a K +f oK~

V2z h a)
"J.J. Hopleld, Phys. Chem. Solids 15, 97 (1960).
' J. Zak and W. Zawadzki, Phys. Rev. 145, 536 (1966).

II. ONE-BAND EFFECTIVE HAMILTONIAN

The behavior of an electron in the F7 band in crossed
electric and magnetic fields is investigated within the
framework of a one-band effective Hamiltonian. XVe

shall confine ourselves to the case of intraband transi-
tions where the crossed electric and magnetic fields have
moderate strength. The conditions necessary for the
one-band effective Hamiltonian to be valid have already
been discussed by Zak and Zawadzki. "These conditions
are assumed to be satisfied here. In a magnetic field II
directed along the c axis (which is taken as the z axis)
and an electric field E along the y axis, the eA'ective
Hamiltonian' for the Fz band Inay be written in the
form
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1 ( m1 CE
G~ = K11 I K~

V2K 4 k H
(3b)

the Hamiltonian can be rewritten as

%=Aced, fa a")+ggiiPHo',

rn, cE) / rn, cE)—C o %2~a+i —~+o
~

&2~a~ i-
n Hi 4 k H)

(kx + kZ )'

where

k' cE 1 (cE) '
+ k+kk ——,

~

—~, (4)
2m(, H 2 kH)

FIG. 1. The energy spectrum of the F; band as a function of
kg=(k, '+k„'}'".The radius of the extremum loop k0 and the
spin-orbit splitting at the loop b, are important parameters char-
acterizing the F7 band.

f a,at) = -', (aa"+ata), o~ = -,'(o,&io„)

Let us denote the base vector by ~nk k.&), which is
diagonal with respect to the operators ata, i8/—Bx,
—iB/Bs, and o,. The commutation relations (2a) and

(2b) are written in terms of a and at as

La,at)=1, (a,aj=ra', a'j=0. (5)

One of the extra terms resulting from the presence of
spin-orbit interaction is —&2C~(ao++a o ). This term
represents a dynamic interaction between the cyclotron
motion and the spin states, and it changes the Landau
quantum number and spin states simultaneously, keep-
ing fa,a~)+-', o, constant. Another term C(rn~/k)
X(cE//H)a„, which is equivalent to a static external
magnetic Geld directed along the y axis, arises from the
inQuence of classical drift motion along the x axis upon
spin states. This effective magnetic Geld acts only upon
the spin which undergoes a rotation of its own axis. The
resulting change of the spin states induces the alteration
of cyclotron motion via the dynamic interaction. This is
the eBect which is characteristic of the spin-orbit term
in crossed electric and magnetic fields. The electric-
Geld-dependent scalar terms are contributions from the
kinetic energy of the transverse drift motion and the
electrostatic potential at the position of the oscillation
center on the y axis. The last three diagonal terms of K
give rise to only a level shift as a whole and do not
change intraband transitions. Since we consider only
intraband transitions in this paper, we shall not treat
these terms explicitly. In order to see the relative mag-
nitude of the various terms in the Hamiltonian (4), it is
convenient to express the energy scale in the unit of the
cyclotron energy Ace, . Thus, let us deGne the reduced
Hamiltonian

E= PC —(irrelevant diagonal scalar terms))/bar„

which is explicitly written as follows:

K= fa,at)+pa, +)o„$(acr++aro—), (6)

where p = ~g~~rn&/rn, X= CeE/(Aced, )', P = A/hao„and

6= 2nnC'/k', which is the spin-orbit splitting between
the states on the extremum loop and their spin-conju-
gate states (see Fig. 1).

We now have three parameters p, X, and $ characteriz-
ing the reduced Hamiltonian (6);p is a constant propor-
tional to g„and m&, $ is a coupling parameter describing
the interaction between the cyclotron motion and the
spin state; P is the efI'ective magnetic Geld, directed
along the y axis and acting only upon the spin. It is also
proportional to the transverse electric Geld. In dealing
with the reduced Hamiltonian (6), we shall hereafter
abbreviate the basis state

~
nk, k,&) for the full Hamil-

tonian as
~
n&) for the reduced Hamiltonian.

GI. SOLUTION FOR THE REDUCED
HAMILTONIAN

1. Case (A): Weak Electric Field and Weak Coupling,
and Case (B):Weak Electric Field and

Strong Coupling

When A. = 0, we can solve the reduced Hamiltonian E
exactly" by decoupling the secular determinant into the
subspace spanned by the states

~

n 1, + ) —and
~
n, —)

by making use of the conservation of f a,at)+2o„which
commutes with E. Thus, we obtain the eigenvalues

e-"'=n~ L(-' —~)'+n V3'"
(sign + only for n=0) (7)

and eigenvectors

l.(~))= &n,

~n —1, ~)~ (n, —), (g)

"E. I. Rashba, Usp. Phys. Nauk 81, 557 {1964} )English
transl. : Soviet Phys. —Usp. 7, 823 (1965}j;k. I. Rashba, Fiz.
Tverd. Tela 2, 1224 (1960} t English transl. : Soviet Phys. —Solid
State 2, 1109 (1960}j.

In order to solve for the reduced Hamiltonian E, we
shall consider the following four cases:

(A) X&&p, $«1, (B) X«p, $& 1,
(C) X&p, $«1, (D) X&p, $&1.



724 KU N I 1C H I OH TA

(3,+)

(3;)
(2.+)

(2;)'
(i.+)

(i,-)
(0,+)

05 2

will be briefly discussed. There is a small correction in
energy owing to the presence of the term Xa„. If neces-
sary, it can be calculated by second-order perturbation
theory. 'The effect of the weak electric Geld on the transi-
tion probabilities will be treated later. At the values of
$ where the relation

P=n+n'&2Lnn'+(s' —p)'j'" (n)m')

is satis6ed, we Gnd that the states
~
n( —)) and

~
n'(&))

are accidentally degenerate, as shown in Fig. 2. Degen-
erate perturbation" theory gives splittings of order
P" "' between these states. Apparently, they are quite
small for the weak electric 6eld.

Pro. 2. The energy spectrum of the unperturbed states for the
cases (A) and (B) as a function of the "coupling" parameter &,
where th spin-splitting parameter p, is taken to be 0.1. At the
values of $=n+e'&2Pee'+($ —p)'")'"(e&e'), one encounters
an accidental degeneracy between th' states ( e(—)) and ) n'(~}).
The energy scale is given in units of bc', .

where rs= (a,a )+-',o„c„=cos(-,' v~), s = sin(-', p„), and
tanV =rs'1st/(s —) ).

'Ihe energy eigenvalue e„'+' of Eq. (7) is plotted in
Fig. 2 as a function of $. The effect of the spin-orbit
term on the energy eigenvalue becomes appreciable
when $ approaches and exceeds unity. In this case, we
can observe the spin-orbit e6'ect by resonance experi-
ments. Usually, they are carried out by scanning the
external magnetic 6eld at Gxed microwave frequencies.
Since $ contains the unknown parameters LL and m&, it
is convenient in practice to plot the resonance spectra as
a function of H rather than as a function of g. Assuming
a resonance peak to be due to a certain transition, we
6t the corresponding energy expression to the observed
resonance energy by making use of the formula

E &+'—= Aro.e~'+'= nA& (BH'+nDB) '"
where A, 8, and D are adjustable constants to be Gtted
experimentally. 'Ihe correct assignment for the spectral
lines can be attained by con6rming whether all the lines
observed can be Gtted consistently. Thus, we obtain the
values of A, 8, and D and, hence, those of m~, g&l, and C,
from the experiment.

The method described here for determining the value
of C can be applied only to the case of a quantum limit
P = pro, /ksT&)1. In a high-temperature limit PC(1, we
need a discussion of line shape, which will be given in
Sec. IV.

As will be discussed later, the spin-orbit splitting 6
for the actual II-VI compounds is not large enough to
satisfy the relation P = 6/Aro, = 1 for the cyclotron fre-
quency c&o)1/r, where r is a carrier relaxation time.
'Iherefore, we have to carry out the experiment under
the condition of &(1, except possibly for CdSe. In order
to investigate the spin-orbit effect in this case, the trans-
verse electric held must be strong enough for A, to ap-
proach or exceed p. 'I his case is treated in case (C).

Before proceeding to the cases of the strong electric
field, (C) and (D), the effects of the weak electric field

2. Case (C): Weak Coupling and Strong Electric Field

Now we shall proceed to the most important case
which is realized in the actual II-VI compounds. "Since
the off-diagonal matrix elements of ) o„ in Eq. (6) are
arbitrarily large in value, they must be transform ed into
diagonal parts as follows:

X= e—&'&'*Ee&'&

= (a,at)+(Is'+h, ')'"o, &A, —
where

A= o+L(1+c)a+ (1—c)a'j
+o ((1—c) a+(1 +c) atj+is o( a at) (1—0)

and tano = X/p,
~ y ~

(-,'s.
, c= cosy, and s= sino.

Ke shall for a moment discuss the diagonal part of
E.For the state having the Landau quantum number e
and the spin quantum number &1 v ith respect to the
new o, axis, we have the expression for the energy

(2+
(2;

(o+
(0-

10 15
2k

20

FIG. 3. The energy spectrum of the unperturbed states of the
case (C) as a function of the electric-Geld-dependent effective
"magnetic field" 2X. The spin-splitting parameter y is taken to be
O.i. At the point 2X, where (p'+)I')»=pm (m is a positive in-
teger) is satisfied, the accidental degeneracy between the states
( s—m{+)) and (s(—)) occurs. The energy scale is given in units
of Aced, .

'~ For example, L. D. Landau and E. Lifshitz, Quantum Me-
chanics: Son-Rdatieistic Theory (Addison-Wesley Publishing Co.,
Inc., Reading, Massachusetts, 1958).
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pro. l

(C)

Fro. 4. Computer generated e—X curves. The numerical solution was obtained by diagonahzing a t2&12 matrix in the ia,~~basis.
{a) p, =&=0.1, Ibis corresponds to the case (C) (see Fig. 3). (b) pa=0. 1, &=0.5. (c). y=0.1, )=i. As g and X increase, energy levels
become strongly repulsive. As A, increases for a given g, the energies of higher-lying levels begi~ to increase monotonically. At this point,
the variational solution loses its validity. I'his can also be seen by examining how the amplitudes of the variational solutions are dis-
tributed over the bais states )n, ~). Dashed lines shower these points,

eigenvalue

e t+~+rt+1~ (~2+F2)1/2 (11)

This is plotted as a function of 2X in Fig. 3. As X ap-
proaches p, with increasing electric field, the spin split-
ting 2(g'+X')'Is developes an appreciable electric field
dependence. In an extremely strong electric field, where
X)&p is satisfied, this spin splitting tends to have a linear
dependence upon the electric field, being asymptotically
equal to 2X; and the spin axis approaches the direction of
the electric field as y ~ ~~m..This can simply be seen from
the expression of the reduced Hamiltonian E of Eq.
(6). lf we neglect p as compared to X in K, the effective
"magnetic" field acting upon the spin is directed along
the y axis, and consequently the spin splitting becomes
2A, .

From the measured value of co, and the X dependence
of the spin splitting, we obtain the value of C as well as
the other band-mass parameters. Actually, the follow-
ing prescriptions apply:

(1) The condition for the "spin resonance" at the
microwave frequency co is

co/(o, = 2(g'+X')'",

which can be rewritten as

(2E)'= ((u/eke)'B' —(g„P/eke)'El', (12)

where ks= rrriC/O'. In the experimental situation where
the microwave frequency is 6xed, Eq. (12) prescribes

the functional relation between (2E)' and H'. There-
fore, Gtting the equation to the experimentally derived
(2E)' versus H' curve, we obtain the values of ke and
gl f ~

(2) The observed value of the cyclotron frequency
~, gives the effective mass m~, which in turn determines
the value of C from ko.

%hen +(1, the perturbation —$A is small enough to
be neglected. If necessary, the energy correction due to—$A. can be treated by second-order perturbation
theory At the .value of 2X where 2(t1'+X') =rrt is satis-
6ed, we 6nd an accidental degeneracy between the states
~rt-rN, (+))and ~rt, (—)) .Then, rath order degenerate
perturbation theory" gives a very small splitting of
order $ and a mixing of the states.

3. Case (D): Strong Coupling and Strong Electric Field

As we have already noted, it is impossible for the
actual II-W'I compounds to fu1611 the condition $) 1 for
cyclotron frequencies ca,)1/r. However, for complete-
ness and as a supplement to the lower-order perturba-
tion theory described so far, we shall give a variational
solution for E which is valid for this case as well as for
the previous cases.

In the case (D), every term in K gives a contribution
of nearly the same order of magnitude. Therefore, we
have to solve a secular equation numerically using the
basis consisting of the Landau and spin states

~
rt%) by

truncating this secular equation into a 6nitq-ra, gk dc-
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terminant. (It may be expected that the convergence of

the variational solution whose basis vectors are a finite
set of Landau and spin states is not sufficiently good
when $ ~~ and X ~Do . In that case, however, our one-

band formalism loses its validity, and we do not con-
sider such a case.) The detailed procedure for the nu-

merical solution is given in the Appendix.
A numerical calculation has been carried out by

diagonalizing a 12X12 submatrix in Eq. (A4) for the
following three cases: (a) t2=0.1, (=0.1, X=O 3; (b)
t2=0.1, )=0.5, X=0 3; (3) t2=0.1, )=1, X=0 3. To
compare the numerical solutions presented here with
the analytical solutions obtained previously, we have
included cases (A), (8), and (C) for the numerical cal-
culations. The case (a) corresponds to cases (A) and

(C); both cases (b) and (c), to cases (8) and (D). The
results are illustrated in Figs. 4(a), 4(b), and 4(c), re-

spectively. The e-X relation in Fig. (4a) is exactly what
we expected in case (C). That the convergence of the
variational solutions is satisfactory is confirmed by ex-
amining how the amplitudes of the eigenvectors are
distributed over the basis functions. As $ and X increase,
the mixing of the basis states In&) increases, so that
the energy levels become strongly repulsive. It is char-
acteristics of all of Figs. 4(a), 4(b), and 4(c) that, as X

increases, the lower-lying levels decrease together, keep-
ing the separations between adjacent levels nearly con-
stant. The origin of this phenomenon can be understood

by consulting the analytical solution of Eq. (11) for
case (C). Since the energy eigenvalues have a strong
electric field dependence, we can determine the value of
C as well as the other band-mass parameters experi-
mentally on the basis of this solution.

and by

e"(o2) = — dt e' '(Lv~(t), v~])
AQco'

(13)

~g2ti 2

t "(~)=
hQ

« '"'(L +(t), 3), (14)

respectively. Here, v+ ——v,&iv„; a~=2(a, &ia„); vp(t)
and ap(t) are the Heisenberg operators for vp and ap at
time t; the angular bracket denotes the thermal average;
0 is the total volume of the system; g is an appropriate
g factor; and P& is the Bohr rnagneton. The velocity
oper itors for our Haniiltonian are obtained as

0FX cL' 1 Pl ft'. a —fLt

r*=—=—+——
+(gent

ftp, F1 v2 m2 i
(15a)

IV. SELECTION RULES AND LINE SHAPE
OF INTRABAND TRANSITIONS

We now proceed to discuss the selection rules and line
shapes for intraband transitions. General expressions for
the imaginary parts of the frequency-dependent dielec-
tric constant and magnetic susceptibility for left- and
right-circulary polarized fields are given by"

BH j. A, f(

v„= =——(a+ at —&a.),
Bp„v2 m2

VZAK a +)a
Vy= &1

m, a+)a~

(15b)

(15c)

In the I'7 band, there are various intraband electric
dipole transitions combining spin Qip with multiple
quantum transitions. It should be emphasized that
these additional intraband transitions in crossed fields
are entirely due to the eAects of the spin-orbit coupling
term. In a simple band in crossed fields, the only allowed
electric dipole transition is the one with 6@=~1 and
As=0. Multiple quantum transitions due to the trans-
verse drift motion are forbidden in the intraband case
for a band with quadratic dispersion.

First, we shall discuss the limiting cases (A), (8), and

(C), where the perturbative expansions have sufhcient
convergence. The matrix elements of the velocity opera-
tors between the true eigenstates can be expressed as
a linear combination of the matrix elements between the
unperturbed states by expanding the true eigenstates
in terms of the unperturbed states through perturba-
tion theory. %'e consider only the lowest-order nonzero
matrix elements between the given true eigenstates, be-
cause we have assumed rapid convergence of the per-
turbative expansions.

1. Case (A)

With the aid of Eqs. (g) and (15c), and by the method
described above, the following transition probabilities
are obtained for cyclotron resonance:

1(n+1(+) lv+ In(+)) I'
=V22$(n+1)'"C„C„+2+n'"S S +2]' (16a)

(] f ( ))

1(n+1(—) lv+ ln( —)) I'
=vo21 n't2c„c„+2+(n+1)'"s s„+2]', (16b)

(1—f-' ')

and for combination resonance:

I(.+1(-)I;I.(+»I
= v&P/(n+1) '"c„s„+2 n' "s ~2—c +2j', (17a)

(1—t.'+'),

1(n+1( ) Iv- ln(+—)) I

'= (f. )'(v'.+c)',
(I-f.'+'), (»b)

l(n+1( —) I + In(+)) I

'= (c'.+ )'
(1-f '+') (»)

Here, In(&)) stands for the true eigenstate correspond-
ing to the unperturbed state In(&)), and vo=42A~/m2.
The energy difTerence between the initial and final states
for each transition is shown in the parentheses, where

c "'=L(-' —t)2+(n+1)Pj't2~1(-' —t)2+nP]'"
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&(~) = p itf21(fl f2)8(~+21 22), (19)
1=(nk~kg+)

where M» is the square of the matrix element for the
transition 1 ~ 2; ~~ and ~2 are the energies of the states
1 and 2 (in units of &co,); and c« is the frequency for an
external field, measured in units of the frequency co,.
Boltzmann statistics are used for electron distribution
functions fi and f2, which are defined such that
f;=e e"/pi e—~'1 (i=1, 2). Since 22 —21 and M» are
independent of k and k„Eq. (19) may be simplified to

Q ill 21e e'"11+(1«—1«„+),
Z

(20)

where e„+ is the part of ei which depends only on n and

The intensity of the combination resonance (17) is
we oker t,han that of the cyclotron resonance by a factor
of order P. This combination resonance occurs also in

the case of X=O and has been treated extensively by
Rashba. "The combination resonance (18) is due to a
magnetic dipole transition, which may more appropri-
ately be called a spin resonance in the usual terminology.
This difference arises from the definition of the state (8),
and the transition (18) will be hereafter called a com-
bination resonance, according to our definition.

Thus far, we have considered only the electric dipole
transitions having intensities independent of X. Because
of the presence of Acr„, there occur other types of transi-
tions having intensities of order (XP)2 or (&t')', etc,
relative to the intensity of the cyclotron resonance. In
the case of («1, however, these higher-order transitions
cannot be observed because of their small transition
probabilities. This is actually the case for most II-UI
compounds. It follows that acutally, in these crystals,
no transitions can be seen other than those observed in
the case of 3=0, until A, becomes comparable to or
greater than p.

There are also magnetic dipole transitions other than
(18) whose intensities are of order P or higher, relative
to that of the transition (18).

In the quantum limit P = &co./k&T& 1, each resonance
line corresponds to a single transition between low-lying
quantum states (not considering the degeneracies with
respect to k, and k,). Therefore, the discussion given so
far is adequate for identifying resonance lines. The con-
dition for the quantum limit is not always satisfied for
cyclotron resonance and combination resonance, how-
ever. In a high-temperature limit P((1, each resonance
peak consists of many overlapping lines, each of which
corresponds to a specific transition whose initial states
are thermally distributed over states having large values
of n, In order to analyze the resonance spectra, we need
the envelope function for these overlapping lines. To
obtain them, instead of evaluating Eq. (13) rigorously,
we calculate the following quantity:

spin states',

Z=g e I™';1«„~=22—21.
n+

Solving the equation

(21)

with respect to n, we obtain n in terms of co. Substituting
this into Eq. (21), we have the expression for I(co) in the
following form:

1—e—l'"

I((o) = Q F+(««) Q b(1« —1«„+),
Z n

(22)

where

F~(1«) =3f21e—~"+~ „„+„.

Replacing the sum over n by an integral over n,

D+(1«) =Q 8(«« —1«+)

dn 8(1«—1«„+)
(24)

and substituting Eqs. (23) and (24) into Eq. (22), we
obtain

where

(26)

we obtain the expression for G+(1«) for cyclotron reso-
nance as follows:

G+(1«) = F(c«)D(1«), co~~1

=0, Cd~ 1

Ke now apply the result to cyclotron and combination
resonances. Even for large values of n, the experiment
of cyclotron resonance for CdS indicates that p„«i.
It follows that s„=2, tang„n'"$, and c„=1.Hence,
we have AE»=neo' for cyclotron resonance. Following
the procedure described above and making use of the
relation

(27)
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O t
~Co)

- ~p~f/2
!3-l/2

for Eq. (18).The transition energy is

Hence, we have

(33)

p~ I/5

I

I

D(cv) = (35)

-QI5 &05 0 005 GI5 Q20 025 2g-l)

where

Xexp —— — — +$, (29)
4 —1

( ]4
D(4d) =—(4d —1)l 1—

2P I ( ((g —1)4

In Eq. (29), we have omitted a constant factor

exp(PL(l —))4) '/8+ l Pj)
The functions F(cu) and D(a&) are defined in the region

l~ —1I &FL(2 —~)'+((k —~)'+P)'"?' (31)

Combining Eqs. (29) and (30) with Kq. (28), we obtain

G((u) = F(cu) D((d), (32}

which is defined in the region (31).
'The transition matrix elements for combination reso-

nance is given by M»=(i)0$)' for (17) and by 3f» 1

0 05 I
40

(b)

FIG. 5. The line shape of cyclotron and combination resonance
for case (A) in the high-temperature limit p = Aced, /kg 7&& 1. (a)
Cyclotron resonance. The function F{co) of Eq. {29) is plotted for
$= p, =o.1. As temperature increases (P decreas s), th two peaks
are broadened and move toward each other. The curves are
normalized so that the total area below the curve are identical.
(b) Combination resonance G(~) as given by Eqs. (32), (34), and
(35) is plotted for & =p, =o.l. A broad peak can be seen for the
cases P =$ and P = 1.

and G(co) is given by Eqs. (32), (34), and (35)
same factor as was omitted in Eq. (29) was also omitted
in Eq. (34). Functions F(cd) of Eq. (34) and D(id) of
Eq. (35) are defined in the region

0&id&-'+P —L(-' —I )'+Pj"'. (36)

The function F(id) of Eq. (29) is illustrated in Fig.
5(a). From Kq. (27), it may be found that the left and
right peaks correspond to the transitions betv een states
with —and + spin, respectively. At low temperatures,
the location of the sharp peaks are near re=1 —P/
(1—2y) and ra=1+P/(1 —2p), respectively. As the
ten. perature increases (or P decreases), transitions be-
tween higher-lying levels become dominant 'Ihe two
peaks v, hich were split at low temperatures are broad-
ened and come close to each other. The function G(co)
given by Eqs. (32), (34), and (35) is shown in Fig. 5(b).
This has a broad peak at low temperatures. At higher
temperatures, G(40) is a monotonically decreasing func-
tion and vanishes at co= 1—$.

2. Case (B)

The transition probabilities of Eqs, (16) and (17) are,
in this case, of the same order. Other transitions v ith
the relative intensities of (}~/)' or (Xf4)' also become
important, so that we need the expression for the transi-
tion probabilities of these higher-order processes. Since
there are many intermediate states connecting initial
states with anal ones, they have quite complicated ex-
pressions. Magnetic dipole transitions other than (18)
(with relative intensities of $, etc.) also have intensities
of the same order as that of the transition (18). As the
case (8) has no practical importance, the expressions
for these transition probabilities will not be given here.

In the high-temperature limit P«1, the function G(co)
is calculated only for cyclotron resonance and for com-
bination resonance. Since p&& 1 for large values of n,
we have q =-,'s. ands, =c =1/W2, andhence A~i=i)o n
for the cyclotron resonance (16). 'Ihe expression for
G(co) is the same as Eq. (31). In the case of $) 1, how-
ever, co & & of Eq. (27) is negative for n((1/ )(4$—1/$)'—(1/2 —p)'/P. In this case, the initial and final states
of the transition are inverted, so that the corresponding
expression for G(cu) takes a different form. 'This transi-
tion can be observed for a limited range of n, and hence
in the quantum limit, if P is not too large.
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Since 3f,~= (vo/4)'/n for combination resonance (17),
we obtain

vo P (1+co
F(o)) =—exp —

l +
4 4k $ 1+co

1( f 1+(o ' (-', —p '

4 (1+co

P 1+co
F(a&) =2 exp — -+

4 $ 1+co

The function D(ru) is given by Eq. (38).

(39)

3. Case (C)

Since this case is of special importance for the actual
II-VI compounds, the transition probabilities w, ill be
discussed in relative detail. Kith a similar procedure to
that followed in the case (A), they are obtained for
cyclotron resonance as

(40)

and for spin resonance as

n+1
l(n, (+)lv ln, (—))l'= vo(1 —~) 1—

1 —g (41a)

l(n, (+) la, ln, (—)) l'=1,
(42)

where ln(&)) stands for the true eigenstate correspond-
ing to the unperturbed one

l n(&)) of Eq. (11), and the
energy difference g= 2(p'+X')'12. The intensities of the
spin resonances (41) are of order P relative to that of the
cyclotron resonance. Electric dipole transitions other
than (40) and (41) are all higher order in $ and cannot be
observed for the actual crystals. Spin resonance (42) is
due to a magnetic dipole transition that is due to the
oscillating magnetic fields with their polarization di-
rected along the x axis.

D((o) = 1—
2P (1+co)'

From Eq. (18), the transition probability for com-
bination resonance due to magnetic dipole transitions is
approximately given by M»=-'„and hence we have

TABLE I. Transition probabilities due to e+ between the lowest
three levels, do. .sig~ated as 1, 2, a~d 3, startiag from th. bottom,
for the cas:s (a) p, =X=0.1, &= 2 and (b) ) =0.1, )=X=2.

~+ 1 —+2 1 —+3 2-+1 2-+3 3-+1 3-+2

a 0.813
b 123

2.21 0.332
0.0906 0.0262

0.0367 0.191 0.0362
0.0520 0.123 0.222

The results described here for the transition probabili-
ties are essentially the same as those for case (A) in the
following sense: The only electric dipole transition hav-
ing intensity independent of the magnitude of $ is
cyclotron resonance. The additional transitions due to
the presence of the spin-orbit term have intensities of
order P or higher relative to that of the cyclotron reso-
nance, even if a strong electric field is applied. It is in
the case of (=1 that these additional transitions become
comparable to the cyclotron resonance. This can be seen
directly from the Hamiltonian (6). The term X~„ turns
the direction of the spin axis to modify the spin part of
the wave function, but not the orbital part directly. 'The

mixing of the states ln, &) and in&1, ~) arises only
through the term containing $. Incidentally, if the direc-
tion of the magnetic field is rotated in the y-z plane with-
out the electric ffeld, mixings of the states

l n, &) occur
in a similar manner, causing additional transitions with
intensities of order P relative to that of the cyclotron
resonance. In this sense, the e8ect of the transverse elec-
tric field on the transition probabilities is, roughly speak-
ing, the same as that of rotating the external magnetic
field in a plane including the c axis.

V. DISCUSSION

To begin with, we wish to make an estimate of the
order of magnitude of C. The application of the k-P
perturbation theory to the quasicubic model, "which is
appropriate for the most II-VI compounds, yields the
following expressions for the band slope C.

' of the Fy

4. Case (D)

The qualitative features of the transition probabilities
will be brieRy given. Now, since n and cr, are not good
quantum nurv. .bers, the eigenstates of K cannot be speci-
fied by these quantum numbers. The transition matrix
elements are determined by the variational wave func-
tions with their amplitude distributed over many
Landau and spin states

l n&), so that every transition is
allowed without any simplifying selection rule. For the
same reason, the words "cyclotron resonance, " "spin
resonance, " etc., lose their rigorous physical meaning.

Transition probabilities between low-lying levels may
be calculated from the numerical solutions obtained in
Sec. II. The results of the calculation are given for elec-
tric dipole transitions for cases (a) )=1, p=X=0.1;
(b) p=0.1, )=X=1.The lowest three levels are desig-
nated as 1, 2, and 3.The transition probabilities between
these levels are given in Table I.
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TABLE II. Band-mass parameters of wurtzite-type II-VI compounds. EA, Ez, and Eo are the energy separation between the I'z con-
duction band and the 1'9 {A) valence band, the separation between the Fv conduction band and the F7 (B) valence band, and the separa-
tion between the Fz conduction band and the I'7 (C) valence band, respectively. b, and 6&, are the spin-orbit splitting and the trigonal-
field splitting of the valence bands of the "cubic" crystal at the I' point. m, and g, are the effective mass and g factor of an electron in the
I'7 conduction band. The value of the linear 'k spin-orbit coupling parameter C for CdS is calculated from the experimental value of C
for the Fv valence band. The value of C for CdSe is taken from the upper limit Hopfield has placed by the analysis of exciton spectra.
The estimated values for C based upon the quasicubic model, are listed for CdS and CdSe {in the parenthesis) and for ZnS. Note that
these estimated values may be an order of magnitude larger than the true values. 6 is the spin-orbit splitting at the extremum loop of the I 7-

conduction band in If. space, while k0 is the radius of the loop. The critical magnetic field H, is defined by the relation g = 1, while the
critical electric field E, is defined by the relation /= 1 and ) /p, = 1. The first seven columns are cited from M. Aven and V. S. Prener,
Physics and Chemistry of II-V Compogeds (North-Holland Publishing Co., Amsterdam, 1967).

EA (eV} Eg (eV) Eo (eV) A~ b, t,, C (eV cm) 5 (p,V} k0 (cm '} H, (6) E, (V/cm)

CdS 2.5831 2.5981

CdSe 1.8415 1.8678

ZnS 3.9115 3.9399

2.661 0.065 0.027 0.205+0.01 1./8~0. 05{~[}
1.72&0.1{J )

2.274 0.42 0.041 0.13 +0.03 0.51&0.05(J )
0.6 ~0.1{~[}

4.030 0.092 0.055 0.34 ~0.02' 2.3 ~0.1(J )
2 0(il)

0.3X10-»
(o.6x1o»)

2X10 "
(6.8 X1O-»)

0.6X10»

0.47 0.8X104
(1.8) (1.4X 1O4)

14 3.2 X 104
(160) (1.2 X 10~}

8 0 70X10 '
(32) (5.6X10 ')

150 1 8X10 2

(17oo) (o.7o)

2.7 2.0X104 80 2.9X10 ~

a H. Kuimoto, S. Shionoya, T. Koda, and R. Hioki, J. Phys. Chem. Solids 29, 935 (1968).

bands at k= 0:

h.,U p
r&. —r4.- r, conduction band

3Eg' m
(43)

making use of the observed value, a better estimate can
be made for CdS. Since the weakness of the estimate de-
scribed above is in the estimate of U, we eliminate U
by Eqs. (43) and (44) to obtain a relation between the
C's for conduction and valence bands:

2ht, U pr„—r4„- r, valence band", 44
3EgQEQC fg

where h„and dt., are the spin-orbit and the trigonal-
6eld splitting of the valence band, respectively. U is the
interband matrix element of the trigonal field between

~

I'i, ) and
~
F4,*) states and is approximately given by

(E,~i,)'i' as long as E,«A„, 6i,. E~ is the band gap of
the "cubic" crystal, and AEP,& is the energy separation
between the Fq(B) and Fi(C) bands. The state vectors

~
Fi,) and

~
F4„*) are the irreducible representations of

the cubic group of the conduction and valence band
states. The momentum matrix element (Fig~Pg~ F4y )
can be estimated from the electron effective mass to be
about IX 10 " (cgs units) for most II-VI compounds. '
The calculated values of C, using the momentum matrix
element and other relevant band parameters, are listed
in Table II. In the case of ZnO, the interpretation of the
observed exciton spectra is still controversial and the
quasicubic model seems to be insufhcient. "However,
the value of C for the conduction band of ZnO is ex-
pected to be smaller than that of other II-IV com-
pounds, because of the small spin-orbit coupling of the
atomic oxygen.

The only observed value of C is that of the r7 valence
band of CdS, about 0.5 & 10 ' eV cm" which is an order
of magnitude smaller than the calculated value. This
result indicates that the calculations based upon the
quasicubic model may give an overestimate of the spin-
orbit parameter C, as pointed out by Hopfield. ' By

' H. Hasegawa, Bussei 6, 36 (1965) (circulatioii in Japanese)."Y.S. Park, C. %.Litton, T. C. Collins, and D. C. Reynolds,
Phys. Rev. 143, 572 (1966}.

C~~ h~b EBC
=0.06.

C.a a~,~g

Substituting C„'=0.5XIO ' eV cm into Eq. (35), we
have C,g=0.3)&10 " eV cm. This value is listed for
CdS in Table II. From the analysis of exciton spectra, '
Hop6eld placed the upper limit on C,~ for CdS as
1X10 " and for CdSe as 2)&10 ".The value of C,q

for CdSe calculated by Eq. (43) is larger than the upper
limit which is listed for C.g for CdSe in the table. Values
for CdS and CdSe calculated by Eq. (43) are shown in
parentheses. Using the values of C in the Table, we ob-
tain those of the spin-orbit splitting 6, the radius of the
extremum loop ko, a critical magnetic field H, (the inten-
sity of themagnetic field at $= 1), and a critical electric
field E, (the intensity of the electric field at )=X/g= 1),
which are given in Table II. These parameters give a
criterion for the frequency of incident photon and for
the intensity of crossed electric and magnetic fields ex-
periments necessary for cases (A), (8), (C), or (D) to be
carried out.

Considering all the results obtained so far, we discuss
the possibility of observing the spin-orbit effects on the
r7 conduction band for actual II-UI compounds. In
order to detect a sharp resonance line, the cyclotron
frequency co,/2x must satisfy the condition a&,)1/r If.
we take the cyclotron frequency co,/2m from Sawamoto's
experiment" as 50 GHz and use the value of 6 given in
Table II, we find the coupling parameter P to be 0.0023
for CdS, 0.068 for CdSe, and 0.013 for ZnS. This means
that case (A) or (C) is realized for these crystals in 50

' K. Sawamoto, J. Phys. Soc. Japan 18, 1224 {1963).
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6Hz frequency region. The corresponding magnetic
fields H=H. /P are 3,600 G for CdS, 2320 G for CdSe,
and 6060 6 for ZnS. The transverse electric field neces-
sary for realizing case (C) is given by E= (X/Ii)E./P.
From the values of E, in Table II, vie obtain the value
of E to be 130 V/cm for CdS, 3.7 V/cm for CdSe, and
17 V/cm for ZnS, where X/ii is set equal to unity. Thus,
it is found that case (C) is realized under a reasonable
electric 6eld intensity.

The coupling parameter P for CdS is so small that,
in case (A), the two peaks could not be resolved as they
can be in Fig. 5(a) for cyclotron resonance. Indeed, the
resonance spectra observed by Sawamoto" does not
seem to present any indication of an extra peak. This is
an experimental verification that the importance of the
spin-orbit efFect relative to cyclotron motion is negligible
for CdS in the region of 50 0Hz. On the other hand, the
value of (' is sufficiently large for CdSe, so that the peak
structure in cyclotron resonance and combination reso-
nance due to electric dipole transitions are expected to
be observed. Since the combination resonance (due to
electric or magnetic dipole transitions) has a broad peak
in the high-temperature limit (see Fig. 5), the experi-
ment of combination resonance must be carried out in
the quantum limit.

In case (C), the expression for the energy eigenvalue
of Eq. (11) indicates that the spin resonance exhibits
a sharp peak. Accordingly, the information necessary to
determine the band parameters mI. , gl &

and C is furnished
by the spin resonance, combined with the result of
cyclotron resonance. The value of P indicates that a spin
resonance due to magnetic dipole transitions may be ob-
served for CdS, and one due to electric and magnetic
dipole transitions for CdSe.

In case (C), however, the effects of transverse drift
motion upon the line shape must be taken into account.
Although rigorous discussion requires the evaluation of
e"(co) of Eq. (13) and ii"(co) of Eq. (14), a qualitative
account may be given without such evaluation. If the
transverse drift velocity, given by vz=cE/H= (lj/p)
X (cu /kp), exceeds the velocity of sound in the crystal
in the high-frequency region of co„aphonon cloud builds
up around the electron, ' so that the relaxation effects
quickly destroy the dynamic coherence of the electronic
states, resulting in a line broadening. According to the
value of ko calculated from that of C given in Table II,
the drift velocity is, indeed, one or two orders of mag-
nitude larger than the velocity of sound (typically
1.5X10' cm/sec) for the intensities of the crossed elec-
tric and magnetic fields corresponding to $= X/p = 1 and
co,/2n. =50 GHz. This puts a serious limitation on the
resonance experiment. However, the difficulty can be
overcome by observing the resonance signal in a pulsed
electric 6eld before the phonon cloud builds up."

~0 K. Xakamura and J. Yanashita, Progr. Theoret. E'hys.
(Kyoto) 39, 545 (1968).

"We are indebted to Dr. K. Nakamura for suggesting this
point.

The phonon build up time is typically of the order of

10 ' sec, which is sufficiently long for the resonance

experiment.
In order to detect the spin-orbit efFects on the F7

conduction band, it is desirable for P to be as large as
possible (or &o, be as small as possible). The reasons are
the following: Firstly, if P is large, the peak structure in

cyclotron resonance due to the spin-orbit eBect can be
seen distinctly; secondly, the combination resonance Lof

case (A)j and the spin resonance Lof case (C)j due to
the electric dipole transition can be observed; thirdly,
the transverse drift velocity is small for the electric 6eld
necessary to realize case (C). In order to lower the
cyclotron frequency cu,/2', it is desirable to use as per-
fect a crystal as possible, i.e., one free from defects and
impurities.

The value of $' for ZnS in Table II is nearly equal to
that for CdSe, and the discussion described above for
CdSe holds also for ZnS. Since the value of C for ZnS is
calculated on the basis of the quasicubic model, how-

ever, the coupling parameter $' is expected to be, actu-
ally, much smaller and the drift velocity vd, to be much
larger than the calculated values. It is probably more
difficult to observe the spin-orbit effect for ZnS than for
ZnS than for CdS. It should be recalled that the dis-
cussion for CdSe is based upon the upper limit of the
value of C. However, P for CdSe is expected to be larger
than that of CdS. The true value for CdSe and, hence,
the possibility for observing the spin-orbit efFects lie in

between.

VI. SUMMARY AND CONCLUSION

The effects of crossed fields on the I'7 conduction band
for CdS, CdSe, and ZnS may be summarized as follows:

(1) Case (A) or (C) is realized for a cyclotron fre-
quency in the 50 GHz region. The value of P' is so small
for CdS and ZnS that the spin-orbit efFects must be ob-
served by the use of spin resonance due to magnetic
dipole transitions in case (C). The value of P for CdSe
is expected to be large enough to permit observing the
combination resonance of case (A) and the spin reso-
nance of case (C), due to electric and magnetic dipole
transitions.

(2) In case (C), where the transverse drift velocity of
an electron exceeds the velocity of sound in the crystal,
phonon clouds build up around the electron to cause the
broadening of the resonance line. This can be overcome
by employing a pulsed transverse electric 6eld. To esti-
mate the e6ect of transverse drift motion on the line
shape, e"(s&) or p"(co) must be evaluated with the elec-
tron-phonon interaction taken into account.

(3) In the case of X=ii, the transverse electric field
has an appreciable efFect on the energy eigenvalues,

(4) but not on the transition probabilities (due to
electric dipole transitions) of the additional lines which
necessarily include a factor of t2.
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(5) As far as the transition probabilities are con-
cerned, the transverse electric field brings about essen-
tially the same effect as that of rotating the external
magnetic field in a plane including the c axis.

(6) Owing to the crudeness of the estimate of the
values of C (except possibly for CdS), the conclusions of
the discussion for the possibility of observing the spin-
orbit eGects remain largely arbitrary and should be
taken as tentative. 'The detailed band-structure calcu-
lations are yet to be done for the values of C and the
experimental work must be carried out along the lines
described in this paper before the final conclusions can
be formed.

(7) In order to carry out the resonance experiments
in the lower-frequency region of co„ it is desirable to
employ as perfect a crystal as possible.
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APPENDIX: METHOD FOR OBTAINING
NUMEMCAL SOLUTIONS

Let us write the Schrodinger equation of the reduced
Hamiltonian E as follows:

(A2)

Then, the secular equation to be solved is

det(E —e) = 0, (A3)

where we place the base vectors in the following order:

By converting the phase factors of A „and B„asfollows,

the matrix E can be transformed into a real symmetric
one such that

imp

Bp
Ag

iBg
~ ~ ~ ~ ~ 0

-' —p, X

X —,'+p

Ap

Bp
A g . (A4)
Bg

~ ~ ~

After truncating the matrix into a finite-rank submatrix,
we carried out the diagonalization by computer.

(A1)

and expand the wave function P as a linear combination
of the Landau and spin states In, && as


