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Higher Donor Excited States for Prolate-Spheroid Conduction Bands:
A Reevaluation of Silicon and Geiiaaniu~
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Bell Telephone Laboratories, Murray Hill, Rem Jersey 07074

(Received 9 October 1968; revised manuscript received 10 March 1969}

An extension of the Kohn —Luttinger method for the energy levels of the effective-mass Hamiltonian
D=(P '/2mg+P„'/2mg+P, '/2mll) —e/Er is made via the Rayleigh —Ritz approach. The method is
capable of indefinite extension provided one is prepared to deal with large matrices. The first nine S-like
energy levels and the first eighteen P-like energy levels are presented here as a function of the mass ratio
p.=my/mfl for 0 &y(1. The experimental results for the P-like excited states of silicon and germanium
can be fitted to within experimental error if one takes the low-temperature static dielectric constant of
silicon to be 11.40~0.05, and that of germanium to be 15.36&0.05. The situation concerning donor levels

in GaP is discussed briefly.

I. INTRODUCTION

~

~ ~

~ ~

~

IXCE the original theoretical work' ' on donor
states in silicon and germanium in 1954-1955, sub-

stantial experimental information has been gained on
the energy levels of the excited P-like states in these
materials. ' ' Cyclotron-resonance work' "has yielded
effective-mass values accurate to 0.1%. These experi-
mental developments have outstripped the theory in
precision. In this paper, theory catches up.

The method of calculation of the energy levels of a
donor in a material having a prolate-spheroid conduc-
tion band, such as Si or Ge, is presented in Sec. II. The
numerical results are presented in Sec. III and a re-
evaluation of the experimental spectra of Si and Ge
is made in Sec. IV. The situation concerning donor
levels in GaP is also discussed in Sec. IV.
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where y= t'ai/m, ~ is the mass ratio.
The method used in this paper to find the lowest

few eigenvalues of H& is the Rayleigh-Ritz method, "
wherein E orthonormal functions Q, are used to set
up an XX.V Hermitian matrix:

H,',, = d'x y,'*(x)H~y, (x) (2.4)

Following Kohn and I.uttinger, 2 if we take the units
of length and energy to be, respectively,

a&= O'K/m&e' and eo m&e'——/2A'K' (2.2)

we are led to the dimensionless Hamiltonian

II. ENERGY LEVELS OF THE EFFECTIVE-MASS
HAMILTONIAN

In the eA ective-mass approximation, the energy
levels of donors in a material having a conduction-band
minimum in the shape of a prolate spheriod (either one
or several equivalent minima) are given by the solutions
of a Schrodinger equation with the Hamiltonian

A 8 8 i A" 8 eH„=- + ~- —,(2.l)
2m' l9g2 BP2) 2~i f

R2 K

where E is the dielectric constant.
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whose eigenvalues are upper bounds to the lov est E
eigenvalues of H2. It is important to emphasize that the
method yields upper bounds because the solutions are
functions of nonlinear variational parameters which
may be varied independently to find the lowest upper
bound for each eigenvalue. The choice of parameters
which minimizes an upper bound to one eigenvalue does
not necessarily minimize an upper bound to a diferent
eigenvalue.

A convenient set of orthonormal functions to use
is the set

y. ,„(x,y,s)=(p/&) y„,„(,y, (P/'„) ~ ), (25)
where f„&~(x,y, s) are normalized hydrogenic wave
functions

~ & (*y s) =& ~(r) l'i (~A ), (2.6)

"There are many good treatments of the Rayleigh-Ritz
method in textbooks on math=matical methods. See, for example,
Q. Qoertzel and N. Tralli, Some Mathematical Methods of Physic. v

(McGraw-Hill Book Co., New York, 1960).
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and P is an adjustable parameter.
I'~ (8,@) is a normalized spherical harmonic cor-

responding to orbital angular momentum / and pro-
jection of angular momentum m.
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where

T„„(l,m) =— dr rR i(n(l, m); r)r ener levels calculated in the effectivegy
mass azpproximation as functions o e m

R+$The energy unit is mme' /2A

0

alized radial wave function corresponding toThe norm ize ra ia
d an ular momentum /prlncipa 1 quantum number n an ang

is13

a2

X rR„((n(l,m); r), (2.11)
Br2

U&" (', „i(m) = (1—P) d2x P„p„*(x)

2n"' (22 —l —1)! '" 2nr '

R„i(r) =

Xe '"I.„ i r2'+-'(2nr(n) ) (2.7)

~ ~

and the Laguerre polynomial is

L(p+k) Ij'
I-r'(2) = Z (—1 ' (2.8)

Z„,(r) = Z„i(n(l,m); r) . (2.9)

f the set of functions (2.5) are orthog-
f h 1values of (l,m) because o e aonal for diferent values
but the samee are orthogonal for different n u e s

radial art. Therefore we may

variational parameter which is the same or a
tions of the same (l,m) but differen rr:

82
X- Il i (x), (2.12)

t9s

P. I *(x)f.l (x)
d3g 0U(2&„ri ~((m) = —2 d x

Th H ltonian Hi is invariant unde pder the o erationse ami
t cannotof arity an o ro ad f tation about the s axis. t c

~ ~

therefore mix states ot f diferent parity or diferent pro-
ection of angular momentum.

lmT „,l,m) will mLx states of the same, m)The term
but diGerent n. The second term, , wi mi

t ose states for which / = or~ere y those
l'= l&2. The third term will mix all states of i eren n
and such that l'=E&2j, j= 1 2

ecause i eren vat lues of m are never mixed, we
shall drop the explicit dependence of quantities on m
in most of the remainder of this section.

Let us de6ne the following functions:
nventions used here for the hydrogenic"The notation and conventions use

d P blishi C Am
d 8 fthm„, f„,.„(North-Hollan u

dam, 1961),Vol. I. See Appen ix o s

Ur ~(Q)U2 (0)

L1-(1- r~) -"» (2.14)
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J& &(n', l'; n, l) = dr R p(n(/'), r)R„&(n(/), r), (2.15)
0

J'"(n', l', n, l) = dr rR p(n(l'), r)R &(a(/), r), (2.16) .3—

I"&(n' l' n, l) = dr r2R„p(a(/'), r)R„&(a(/),r), (2.17) -5-

D(n', l', n, l) =
8

dr R„p(a(l'), r)r—R„&(n(/),r). (2.18)
Bf

Straightforward but tedious operations with Clebsch-
Gordan coefficients and the properties of the E„~ yield
the Hamiltonian matrix: for /'=/,

H(n'l; n, l) = 2I(l, l—)I&"(n', l; n, l,)

1 2/(l+1) —6m'
+ 1 —(1—P)- 1+

3 (2l —1)(2l+3)

n'(l)
X —6, +2a(l) I&"(n', l; n,l); (2.19)

n'

for /'=/ —2,

H(n', / 2; n, l) =——2I(l—2,l)J&'&(n', / —2; n, l)

1 -(P—m')L(/ —1)'—m'j "'
+(1—//)

(2l —1) (2l+1)(2l—3)

1-n'(l) n'(l —2)
&&

— + J&'&(n', l—2; n, l)

—Ln(/)+n(/ —2)jI&'&(n' l—2; n, l)

+l(2/ —1)I"'(n', l—2; n, l)

+(2/ —1)D(n', l —2; n,l); (2.20)

for /'=/a2~'; ~&0, 1,

H(n', l', n, l) = —2I(l', l)I"&(n'l'; n, l). (2.21)

Fquations (2.19), (2.20), and (2.21) can be used to
set up a Hamiltonian matrix of any desired order. Using
the formulas (2.7) and (2.8), the functions J&0&, J&'&,

J('), and D can be expressed analytically for all values
of n', n, /', and /. All that is left is the formula for
I(/', l) for all values of l' and l (and m). This author did
not And a way to express the general formula for
I(l', l), and contented himself with evaluating it for
the specific values of /, /' and es actually used in the
numerical computation.

Having set up the Hamiltonian matrix to the desired
order, the eigenvalues become functions of the nonlinear
variational parameters: //, a(0), n(2), a(4), ~ (for even
parity states).

-12-
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Fro. 2. P0-like donor energy levels calculated in the e8ective
mass approximation as functions of the mass ratio y=mqjmii.
The energy unit is mye'/2k~K~.

All the work is done numerically. A set of parameters
(P and n s) is chosen, the Hamiltonian matrix is set up
and its eigenvalues are found and the process is repeated
for a new set of parameter values. Of course, one runs
into the troubles of multiple minima in a rnultidi-
mensional space, but these are not insurmountable. In
fact, the eigenvalues displayed a remarkable constancy
for a wide range of parameter values.

The numerical results to be given in the next section
were obtained using the above procedure on 18 by 18
Hamiltonian matrices involving three values of / and
six values of n for each /.

For the even-parity m=0 states (S-like), these were
/=0, n=1, to 6; /=2, n=3 to 8; and /=4, n=5 to 10.
For the odd parity m=0 or m=&1 states (P-like),
they were /=1, n=2 to 7; /=3, n=4, to 9; and /=5,
n=6 to 11.

IO. RESULTS

Figure 1 shows the even-parity vs=0 energy levels
(which we call S-like for convenience) as a function of
the cube root of the mass ratio y=m~/m». Figure 2
shows the odd parity, vs= 0 levels, and Fig. 3 shows the
odd parity, m= &1 levels (called Po-like and P+-like
for convenience). A small graph cannot communicate
the full accuracy of the calculations, so the computed
points from which the graphs are constructed are
presented in Tables I, II, and III.
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TABLE I. Binding energy of S-like levels (even parity, m =0).The energy units are ep (Eq. 2.2) and y= mz/re~~, the mass ratio.
The K-L results for the 15 level are presented for comparison.

1S
2S
3S
3Do
4s
4Dp
5s
5Dp
5Gp
1S(K-L)

0.1

3.17
1.88
1.21
0.83
0.66
0.500
0.415
0.335
0.255
3.123

0.2
2.69
1.29
0-79
0.515
0.39
0.320
0.280
0.225
0.195
2.667

0.3
2.31
0.92$
0.545
0.353
0.290
0.235
0.189
0.158
0.141
2.300

0.4

2.01
0.695
0.394
0.265
0.236
0.170
0.143
0.119
0.103
2.002

0.5

1.759
0.541
0.297
0.219
0.182
0.129
0.115
0.0913
0.0836
1.756

0.6

1.553
0.437
0.234
0.186
0.141
0.1045
0.0922
0.0746
0.0679
1.551

0.7

1.380
0.366
0.190
0.158
0.112
0.0877
0.0737
0.0632
0.0559
1.379

0.8

1.233
0.3151
0.158
0.1375
0.0910
0.0763
0.0596
0.0541
0.0483
1.233

0.9

1.108
0.2783
0.1318
0.1223
O.O75O
0.0683
0.0485
0.0465
0.0434
1.108

1.0

1.000
0.2500
0.1 1 11
0.1111
0.0625
0.0625
0.0400
0.0400
0.0400
1.000

'1 A@LE II. Binding energy of Pp-like levels (odd oarity, ns =0).The energy units are 6p (Eq. 2.2) and p =m&/ns)t the mass ratio.
The K-L results for the 2Pp level are presented for comparison.

2Pp
3Pp
4Pp
4Fp
5Pp
5Fp
6Pp
6Fp
6Hp
2Pp(K-L)

0.1

2.41
1.78
1.29
0.922
0.658
0.472
0.338
0.298
0.238
2.371

0.2

1.70
1.09
0.757
0.536
0.384
0.276
0.238
0.182
0.178
1585

0.3

1.24
0.715
0.476
0.335
0.240
0.195
0.174
0.139
0.110
1.237

0.4

0.933
0.496
0.317
0.220
0.162
0.159
0.116
0.111
0.0795
0.9323

0.5

0.719
0.359
0.222
0.152
0.136
O. i095
0.0900
0.0805
0.0045
0.7188

0.6

0.565
0.269
0.1618
0.1157
0.1087
0.0782
0.0745
0.0579
0.0535
0.5650

0.7

0.452
0.208
0.1223
0.0984
0.0810
0.0628
0.0576
0.0449
0.0429
0.4516

0.8

0.3663
0.1653
0.0953
0.0843
0.0622
0.0535
0.0439
0.0381
0.0365
0.3663

0.9

0.3009
0.1342
0.0763
0.0724
0.0492
0.046i
0.0345
0.0325
0.0317
0.3009

1.0

0.2500
0.1111
0.0625
0.0625
0.0400
0.0400
0.0278
0.0278
0.0278
0.2500

The calculations became somewhat unstable for
y'~'= 0.2 and therefore the results should not be con-
sidered very accurate be1ow this point. However, for
y'~'= 0.3 to 1.0, the results should be accurate to the
number of digits given in Tables I, II, and III. In any
case, all the computed values are strictly upper bounds
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P'LG. 3. P~-like donor energy levels calculated in the effective
mass approximation as functions of the mass ratio p=m&/fg)1.
The energy unit is teze'/2A~E~.

to the true eigenvalues and therefore can be in error in
only one direction.

The labeling of the energy levels according to the
hydrogenic spectrum is done only for identification and
to indicate the p= 1 limit for each. For any value of y
other than 1, of course, each leve1 represents a mixture
of all hydrogenic states of the appropriate parity and
projection of angular momentum.

One sees in Fig. 1, and especially in Fig. 3, examples
of levels attempting to cross each other. Because the
levels interact, they cannot cross and one finds odd
wiggles in the curves. The levels appear to cross in
Fig. 2, but on an expanded sca1e it could be seen that
they do not. Apparently, the Eo-like levels do not
interact as much as the S-like or the P~-like levels.

The method used by Kohn and Luttinger (K-L)' to
compute the 15, 2P0, and 2P~ energy levels is identical
to the present procedure applied to 1 by 1 matrices, i. e.
using a sing1e trial wave function. The K-L procedure
for the 25 and 3PO levels was to use single trial functions
which had been orthogonalized to the 1S and 2PO trial
functions. The energies obtained by this latter method
are not guaranteed to be upper bounds to the true
eigenvalues. nevertheless, the K-L results using the
mass ratio y=0.19 are remarkably close to those ob-
tained in the present more elaborate calculations.
Table IV shows a comparison between K-L and the
present work for y 0.19.

Figure 4 shows the K-L ground state (i$) energy
along with the present results as a function of the mass
ratio. The line marked "y ~ 0" is the asymptotic be-
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TABLE III.Binding energy of P+-like levels (odd parity, m= &1).The energy units are ~p I Eq. (2.2)] and y=mJ/ml&, the mass ratio.
The K-L results for the 2P~ level are presented f~r comparison.

2P+
3P~
4P~
4.F
SP~
SF~
6P~
6F~
6H~
2P, (K-L)

0.1

0.4265
0.3601
0.293
0.231
0.190
0.156
0.150
0.125
0.121
0.4216

0.2

0.4057
0.3025
0.233
0.175
0.146
0.137
0.113
0.108
0.0865
0.4026

0.3

0.3835
0.2513
0.184
0.139
0.132
0.103
0.0925
0.0820
0.0688
0.3816

0.3612
0.2200
0.1470
0.1258
0.1055
0.0825
0.0773
0.0639
0.0600
0.3602

0.5

0.3400
O. i 780
0.1230
0.1110
0.0850
0.0719
0.0623
0.0564
0.0498
0.3392

0.6

0.3195
0.1548
0.1086
0.0936
0.0712
0.0622
0.0515
0.0489
0.0434
0.3191

0.7

0.3002
0.1387
0.0956
0.0805
0.0619
0.0529
0.0443
0.0421
0.0373
0.3002

0.8

0.2823
0.2272
0.0832
0.0721
0.0538
0.0464
0.0382
0.0367
0.0324
0.2822

0.9

0.2656
0.1184
0.0722
0.0666
0.0464
0.0426
0.0326
0.0319
0.0295
0.2656

1.0

0.2500
0.1111
0.0625
0.0625
0.0400
0.0400
0.0278
0.0278
0.0278
0.2500

havior of the 1S level as determined by K-L in the ex-

treme adiabatic limit. It is clear from Fig. 4 that this
limiting region is severely restricted to y'"(0.05.

The 15, 2PO, and 2P~ states are remarkably pure for
p'~'&0. 1, i.e., they can be represented by a single trial
wave function to a high degree of accuracy. This is
evident from Fig. 4 and is borne out by an examination
of the eigenvectors obtained from the diagonalization
of the Hamiltonian matrix.

I-L estimated the difference between their varia-
tional results and the true eigenvalues by comparing
their results and the exact values at y= 0 and y = 1, and
corrected the variational results at p=0.19 by an
amount 0.03'o. The steep slope of the extreme
adiabatic limit (y —+ 0) and the close agreement
between the K-L "uncorrected" results and the present
work for y'l"&0.2 indicate that the K-L results were
closer to the exact values than they realized.

IV. APPLICATION TO EXPERIMENT

Cyclotron resonance has given the following very
accurate effective mass parameters for germanium'
and silicon":

Using these values of y, the energy levels for silicon
and germanium can be read from Figs. 1, 2, and 3.
These energy levels are listed in Table V.

1. SiBcon

One of the cleanest sets of absorption spectra pub-
lished is that of phosphorus and of lithium donors in
silicon shown in Fig. 5. The valley-orbit splitting of the
ground state of the lithium donor is only 1.8 meV and
the splittings of the P-like excited states are unob-
servably small, indicating that the excited P-like states
should be very well described in the effective mass
approximation.

The spacings of the excitation lines of Li and P are
listed in Table UI.

If we were to take the dielectric constant of Si to be
12.0, we would obtain a calculated separation of the
2P+ and the 3P~ levels of 2.96 meV as compared to the
experimental value of 3.28&0.04 meV. %e observe,
however, that the ratio (E(2P~) —E(2P0) j/LE(3P+)

4.0

Ge: mz/mp= 0.08152&0.00008,
m( (/mp = 1.588&0.005,

y= mg/mii = 0.05134,
~1~3=0.3717.

mi/ma= 0.1905&0.0001,
m, (/ma= 0.9163&0.0004,

y= mi/m„= 0.2079,
y'I'= 0.5924.

3.0

O

rn 2.0
LLI

I

TABLE IV. Comparison of K-L energy levels (Ref. 2) for the
mass ratio p=0.29 with the present work. The energy unit is
ep, Eq. (2.2).

State

1S
2S
2Pp
3Pp
2Pg

K-L

-1.60—0.456—0.597—0.288—0.324

Present work

—1.600—0.458—0.600—0.288—0.324

0.0 I I I I I I I

0 O. I 0.2 0.3 0.4 O.S 0 6 0.7 0.8 0.9 1.0
I/O

&&G. 4. Comparison of the ground-state (1S) energy of Kohn
Luttinqer with the present work as a function of the mass ratio,
p = foal J/'PP1 ) l, The energy unit is ~p, Eq. 2.2. The line marked"y ~ 0" is the exact limiting behavior of the 1S level as y-+ 0
(Ref. 2).
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2O— 2p+ TABLE V. Effective-mass binding energies of donor levels
for Si (p=0.2079) and Ge (y=0.05134). The energy unit is meV
based on K=11.40 for Si, and K=15.36 for Ge.

15—

IO—

C

LLI

LL.
4J
CI

I

I-
LL 3'-K
O
Cfl
In

20-

IQ—

2 po

ill
35

2 po

I I I

36 37 38

(a)
si( p)

3po
A

39 40 41

2p+
(b)

Si (Li)

-4p+, 5po
II

-4p+. 5po
3p+

4p- —5p+

42 43 44 45

1S 2S 3S 3Dp 4S 4Dp SS 5Dp 5Gp

Si 31.27 8.83 4.75 3.75 2.85 2.11 1.87 1.52 1.38
Ge 9.81 3.52 2.01 1.34 1.17 0.87 0.72 0.61 0.53

2Po 3Po 4Po 4Fo 5Po SFo 6Po 6Fo 6Ho

Si 11.51 5.48 3.33 2.33 2.23 1.62 1.52 1.20 1.10
Ge 4.74 2.56 1.67 1.16 0.84 0.80 0.61 0.55 0.40

2P~ 3P~ 4P~ 4Fp SPp SFg 6P~ 6Fp 6H~

Si 6.40 3.12 2.19 1.89 1.44 1.27 1.04 0.98 0.88
Ge 1.73 1.03 0.73 0.61 0.53 0.41 0.38 0.32 0.29

The low-temperature static dielectric constant of
11.40 for Si agrees with the room-temperature long-
wavelength index of refraction, n=3.417, measured by
Salberg and Villa, '4 if the latter is reduced by the tern-
perature coeKcient

1 de
——=(3.9+0.4)X10 "'C '
8dT

IJ
0

20 21 22 23 24 25 26 27 28 29 30 31 32 33
PHOTON ENERGY (MILLI —EI ECTRON YOLT)

I M. 5. {a}The excitation spectrum of the phosphorus donor
in silicon; Np~2X10" cm '. (b) The excitation spectrum of the
lithium donor in silicon; E0~1X10" cm '. Reproduced by
permission from Ref. 7.

as measured by Cardona, Paul, and Brooks."Aggarwal
and Ramdas have measured a small shift to higher
energies of the excitation lines of donors in Si when the
temperature of the samples is lowered. This shift can be

TABS.E VI. Spacings of donor excited states in
silicon. Units are meV.

—E(2P+)j is independent of the dielectric constant.
The theoretical value of this ratio is 1.555, and the ex-
perimental value is 1.56+0.01 for Li, and 1.55~0.01
for P. This dose agreement between theory and experi-
ment encourages us to question the dielectric constant.
If we use the theory to determine the dielectric constant,
we have

E(3P~) E(2Pp)—
m, (mp

=0.1645X X 13.605 eV (theoretical)
K2

=3.28&0.04 meV (experimental)

K= 11.40&0.05

for the low-temperature static dielectric constant of
silicon.

Using this value of the dielectric constant, we obtain
the theoretical spectrum shown in Fig. 6. Also shown in
Fig. 6 are the experimental spectra of Li, P, As„Sb, Bi,
and the double donor, S. The previously unidenti6ed
lines called "u" and "b" in the P and Li spectra fall at
Pp-like levels in the theoretical spectrum. The experi-
mental spectra have all been arranged so that the 2P+
level in each is lined up with the theoretical 2P~ level.

Theorya Lib Pc As Sbc Bid Se S+/4f

2Py —2Po
3Pp —2P~
4Pp —2Pg
3P~—2P~
4Pp —2P~
SPp 2Py
4Pp —2P~
4F~—2P~
5Pp —2P~
6Po —2Py
SP~—2P~
SFg—2P~
6Fp —2P~

6Hp —2Pp
6Pp —2P~
6F~—2P~
6Hp —2Pp
C.B.'—2P~

5.11 5.13
0.92 0.88
3.07 3.09
3.28 3.28
4.07
4.17 4.19
4.21 4.19
4.51 4.49"
4.79
4.89
4.97 4.93
5.14
5.20
5.30
5.36 5.31h
5.42
5.52
6.40

5.06 5.12' 5.06 4.94 5.2 5.15
093 086c 095 093 0 7 108
3.11 2.6&0.41' 2.61
3.27 3.25 3.34 3.31 3.1 3.45

4.21 4.3~0.2d 4.33 4.34
4.21 4.3&0.2d 433 4.35

4.35
4.35

4.95 4.9&0.4d

"C. D. Salberg and J.J.Villa, J.Opt. Soc. Am. 47, 244 (1957)."M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem.
Solids 8, 204 (1959).

& Theoretical values are obtained using the dielectric constant K =11.40.
b The experimental error is +0.04 meV (Ref. 7).
o The energies have been adjusted where necessary to 4 K by applying

a small correction due to the temperature variation of the dielectric con-
stant. The experimental error is &0.05 meV (Ref. 6).

d Experimental errors were not given for Bi (see Ref. 6, p. A609).
e The experimental error is &0.5 meV (Ref. 4).
& These are the singly ionized sulfur double-donor levels reduced by a

factor of four. Experimental error is &0.1 meV (Ref. 4).
& Reference 3.
b These are the lines labeled "a" and "b" in the lithium spectrum.

Similar lines appear in the phosphorous spectrum but their energies are
not given (Ref. 7).

I C, B.stands for "conduction-band edge. "
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THEORY Li

5Fp 5P+ 6Hp
OO- 16p

4F+i ~~-

5Pp 4Pp &P+ 6Fp
AP+

Sb

-10.0-
2Pp

FIG. 6. Energy levels of donors
in silicon. The theoretical spectrum
is based on the dielectric constant
appropriate for liquid-helium tem-
perature, E= 11.40. The experi-
mental spectra have all been
arranged so that the 2P+ level in
each is lined up with the theoretical
2P+ level. The width of each level
represents its experimental un-
certainty, with the exception of Bi,
for which no experimental error was
quoted.

-15.0I

-20.0

E -25.0-

L -50.0-
Z'.
LLi IS

E+Tj E
Ti

-50.0-

completely accounted for by the temperature variation
of the dielectric constant.

2. Germanium

E(2P~) —E(2Pp)
=4.36

E(3P~)—E(2P~)
(theory)

=4.37&0.05 (experiment);

whereas, if we use 16.0 as the dielectric constant, we
obtain the theoretical value of 2.78 meV for E(2P~)

The valley-orbit splitting of the ground state of the
antimony donor in germanium is only 0.32 meU' and,
as in the silicon case, the splittings of the P-like excited
states are unobservably small. %e would therefore ex-
pect the P-like excited states of Sb to be quite efI'ective-
mass-like. Table UII lists the excited state energy
differences.

As in the case of Si, we compute the ratio

TABLE VII. Spacings of donor excited states in
germanium. Units are meV.

States Theory' Sbb Li' Pb Bib

2Py —2Pp 3.015 3.015 3.04 3.025 3.02 3.075
2Pp —3Po 0.833 0.84 0.84 0.83 0.83 0.88
3P~—2Pp 0.691 0.69 0.67 0.685 0.695 0.66
C.B a 2P~ 1 726

& Theoretical values are obtained using the dielectric constant K =15.36.
b These energies are averages of the excitation lines observed for transi-

tions from the singlet 1S (A i) ground state and transitions from the triplet
1S (Ti) state. The energies have been adjusted where necessary to 4'K
by applying a small correction due to the temperature variation of the
dielectric constant. Experimental error is &0.02 meV (Ref. 5).

& Experimental error is &0.03 mev (Ref. Z).
d C. B.stands for "conduction band edge. "

—E(2P0) as compared to the experimental value of
(3.0&3~0.02) rneV. Proceeding as in the case of Si, we
can calculate the dielectric constant which gives
agreement between theory and experiment for the
separation E(2P~) —E(PO) in the antimony spectrum,

E= 15.36+0.05.



720 R. A. FAULKNE R 184

THEORY
0.0

4P+—&———~ 5Pp

3P+ 4Fp
2Pp 2P+

2 5 3Pp---—

Sb

3P+
2P+

3Pp

2Pp———
2Pp

E

-7.5
t

LIJ

-i0.0—

-i2.5I-

-l5.0

FIG 7. Energy levels of donors in germanium. The theoretical
spectrum is based on the dielectric constant appropriate for
liquid-helium temperature, X=15.36. The experimental spectra
have all been arranged so that the 2P~ level in each is lined up
with the theoretical 2P& level. The width of each level represents
its experimental uncertainty.

3. Ga1Bum Phosyhide

Dean'6 has published experimental spectra of donor
energy levels in GaP obtained from two-electron transi-
tions in the decay of excitons bound to neutral donors.
From the similarity of the spectra to the spectra shown
in Fig. 5, he assigned the observed lines to P-like
energy levels despite the parity violation this would
require. Kasami'~ analyzed the spectra by computing
the theoretical 2PO, 2P~, and 3P+ energy levels as a
function of the mass ratio and 6tting these three ob-
served levels to determine the two masses and the
ionization energy of the donors. He thereby determined
three theoretical parameters from three pieces of data.
Unfortunately, if one compares the rest of the spectrum
with the theoretical levels using these parameters,
there is no agreement. In fact, the experimental spec-
trum cannot be fit at all under the assumption that the
levels are P-hke. If the assumption that the levels are
all S-like is adopted, one can do better, but the central-
cell corrections and splittings make the interpretation
far from transparent. More will be said about the situa-
tion in GaP at another time.

This low-temperature static dielectric constant for
Ge agrees with the room-temperature long-wavelength
index of refraction, n=4.001, measured by Salberg and
Villa, '4 if the latter is reduced by using the temperature
coeKcient

1 ds
=(69~04)X10 '('C) '

s dT

TABLE VIII. Splittings and shifts of the ground states of donors
in germanium. Units are meV.

4'
Bl
As
P
Sb

2.87
4.23
2.83
0.32

0.11
0.15
0.26
0.20

0.83
1.21
0.97
0.28

+4iL is the splitting of the 1S state into the 1.& (A» singlet and the
1$ (Ti) triplet. Erperimental error in 4A i~ ~0.02 mt V f Ref. Sj.

b d, -h ls the shift of the 1S(Tt) state~ below the effective-mass value.
& A is the shift of the center of gravity of the lS states (A a and Ta) below

the effective mass value.

as measured by Cardona, Paul, and Brooks. '~

Using 15.36 as the dielectric constant, we obtain the
theoretical spectrum shown in Fig. 7. Also shown in
Fig. 7 are the experimental spectra of Sb, I.i, P, As, and
Bi. The experimental spectra have all been arranged so
that the 2P~ level in each is lined up with the theoretical
2P~ level.

With this revision of the eR'ective-mass binding
energy, the experimental shift of the triplet 1S(T~)
state from the eA'ective-mass value for the several
donors in Gel must also be revised. The new values of
this shift are shown in Table VIII.

V. DISCUSSION

Accurate energy levels of the effective-mass Hamil-
tonian for donors in semiconductors with prolate-
spheroid conduction-band minima have been obtained
for mass ratios in the range 0.008(m~/tn~~&1. No other
effects inherent in real-crystal cajculations like central-
cell corrections have been considered. All relativistic
eAects such as those discussed by Appel" as well as
phonon interactions as treated by Nishikawa and
Barrie ""have been ignored.

This new determination of the effective-mass energy
levels should aid in isolating true "corrections to the
effective-mass formalism" from spurious ones.

The determination of new low-temperature static
dielectric constants for Si and Ge in Sec. IV serves to
point out again the very strong dependence of donor and
acceptor energy levels on the dielectric constant. If one
had an excitation spectrum of donors in a material
whose mass parameters were unknown, he could use the
information presented here to determine three parame-
ters: the mass ratio, the ratio of one of the masses to the
square of the dielectric constant, and the ionization
limit of the spectrum. If the dielectric constant were
known accurately, the masses could be obtained sepa-
rately. Alternatively, as in the present work on Si and
Ge, if the masses were known accurately, the dielectric
constant could be determined to the accuracy of the
spectrum.

l P. J. Dean, Phys. Rev. Letters 18, 122 (1967).
'r A. Kasami, J. Phys. Soc. Japan 24, 551 (1968).
ls J.Appel, PhyS. ReV. 133, A280 (1964).
If K. Nishikawa and R. Barrie, Can. J. Phys. 41, 1135 (1963).
s' Reference 19,p. 1823.
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iVote added im proof T.efft, Bell, and Romero" (TBR)
have recently used the same set of orthogonal functions
(with minor differences in notation) as used in this work

LEq. (2.5)] to calculate effective-mass binding energies.
However, TBR computed only the diagonal elements of
the Hamiltonian matrix. The neglect of the ofI'-diagonal

matrix elements destroys the central principle of the
variational method, namely, that the approximations
to the eigenvalues are upper bounds to the true eigen-

~' W. E. TefFt, R. G. Bell, and H. V. Romero, Phys. Rev. 177,
1194 (1969).

values in a one-to-one correspondence. This becomes
extremely serious when quasidegeneracies occur. There-
fore, the results of TBR bear little or no relationship to
the true eigenvalues of the eR'ective-mass Hamiltonian
except for the ground states of each symmetry (1,S',

2PO, 2P~, etc.).
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Spin-Orbit EKects in Crossed Electric and Magnetic Fields;
r, Band of Wurtzite-Type Crystals
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The Fq conduction band of the wurtzite-type II-VI compounds has a spin-orbit term linear in k. Effects of
this spin-orbit term in crossed electric and magnetic 6elds are investigated on the basis of a one-band formal-
ism. The effective Hamilto~izn is solvent for four di!Fere~t cases, accor3i~g to the strength of the crosse3 elec-
tric and magnetic 6elds: (A) Strong magnetic field and weak electric field —this is essentially the simple
band case; (8) weak magnetic 6eld and weak electric field (the coupling between cyclotron motion and spin
states via the spin-orbit term plays a dominant role in determining the energy spectrum); (C} strong mag-
netic field and strong electric field. (The major contribution to the spin-orbit interaction comes from a term
representing the inhuence of transverse drift motion upon spin states. As a result, the spin splitting exhibits
a nearly linear dependence on the electric 6eld, and the direction of the spin axis tends toward that of the
electric 6eld with increasing electric field}; (D) weak magnetic held and strong electric Geld /both of the
spi~-orbit effects, which are pre3omiaant either in the case (B) or in the case (C), are equally important, and
perturbation theory is not appli"able. Varixtio~al solutio~s have amplitudes distribute3 over many Landau
and spi~ states, so that the selection rule for the istraband transitions is

relaxed'.

jThe conditions for observing
these spin-orbit effects by means of intraband transitions are discussed for the actual II-VI compounds. It is
found that spin-orbit effects may possibly be observed in magnetic dipole transitions under the condition of
case C for CdS and ZnS, as well as in electric and magnetic dipole transitions under the condition of case A
or C for CdSe. In the strong electric field of case C, the transverse drift velocity is one or two orders of mag-
nitude larger than the velocity of sound in the crystal. Hence, phonon clouds build up around an electron to
cause broadening of the resonance line. This can be avoided by carrying out the resonance experiment before
the phonon clouds build up, i.e., by employing a pulsed transverse electric field.

I. INTRODUCTION
' 'NVESTIGATION of the electronic states in crossed
- - electric and magnetic fields has given valuable in-
formation concerning the band structure of semicon-
ductors. The first theoretical study on this subject was
made by Aronov' on the basis of a simple band model.
The one-band eGective Hamiltonian has a simple har-
monic solution which can explain many qualitative fea-
tures of the interband optical transitions. Later, a more
appropriate theory based on a two-band model was
developed by Lax and co-workers' and also by Aronov, '

' A. G. Aronov, Fiz. Tverd. Tela 5, 552 (1963) )English transl. :
Sov. Phys. —Solid State 5, 402 (19"3)j.

~ B. I.ax, i~ Proceedings of the Seventh International Conference
on the Physk s of Semicoi.ductors Paris, 1964, edited by M. Hulin
(Academic Press Inc. , New York, 1964), Vol. I, p. 253; B. Lax,

giving successful explanations of some critical phe-
nomena" in the strong crossed electric field.

In the case of a complex band, however, we have to
solve a set of diGerential equations resulting from the
effective Hamiltonian. ' The only exact solution obtained
so far is the one derived by Luttinger' for the valence
band of germanium or silicon in a magnetic field along
the L111jdirection with no electric field. When a weak
electric field is applied perpendicular to the magnetic

J. Phys. Soc. Japan Suppl. 21, 165 (2966). Th latter is a review
article i~ which an extensive list of r f rene:s is given.

3 A. G. Aroaov, J. Phys. Soc. Japan Suppl. 21, 608 (1966).
4 W. Zawadzki a~d B. Lax, Phys. Rev. Letters 16, 100 (1966).

E. I. Blount, in SoM State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1962), Vol. 23, p. 306.

~ J. M. Luttinger, Phys. Rev. 102, 1030 (1956).


