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An extension of the Kohn-Luttinger method for the energy levels of the effective-mass Hamiltonian
= (P2/2m+P2/2m+P.2/2m,)—e/Kr is made via the Rayleigh-Ritz approach. The method is
capable of indefinite extension provided one is prepared to deal with large matrices. The first nine S-like
energy levels and the first eighteen P-like energy levels are presented here as a function of the mass ratio
y=my/m for 0<y<1. The experimental results for the P-like excited states of silicon and germanium
can be fitted to within experimental error if one takes the low-temperature static dielectric constant of
silicon to be 11.404-0.05, and that of germanium to be 15.363-0.05. The situation concerning donor levels

in GaP is discussed briefly.

I. INTRODUCTION

SINCE the original theoretical work!? on donor
states in silicon and germanium in 1954-1955, sub-
stantial experimental information has been gained on
the energy levels of the excited P-like states in these
materials.*~® Cyclotron-resonance work!%!! has yielded
effective-mass values accurate to 0.19,. These experi-
mental developments have outstripped the theory in
precision. In this paper, theory catches up.

The method of calculation of the energy levels of a
donor in a material having a prolate-spheroid conduc-
tion band, such as Si or Ge, is presented in Sec. II. The
numerical results are presented in Sec. III and a re-
evaluation of the experimental spectra of Si and Ge
is made in Sec. IV. The situation concerning donor
levels in GaP is also discussed in Sec. IV.

II. ENERGY LEVELS OF THE EFFECTIVE-MASS
HAMILTONIAN

In the effective-mass approximation, the energy
levels of donors in a material having a conduction-band
minimum in the shape of a prolate spheriod (either one
or several equivalent minima) are given by the solutions
of a Schrédinger equation with the Hamiltonian

s 92 92 9% e?
O
2m,\ox? 9y?/ 2m, 8.2 Kr
where K is the dielectric constant.
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Following Kohn and Luttinger,? if we take the units
of length and energy to be, respectively,

ag=Nm*K/me*; and e=mie?/2n°K?, (2.2)
we are led to the dimensionless Hamiltonian
9z 92 02 2
B=—(—t—trm)—, @Y
dx?r dy: 3.2 r

where y=m,/m,, is the mass ratio.

The method used in this paper to find the lowest
few eigenvalues of H, is the Rayleigh-Ritz method,?
wherein NV orthonormal functions ¢; are used to set
up an NXN Hermitian matrix:

Hy = / 0% (%) Hig (%) 2.4)

whose eigenvalues are upper bounds to the lowest N
eigenvalues of H;. It is important to emphasize that the
method yields upper bounds because the solutions are
functions of nonlinear variational parameters which
may be varied independently to find the lowest upper
bound for each eigenvalue. The choice of parameters
which minimizes an upper bound to one eigenvalue does
not necessarily minimize an upper bound to a different
eigenvalue.

A convenient set of orthonormal functions to use
is the set

Dnim(%,9,2) = (B/7) Wnim(%,3,(8/7)1%3),  (2.5)

where ¥nm(x,9,2) are normalized hydrogenic wave
functions

'l/nlm(x;yyz) = Rnl(r) Ylm(0,¢) )

and B is an adjustable parameter.
Yim(6,¢) is a normalized spherical harmonic cor-
responding to orbital angular momentum / and pro-

jection of angular momentum m.

(2.6)

12 There are many good treatments of the Rayleigh-Ritz
method in textbooks on mathematical msthods. See, for example,
G. Goertzel and N. Tralli, Some Mathematical Methods of Physics
(McGraw-Hill Book Co., New York, 1960).
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Fic. 1. S-like donor energy levels calculated in the effective

mass approximation as functions of the mass ratio y=my/muy.
The energy unit is mie!/2A2K2.

The normalized radial wave function corresponding to
principal quantum number # and angular momentum !
iSIB

Xe—ar/nLn_l_lﬂ-f—l(Zar//n) s

(2.7

and the Laguerre polynomial is

» (p+k)1]?
Ltz =2 (—D“——EP—-—;—*Z‘- (2.8)
8=0 (p—s)1(k+s)!s!

The members of the set of functions (2.5) are orthog-
onal for different values of (I,m) because of the angular
part. They are orthogonal for different # but the same
({,m) because of the radial part. Therefore, we may
consider the parameter « appearing in (2.7) to be a
variational parameter which is the same for all func-
tions of the same (/,m) but different n:

R.i(r)=Rala(l,m);r). (2.9)

13 The notation and conventions used here for the hydrogenic
wave functions corresponds to that used by A. Messiah, in Quan-
tum Mechanics (North-Holland Publishing Company, Amster-
dam, 1961), Vol. I. See Appendix B of this reference.
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Using the set of functions (2.5), we write the Hamil-
tonian matrix

W'Um’ | H | nlm)

B 1/2 6 1/2
o o ()
Y Y
i) 02 9?2 2
o]
dx? 9yr 932/ r
B 1/2
X¢nzm<x,y,<—> z)
Y

a2 9?9
=/d3x¢n’l’m’*(xayaz)l:_(—+_+_>
0x? dy* 0937

62
+(1-p)—
0 [otyt(r/B)] "

= émm’[all’ Tn’n(l,m)+ V(l)n’l’:nl(m)
FV®vi(m)],

]wnzm@c,y,z)

(2.10)

where

0

Tuwn(lym)= —/ dr Ry i(a(l,m); )
0

2

Xg,_er"l(a(l’m); r), (2.11)
V(l)n’l’;nl(m) = (1 —ﬁ)fdsx ‘l’n’l'm*(x)

92
Xa—zz‘l/nlm(x) , (212)

‘l/n’ l'm*(x)‘l’nlrn(x)
X .
[otyi+ (/8]

The Hamiltonian H, is invariant under the operations
of parity and of rotation about the z axis. It cannot
therefore mix states of different parity or different pro-
jection of angular momentum.

The term T',/n(l,m) will mix states of the same (I,m)
but different #. The second term, V@, will mix states of
different # and only those states for which =1/ or
I'=14-2. The third term will mix all states of different #
and such that I'=1423, j=0,1,2, ---.

Because different values of # are never mixed, we
shall drop the explicit dependence of quantities on m
in most of the remainder of this section.

Let us define the following functions:

)= / go i @Tm®
[1—(1—v/B) cos®¢]'/2

I/(”n’l';nl('rn‘)=_2'/‘(13 (2.13)

(2.14)
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TOW V5 n,l) = f dr Rui(a(l) D Rual)r),  (2.15)
J<1)(n',l’;n,l)=/ dr rRu(a(l),")Ruia(l),r), (2.16)
TOW Vs n,l) = / " dr PR al)DRu(a)), (2.17)

© 9
D'l n)l) = f & Ruslal) ) Rual)). (218)
0 r

Straightforward but tedious operations with Clebsch-
Gordan coefficients and the properties of the R,; yield
the Hamiltonian matrix: for /=1,

Ho'ly n)l)=—21G,0T O’ 1 n 1)

—d 11+21(l+1)—6m2:”
+{ —(1-8 )E[ (21—1)(21+3)

o*(l)
X[—an',n
nz

for '=1-2,
H 1=2; n) = — 21 (1= 2,1)T D (' 1—2; n,1)

1 r(lQ—W)[(l—l)z—mz]:"”
Q—)L  @+1)@i-3)
Ira?()) a2(i—2)

L
—[a()+a(l—2) D 1—2; n,0)
HII=1)TO (' 1—2; n,])

—|-2a(l)]”>(n’,l;n,l):| ;o (2.19)

+(1-8)

]](2)(7/,1—2; n,l)

n? n'?

+(2l—1)D(n’,l—2;n,l)} 5 (2.20)

for '=1x27; j#0, 1,
H' Vs ml)= —200 )T OV nl).  (2.21)

Equations (2.19), (2.20), and (2.21) can be used to
set up a Hamiltonian matrix of any desired order. Using
the formulas (2.7) and (2.8), the functions J©, J®),
J®_ and D can be expressed analytically for all values
of n’, m, I/, and I. All that is left is the formula for
I(I',]) for all values of ’ and ! (and m). This author did
not find a way to express the general formula for
I(/,l), and contented himself with evaluating it for
the specific values of 7, / and m actually used in the
numerical computation.

Having set up the Hamiltonian matrix to the desired
order, the eigenvalues become functions of the nonlinear
variational parameters: 8, a(0), a(2), a(4), - - - (for even
parity states).

HIGHER DONOR EXCITED STATES FOR Si AND Ge
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F16. 2. Polike donor energy levels calculated in the effective
mass approximation as functions of the mass ratio v=my/m.
The energy unit is miet/2A2K2

All the work is done numerically. A set of parameters
(8 and «’s) is chosen, the Hamiltonian matrix is set up
and its eigenvalues are found and the process is repeated
for a new set of parameter values. Of course, one runs
into the troubles of multiple minima in a multidi-
mensional space, but these are not insurmountable. In
fact, the eigenvalues displayed a remarkable constancy
for a wide range of parameter values.

The numerical results to be given in the next section
were obtained using the above procedure on 18 by 18
Hamiltonian matrices involving three values of / and
six values of # for each /.

For the even-parity m=0 states (S-like), these were
I=0,n=1,t06;1l=2,n=3 to 8; and /=4, n=5 to 10.
For the odd parity m=0 or m==1 states (P-like),
they were I=1 n=2 to 7; =3, n=4, to 9; and /=35,
n=6to 11.

III. RESULTS

Figure 1 shows the even-parity m=0 energy levels
(which we call S-like for convenience) as a function of
the cube root of the mass ratio y=m./m,. Figure 2
shows the odd parity, 7= 0 levels, and Fig. 3 shows the
odd parity, m==1 levels (called P¢like and P,-like
for convenience). A small graph cannot communicate
the full accuracy of the calculations, so the computed
points from which the graphs are constructed are
presented in Tables I, IT, and III.
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TagLE L. Binding energy of S-like levels (even parity, m =0). The energy units are ¢ (Eq. 2.2) and y=my/mu, the mass ratio.
The K-L results for the 1S level are presented for comparison.

112 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
15 3.17 2.69 2.31 2.01 1.759 1.553 1.380 1.233 1.108 1.000

28 1.88 1.29 0928  0.695 0541 0.437 0.366 03151  0.2783  0.2500
38 1.21 0.79 0.545 0394  0.297 0.234 0.190 0.158 0.1318  0.1111
3D, 0.83 0515 0353 0265 0219 0.186 0.158 0.1375  0.1223  0.1111
4s 0.66 0.39 0290 0236  0.182 0.141 0.112 00910 00750  0.0625
4D, 0500 0320 0235 0170  0.129 0.1045  0.0877 00763  0.0683  0.0625
55 0415 0280 0189  0.143  0.115 00922 00737 00596  0.0485  0.0400
5D, 0335 0225 0158 0119 00913 00746  0.0632 00341 00465  0.0400
5Go 0255 0195 0141 0103 00836 00679 00559 00483 00434  0.0400
1S(K-L) 3123 2667 2300 2002  1.756 1.551 1.379 1.233 1.108 1.000

TaBLE IL. Binding energy of Po-like levels (odd parity, m=0). The energy units are e (Eq. 2.2) and y=my/m, the mass ratio.
The K-L results for the 2P, level are presented for comparison.

418 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2P, 241 1.70 1.24 0.933 0.719 0.565 0.452 03663 03009  0.2500
3P, 1.78 1.09 0715 0496 0.359 0.269 0.208 0.1653  0.1342  0.1111
4P, 1.29 0757 0476 0317 0.222 01618  0.1223 00953 00763  0.0625
4F, 0922 0536 0335 0220 0.152 0.157  0.0984 00843 00724  0.0625
5P, 0.658 038 0240  0.162 0.136 0.1087  0.0810 00622 00492  0.0400
5F, 0472 0276 0195  0.159 0.1095 00782 00628 00535 00461  0.0400
6P, 0338 0238 0174  0.116 00900 00745 00576 00439 00345 00278
6F, 0208 0182  0.139  0.111 00805 00579 00449 00381 00325 00278
6Ho 0238 0178 0110 00795 00645 00535 00420 00365 00317 00278
2Po(K-L) 2371 1685 1237 09323 07188 05650 04516  0.3663  0.3009  0.2500

The calculations became somewhat unstable for
v13= 0.2 and therefore the results should not be con-
sidered very accurate below this point. However, for
¥3= 0.3 to 1.0, the results should be accurate to the
number of digits given in Tables I, II, and III. In any
case, all the computed values are strictly upper bounds
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Fic. 3. P-like donor energy levels calculated in the effective
mass approximation as functions of the mass ratio y=m/m.
The energy unit is mie!/2A2K2.

to the true eigenvalues and therefore can be in error in
only one direction.

The labeling of the energy levels according to the
hydrogenic spectrum is done only for identification and
to indicate the y=1 limit for each. For any value of v
other than 1, of course, each level represents a mixture
of all hydrogenic states of the appropriate parity and
projection of angular momentum.

One sees in Fig. 1, and especially in Fig. 3, examples
of levels attempting to cross each other. Because the
levels interact, they cannot cross and one finds odd
wiggles in the curves. The levels appear to cross in
Fig. 2, but on an expanded scale it could be seen that
they do not. Apparently, the Pglike levels do not
interact as much as the S-like or the P.-like levels.

The method used by Kohn and Luttinger (K-L)? to
compute the 1§, 2P, and 2P, energy levels is identical
to the present procedure applied to 1 by 1 matrices, i. e.
using a single trial wave function. The K-L procedure
for the 25 and 3P levels was to use single trial functions
which had been orthogonalized to the 1S and 2P, trial
functions. The energies obtained by this latter method
are not guaranteed to be upper bounds to the true
eigenvalues. Nevertheless, the K-L results using the
mass ratio y=0.19 are remarkably close to those ob-
tained in the present more elaborate calculations.
Table IV shows a comparison between K-L and the
present work for y 0.19.

Figure 4 shows the K-L ground state (1S) energy
along with the present results as a function of the mass
ratio. The line marked “y — 0” is the asymptotic be-



184

HIGHER DONOR EXCITED STATES FOR Si

AND Ge

717

TasrE III. Binding energy of P, -like levels (odd parity, m= =1). The energy units are eo [Eq. (2.2)] and y=my/mn, the mass ratio.
The K-L results for the 2P, level are presented for comparison.

113 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

2P, 04265 04057 03835 03612 03400 03195 03002 02823 02656  0.2500
3P, 03601 03025 02513 02100 01780  0.1548  0.1387 01272  0.1184  0.1111
4P 0.293 0233 0.184 01470 01230  0.1086 00956 00832 00722  0.0625
4F; 0.231 0.175 0.139 01258 01110 00936 00805 00721 00666  0.0625
5P, 0.190 0.146 0.132 01055 00850 00712 00619 00538  0.0464  0.0400
SFy 0.156 0.137 0.103 00825 00719 00622 00529 00464 00426  0.0400
6P 0.150 0.113 00025 00773 00623 00515 00443 00382 00326  0.0278
6F% 0.125 0.108 00820 00639 00564 00480 00421 00367  0.0319  0.0278
6H 0.121 00865 00688 00600 00498 00434 00373 00324  0.0295  0.0278
2PL(K-L) 04216 04026 03816 03602 03392 03191 03001  0.2822 02656  0.2500

havior of the 15 level as determined by K-L in the ex-
treme adiabatic limit. It is clear from Fig. 4 that this
limiting region is severely restricted to y!/3<0.05.

The 1S, 2P, and 2P, states are remarkably pure for
¥1/3>0.1, i.e., they can be represented by a single trial
wave function to a high degree of accuracy. This is
evident from Fig. 4 and is borne out by an examination
of the eigenvectors obtained from the diagonalization
of the Hamiltonian matrix.

K-L estimated the difference between their varia-
tional results and the true eigenvalues by comparing
their results and the exact values at y= 0 and y=1, and
corrected the variational results at y=0.19 by an
amount ~0.03¢. The steep slope of the extreme
adiabatic limit (y— 0) and the close agreement
between the K-L “uncorrected” results and the present
work for 91/3>0.2 indicate that the K-L results were
closer to the exact values than they realized.

IV. APPLICATION TO EXPERIMENT

Cyclotron resonance has given the following very
accurate effective mass parameters for germanium?!?
and silicon!':

Ge: my/my=0.08152-+0.00008,
my/mo=1.588+0.005,
y=my/m;=0.05134,

y3=0.3717;

Si:  ma/mo=0.1905-0.0001,

i/ mo=0.9163-£0.0004,

y=my/mu=0.2079,
y1/2=0.5924.

TaBLE IV. Comparison of K-L energy levels (Ref. 2) for the
mass ratio y=0.19 with the present work. The energy unit is

&, Eq. (2.2).

State K-L Present work
18 -1.60 -1.600
28 —0.456 —0.458
2P, —0.597 —0.600
3P, —0.288 —0.288
2P, —0.324 —0.324

Using these values of v, the energy levels for silicon
and germanium can be read from Figs. 1, 2, and 3.
These energy levels are listed in Table V.

1. Silicon

One of the cleanest sets of absorption spectra pub-
lished is that of phosphorus and of lithium donors in
silicon? shown in Fig. 5. The valley-orbit splitting of the
ground state of the lithium donor is only 1.8 meV and
the splittings of the P-like excited states are unob-
servably small, indicating that the excited P-like states
should be very well described in the effective mass
approximation.

The spacings of the excitation lines of Li and P are
listed in Table VI.

If we were to take the dielectric constant of Si to be
12.0, we would obtain a calculated separation of the
2P, and the 3P levels of 2.96 meV as compared to the
experimental value of 3.284-0.04 meV. We observe,
however, that the ratio [E(2P.)—E(2P,)]/[E(3P,)

.0
3 —PRESENT WORK

~
(=]
T

~E(15) /€

0.0 L L L n 1 L L L )
O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
7|/3

F16. 4. Comparison of the ground-state (1S) energy of Kohn-
Luttinger with the present work as a function of the mass ratio,
y=my/my. The energy unit is e, Eq. 2.2. The line marked

“y — 0" is the exact limiting behavior of the 1S level as y — 0
(Ref. 2).




718
20~ 2ps
(@
15— Si(P)
10}
P
A 2p,
5 4p4,5
w 4
£ o F’P:
w 3P,
8 o L1 LA L,
5 33 34 35 36 37 38 39 40 41 42 43 44 45
I 2
& 30 P+
z ;" (b)
2 B Si(Li)
< 3p
+
20
2p°
1 /A /\4}
e 1 1 1 1 1 ]
20 21 22 23 24 25 26 27 28 29 30 31 32 33

PHOTON ENERGY (MILLI- ELECTRON VOLT)

Fi16. 5. (a) The excitation spectrum of the phosphorus donor
in silicon; No¢==22X10* cm™2. (b) The excitation spectrum of the
lithium donor in silicon; N¢=~1X10'% cm™. Reproduced by
permission from Ref. 7.

—E(2P,)] is independent of the dielectric constant.
The theoretical value of this ratio is 1.555, and the ex-
perimental value is 1.56+0.01 for Li, and 1.554-0.01
for P. This close agreement between theory and experi-
ment encourages us to question the dielectric constant.
If we use the theory to determine the dielectric constant,
we have

E(@3Py)—E(Q2Py)

my/mo

=0.1645X

% 13.605 eV (theoretical)

K2

=3.28+0.04 meV (experimental)

or
K=11.404-0.05

for the low-temperature static dielectric constant of
silicon.

Using this value of the dielectric constant, we obtain
the theoretical spectrum shown in Fig. 6. Also shown in
Fig. 6 are the experimental spectra of Li, P, As, Sb, Bi,
and the double donor, S. The previously unidentified
lines called “@” and “&” in the P and Li spectra fall at
P,-like levels in the theoretical spectrum. The experi-
mental spectra have all been arranged so that the 2P,
level in each is lined up with the theoretical 2P level.

R. A. FAULKNER
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TaBrLE V. Effective-mass binding energies of donor levels
for Si (y=0.2079) and Ge (y=0.05134). The energy unit is meV
based on K=11.40 for Si, and K=15.36 for Ge.

1S 25 3S 3D, 4S 4D, 5S 5Do 5Go
Si 3127 883 475 3.75 285 211 1.87 1.52 1.38
Ge 081 352 201 134 117 087 072 0.61 0.53
2P, 3P, 4P, 4F, 5P, SF, 6P, 6F, 6H,
Si 1151 548 333 233 223 162 152 120 1.10
Ge 474 2.56 1.67 1.16 0.84 0.80 0.61 0.55 0.40
2P, 3P, 4P, 4F, 5P, SF, 6P, 6F, G6H,
Si 640 3.12 219 1.89 144 127 104 098 0.88
Ge 1.73 103 073 061 053 041 0.38 032 029

The low-temperature static dielectric constant of
11.40 for Si agrees with the room-temperature long-
wavelength index of refraction, n=3.417, measured by
Salberg and Villa,' if the latter is reduced by the tem-
perature coefficient

1dn
——=(3.9£0.4)X10-%°C!

ndT

as measured by Cardona, Paul, and Brooks.!® Aggarwal
and Ramdas® have measured a small shift to higher
energies of the excitation lines of donors in Si when the
temperature of the samples is lowered. This shift can be

TasLE VI. Spacings of donor excited states in
silicon. Units are meV.

States Theory® Li>  Pe As  Sbe Bid Se St/4f
2P,—2P, 511 5.13 5.06 5.12¢ 506 494 5.2 5.15
3Py—2P, 092 0.88 093 086 095 093 0.7 1.08
4Py—2P, 307 3.09 3.11 2.6+0.4s 2.61
3P,—2P, 328 3.28 327 3.25 3.34 331 3.1 345
4P,—2P, 407
SPy—2P, 417 4.19 421 43+024 433 4.34 4.35
4P,—2P, 421 419 421 431024 433 435 4.35
AF,—2P; 451 449"
5P,—2P; 479
6Po—2P; 489
SP,—2P, 497 493 495 494044 5.26
5F,—2P, 5.4
6Fo—2Py 5.20
6Ho—2P, 5.30
6P,—2Py 536 531
6F;—2P, 542
6Hy—2P, 552
C.Bi—2P, 640

= Theoretical values are obtained using the dielectric constant K =11.40.

b The experimental error is 4-0.04 meV (Ref. 7).

¢ The energies have been adjusted where necessary to 4°K by applying
a small correction due to the temperature variation of the dielectric con-
stant. The experimental error is =0.05 meV (Ref. 6).

d Experimental errors were not given for Bi (see Ref. 6, p. A609).

¢ The experimental error is 0.5 meV (Ref. 4).

t These are the singly ionized sulfur double-donor levels reduced by a
factor of four. Experimental error is +0.1 meV (Ref. 4).

& Reference 3.

B These are the lines labeled ‘‘a’”” and *'b” in the lithium spectrum.
Similar lines appear in the phosphorous spectrum but their energies are
not given (Ref. 7).

i C, B.standsfor ‘‘conduction-band edge.”

14 C. D. Salberg and ]J. J. Villa, J. Opt. Soc. Am. 47, 244 (1957).
13 M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem.
Solids 8, 204 (1959).
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completely accounted for by the temperature variation
of the dielectric constant.

2. Germanium

The valley-orbit splitting of the ground state of the
antimony donor in germanium is only 0.32 meV? and,
as in the silicon case, the splittings of the P-like excited
states are unobservably small. We would therefore ex-
pect the P-like excited states of Sb to be quite effective-
mass-like. Table VII lists the excited state energy
differences.

—E(2P) as compared to the experimental value of
(3.01540.02) meV. Proceeding as in the case of Si, we
can calculate the dielectric constant which gives
agreement between theory and experiment for the
separation E(2P.)—E(P,) in the antimony spectrum,

K=15.3630.05.

TaBLE VII. Spacings of donor excited states in
germanium. Units are meV.

States Theory®  Sbb  Lic pb Asb Bib
As i : f Si i
n the case of Si, we compute the ratio 2p.—3P 3015 3015 304 3025 302 3075
2P,—3P, 0833 084 084 083 083 088
EQ2PL)—EQ2Py) 3P,—2P, 0691 0.69 0.67 0.685 0.695 0.66

—_———=4, (theory)
EQ@Py)—E(2P,)
=4.3740.05 (experiment);

whereas, if we use 16.0 as the dielectric constant, we
obtain the theoretical value of 2.78 meV for E(2P.)

C.B4—2P, 1.726

s Theoretical values are obtained using the dielectric constant K =15.36.

b These energies are averages of the excitation lines observed for transi-
tions from the singlet 15 (A1) ground state and transitions from the triplet
1S (T)) state. The energies have been adjusted where necessary to 4°K
by applying a small correction due to the temperature variation of the
dielectric constant. Experimental error is £0.02 meV (Ref. 5).

© Experimental error is +0.03 meV (Ref. 7).

d C. B.standsfor‘‘conduction band edge.”
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F16 7. Energy levels of donors in germanium. The theoretical
spectrum is based on the dielectric constant appropriate for
liquid-helium temperature, K=15.36. The experimental spectra
have all been arranged so that the 2P, level in each is lined up
with the theoretical 2P, level. The width of each level represents
its experimental uncertainty.

This low-temperature static dielectric constant for
Ge agrees with the room-temperature long-wavelength
index of refraction, »=4.001, measured by Salberg and
Villa,4 if the latter is reduced by using the temperature
coefficient

1dn
——=(6.9+0.4) X10~% (°C)!
ndT

as measured by Cardona, Paul, and Brooks.!®

Using 15.36 as the dielectric constant, we obtain the
theoretical spectrum shown in Fig. 7. Also shown in
Fig. 7 are the experimental spectra of Sb, Li, P, As, and
Bi. The experimental spectra have all been arranged so
that the 2P, level in each is lined up with the theoretical
21’* le\’el-

With this revision of the effective-mass binding
energy, the experimental shift of the triplet 15(7)
state from the effective-mass value for the several
donors in Ge® must also be revised. The new values of
this shift are shown in Table VIII.

TasLE VIII. Splittings and shifts of the ground states of donors
in germanium. Units are meV.

4A0 A—AP A
Bi 2.87 0.11 0.83
As 4.23 0.15 1.21
P 2.83 0.26 0.97
Sb 0.32 0.20 0.28

s 4A is the <plitting of the 1S state into the 1.5 (A1 singlet and the
1S (Th) triplet. Experimental error in 4A i« +0.02 meV (Ref. 5

b A-A {s the shift of the 1.5(T) states below the eﬂ'ecv.ive-mass value,

° A is the shift of the center of gravity of the 15 states (41and T1) below
the effective mass value,

R. A. FAULKNER
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3. Gallium Phosphide

Dean!® has putblished experimental spectra of donor
energy levels in GaP obtained from two-electron transi-
tions in the decay of excitons bound to neutral donors.
From the similarity of the spectra to the spectra shown
in Fig. 5, he assigned the observed lines to P-like
energy levels despite the parity violation this would
require. Kasami'” analyzed the spectra by computing
the theoretical 2Py, 2P, and 3P, energy levels as a
function of the mass ratio and fitting these three ob-
served levels to determine the two masses and the
ionization energy of the donors. He thereby determined
three theoretical parameters from three pieces of data.
Unfortunately, if one compares the rest of the spectrum
with the theoretical levels using these parameters,
there is no agreement. In fact, the experimental spec-
trum cannot be fit at all under the assumption that the
levels are P-like. If the assumption that the levels are
all S-like is adopted, one can do better, but the central-
cell corrections and splittings make the interpretation
far from transparent. More will be said about the situa-
tion in GaP at another time.

V. DISCUSSION

Accurate energy levels of the effective-mass Hamil-
tonian for donors in semiconductors with prolate-
spheroid conduction-band minima have been obtained
for mass ratios in the range 0.008 <m,/m,;<1. No other
effects inherent in real-crystal calculations like central-
cell corrections have been considered. All relativistic
effects such as those discussed by Appel'® as well as
phonon interactions as treated by Nishikawa and
Barrie 1*? have been ignored.

This new determination of the effective-mass energy
levels should aid in isolating true “corrections to the
effective-mass formalism” from spurious ones.

The determination of new low-temperature static
dielectric constants for Si and Ge in Sec. IV serves to
point out again the very strong dependence of donor and
acceptor energy levels on the dielectric constant. If one
had an excitation spectrum of donors in a material
whose mass parameters were unknown, he could use the
information presented here to determine three parame-
ters: the mass ratio, the ratio of one of the masses to the
square of the dielectric constant, and the ionization
limit of the spectrum. If the dielectric constant were
known accurately, the masses could be obtained sepa-
rately. Alternatively, as in the present work on Si and
Ge, if the masses were known accurately, the dielectric
constant could be determined to the accuracy of the
spectrum.

16 P, J. Dean, Phys. Rev. Letters 18, 122 (1967).

17 A, Kasami, J. Phys. Soc. Japan 24, 551 (1968).

18 T, Appel, Phys. Rev. 133, A280 (1964).

19 K. Nishikawa and R. Barrie, Can. J. Phys. 41, 1135 (1963).
20 Reference 19, p. 1823.
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Note added in proof. Tefft, Bell, and Romero? (TBR)
have recently used the same set of orthogonal functions
(with minor differences in notation) as used in this work
[Eq. (2.5)] to calculate effective-mass binding energies.
However, TBR computed only the diagonal elements of
the Hamiltonian matrix. The neglect of the off-diagonal
matrix elements destroys the central principle of the
variational method, namely, that the approximations
to the eigenvalues are upper bounds to the true eigen-

2 W, E. Tefft, R. G. Bell, and H. V. Romero, Phys. Rev. 177,
1194 (1969).

HIGHER DONOR EXCITED STATES FOR Si

AND Ge 721
values in a one-to-one correspondence. This becomes
extremely serious when quasidegeneracies occur. There-
fore, the results of TBR bear little or no relationship to
the true eigenvalues of the effective-mass Hamiltonian
except for the ground states of each symmetry (1S,
2Py, 2P, etc.).
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The T'7 conduction band of the wurtzite-type II-VI compounds has a spin-orbit term linear in k. Effects of
this spin-orbit term in crossed electric and magnetic fields are investigated on the basis of a one-band formal-
ism. The effective Hamiltoaian is solved for four different cases, accordiag to the strength of the crossed elec-
tric and magnetic fields: (A) Strong magnetic field and weak electric field—this is essentially the simple
band case; (B) weak magnetic field and weak electric field (the coupling between cyclotron motion and spin
states via the spin-orbit term plays a dominant role in determining the energy spectrum); (C) strong mag-
netic field and strong electric field. (The major contribution to the spin-orbit interaction comes from a term
representing the influence of transverse drift motion upon spin states. As a result, the spin splitting exhibits
a nearly linear dependence on the electric field, and the direction of the spin axis tends toward that of the
electric field with increasing electric field); (D) weak magnetic field and strong electric field [both of the
spin-orbit effects, which are predominant either in the case (B) or in the case (C), are equally important, and
perturbation theory is not applicable. Variational solutions have amplitudes distributed over many Landau
and spin states, so that the selection rule for the intraband transitions is relaxed. ] The conditions for observing
these spin-orbit effects by means of intraband transitions are discussed for the actual II-VI compounds. It is
found that spin-orbit effects may possibly be observed in magnetic dipole transitions under the condition of
case C for CdS and ZnS, as well as in electric and magnetic dipole transitions under the condition of case A
or C for CdSe. In the strong electric field of case C, the transverse drift velocity is one or two orders of mag-
nitude larger than the velocity of sound in the crystal. Hence, phonon clouds build up around an electron to
cause broadening of the resonance line. This can be avoided by carrying out the resonance experiment before
the phonon clouds build up, i.e., by employing a pulsed transverse electric field.

I. INTRODUCTION

NVESTIGATION of the electronic states in crossed
electric and magnetic fields has given valuatle in-
formation concerning the band structure of semicon-
ductors. The first theoretical study on this subject was
made by Aronov! on the basis of a simple band model.
The one-band effective Hamiltonian has a simple har-
monic solution which can explain many qualitative fea-
tures of the interband optical transitions. Later, a more
appropriate theory based on a two-band model was
developed by Lax and co-workers? and also by Aronov,?

L A. G. Aronov, Fiz. Tverd. Tela 5, 552 (1963) [English transl.:
Sov. Phys.—Solid State 5, 402 (19¢3)].

* B. Lax, in Proceedings of the Seventh International Conference
on the Physics of Semicor.ductors Paris, 1964, edited by M. Hulin
(Academic Press Inc., New York, 1964), Vol. I, p. 253; B. Lax,

giving successful explanations of some critical phe-
nomena’:* in the strong crossed electric field.

In the case of a complex band, however, we have to
solve a set of differential equations resulting from the
effective Hamiltonian.5 The only exact solution obtained
so far is the one derived by Luttinger® for the valence
band of germanium or silicon in a magnetic field along
the [111] direction with no electric field. When a weak
electric field is applied perpendicular to the magnetic

J. Phys. Soc. Japan Suppl. 21, 165 (1966). Th= latter is a review
article i1 which an extensive list of rzfrencss is given.
3 A. G. Aro1ov, J. Phys. Soc. Japan Suppl. 21, 608 (1966).
4 W. Zawadzki and B. Lax, Phys. Rev. Letters 16, 100 (1966).
5 E. I. Blount, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1962), Vol. 13, p. 306.
¢ J. M. Luttinger, Phys. Rev. 102, 1030 (1956).



