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We consider the implications of a nonintegral occupation number of 3d and 4s electrons in a 3d transition
element or compound, in a configuration such as 3d"+~4s' ', where x is a variable. In the energy-band
problem, such fractional occupation numbers are common, but we pay particular attention to the atomic
problem. We apply Hartree —Fock procedures to such a problem, using the formula for the average energy
of all multiplets associated with the configuration, and vary not only the orbitals but the occupation numbers
to minimize the energy. We consider both the non-spin-polarized and spin-polarized cases. This procedure,
which is more general than the ordinary Hartree-Fock procedure, we shall call the hyper-Hartree —Fock
method (HHF). We have carried through HHF calculations for fractional occupation numbers in the Co
and Ni atoms, and have also treated these atoms by several schemes involving approximate statistical
exchanges. We compare the results with the atomic spectra of these atoms. We find that the condition for
minimum energy, in the HHF scheme, can be put in a form stating that one-electron energies E of the
3d and 4s orbitals must be equal; these quantities E, which we call modified one-electron energies, are
different from the ordinary one-electron energies E; of Hartree-Fock theory, involving only one-half the
self-energy correction met with in HF theory. These quantities E;, rather than the ordinary one-electron
energies E;, are the quantities which have the properties desired for one-electron energies in energy-band
theory and Fermi statistics: The change in the total energy of the system, when an infinitesimal fraction of
the electrons shifts from one orbital to another, rigorously equals the net change in the quantities E,' for
the electrons which have made the shift. We show that the ordinary one-electron eigenvalues of the Kohn-
Sham statistical exchange method form fairly good approximations to these HHF quantities E, which
explains why energy-band calculations using that exchange have had considerable success in studies of
transition-element crystals and compounds. Preliminary mention is made of calculations under way by
one of the authors (TMW) on the antiferromagnetic crystals MnO and NiO, in which an exchange potential
set up according to the ideas presented here leads to energy bands describing correctly the electrical, mag-
netic, and optical behavior of these crystals, including the insulating properties and the crystal-Geld splitting
of the 3d orbitals into the e~ and t~~ components.

I. INTRODUCTION
'

N energy-band calculations involving 3d transition
- - atoms, two sources of uncertainty make the problem
particularly diKcuI. t. It is well known that, with these
atoms, the energy levels are very sensitive to the precise
self-consistent 6eld used in the calculations. This Geld
involves the approximation used for handling the ex-
change, which has been discussed in detail in an earlier
paper. ' But furthermore, the potential, both Coulomb
and exchange, depends strongly on the assumed occu-
pancy of the energy bands arising from the atomic 3d
and 4s energy levels. Should one use an occupation
3d"4s', or 3d"+'4s, or some nonintegral value between
these cases, or even outside this range& It is this second
question which we shall take up in the present paper,
but, as we shall see, it is closely interrelated with the

*Work performed under the auspices of the National Science
Foundation and the U. S. Atomic Energy Commission.' J. C. Slater, T. M. Wilson, and J. H. Wood, Phys. Rev. 179,
28 (1969). The reader's attention is also called to the interesting
paper of A. Rosen and I. l.indgren, Phys. Rev. 176, 114 (1968),
which appeared too late to be considered in connection with our
work.
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other question of the exact exchange approximation
to use. By studying these matters, we hope to throw
additional light on the whole problem of the use of a
one-electron approximation in dealing with the many-
electron problem of an atom or a crystal.

Various writers have investigated the eGect of dif-
ferent assumptions regarding the occupation numbers
of 3d and 4s bands on the resulting energy bands. Most
recently, Snow and %aber' have carried through a study
of the energy band of all the 3d transition elements,
in bcc and fcc structures, using potentials determined
from the two occupation numbers 3d"4s' and 3d"+'4s,
and the exchange assumption suggested by the senior
author in 1951.' Snow and %aber give references to
various earlier writers who have looked into similar
problems, and for that reason we shall not give refer-
ences to all that earlier work here. Their general
conclusion is that the occupation id"+'4s leads to energy
bands in better agreement with experiment than
3d"4s', but they leave open the question as to whether
a nonintegral occupation might not be even better.

' E. C. Snow and J. T. Waber, Acta Met. 17, 623 (1969).' J. C. Slater, Phys. Rev. Sl, 385 (1951);82, 538 (1951).
672
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As a general rule, as the number of 3d electrons in-
creases and the number of 4s decreases, the 3d band
moves rapidly upward with respect to the 4s band,
making a considerable change in the energy bands and
the Fermi surface.

One must realize that it is really not a matter of
hypothesis to determine the proper occupation numbers;
they should be found from a self-consistent calculation.
'The potential depends sensitively on the occupation
numbers, and one should find that particular set of
occupation numbers which leads to energy bands such
that, if they are filled up to the Fermi energy, they will

in turn result in the assumed occupation numbers.
Since in a 3d transition metal both 3d and 4s bands are
only partially filled, the resulting fractional numbers
follow directly from a self-consistent calculation. Such
calculations have been made for ferromagnetic nickel
by Connolly, 4 and for nickel and several other cases
by Wakoh and Yamashita. 5 'Their results in general
verify the occupation numbers which lead to energy
bands in agreement with observed Fermi surfaces.

However, there is one very uncertain feature in these
calculations. It is a fundamental postulate of the energy-
band theory tha, t electrons will occupy the lowest
possible energy bands, and that if we consider the
ground state, with partially filled 3d and 4s bands, the
energies of the topmost occupied 3d and 4s levels must
each equal the Fermi energy and hence must equal each
other. But different assumptions regarding exchange
lead to quite different one-electron energies, and thus
to different conclusions regarding the ground state.
'This was brought out particularly in Ref. 1, in which
it was sho~n th it very significant differences in one-
electron energies arise from different assumptions
regarding exchange, which may give equally good
descriptions of the electronic wave functions. 'This

sensitivity to the exchange was found in the work of
Connolly', Wakoh, and Yarnashita, in Refs. 4 and 5,
as well as in other papers quoted in Ref. 2.

It is not a foregone conclusion that is is possible to
set up a one-electron model of a crystal such that the
energy change when an electron is shifted from one
band to another equals the difference in one-electron
energy between the two bands. It is such questions
which we shall encounter in the present paper. One
finds similar problems in a simpler form in studying
isolated atoms. In either the Hartree —Fock calculations
for isolated atoms, ' or the calculations of Herman and

4 J. W. D. Connolly, Phys. Rev. 159, 415 (1967).
~ J. Yamashita, M. Fukuchi, and S. Wakoh, J. Phys. Soc.

Japan 18, 999 (1963); J. Yamashita, ibid. 18, 1010 (1963};S.
%'akoh and J. Yamashita, ibid. 19, 1342 (1964); S. %'akoh, ibid.
20, 1894 (1965); S. Asano and J. Yamashita, ibid. 23, 714 (1967);
J. Yamashita, S. Kakoh, and S. Asano, in QuantuIn Theory of
Atoms, NoIecules, and the Sold State, edited by P.-O. Lowdin
(Academic Press Inc. , New York, 1966), p. 497.

~ J. B. Mann, Los Alamos Scientific Reports LA-3690, 1967,
LA-3691, 1968 (unpublished); available from Clearinghouse for
Federal Scientific and Technical Information, National Bureau of
Standards, U. S. Department of Commerce, Springfield, Va.

Skillman~ using the statistical exchange assumption of
Ref. 3, one finds one-electron energy levels of the atoms
which show remarkable agreement with the x-ray
levels. On the other hand, there is one difhculty which

arises in treating the 3d transition atoms and other
transition series. It is an essential feature of the self-

consistent field treatment of atoms, as of energy bands,
that electrons should go into the lowest possible energy
levels. By and large they do, and the success of Bohr's
theory of the periodic table is based on this fact. But
in the 3d and the other transition groups, there are
discrepancies which appear to be closely related to the
difBculties we have mentioned in the energy-band
theory.

'These de.culties come from the one-electron energies
of the 3d and 4s atomic levels. There is every reason
to think, as a result of knowledge of the observed
spectra of these atoms, that in their ground states they
generally contain two, or in some cases one, 4s electron
per atom, with a partially filled 3d sheH. In other words,
they correspond to the configurations 3d"4s~ or 3d"+'4s,
which we have mentioned earlier. On the other hand,
from either the Hartree —Fock or the Herman-Sk. illman

method, the 3d one-electron energies lie well below the
4s, so that we should expect no occupied 4s levels until
the 3d levels are filled. Thus the electrons are not filling
the levels in the correct order. As in the energy-band
case, going from the 3d"4s' to the 3d"+'4s and 3d"+'
configurations results in a considerable raising of the
3d level with respect to the 4s, but not enough to bring
the 3d above the 4s. However, change of the assumption
regarding exchange has an equally great effect on the
energy difference between the two. We shall now go on
to examine this interrelation.

II. THE HYPER-HARTREE-FOCK METHOD

Let us start our discussion by following the Hartree-
Fock method as closely as possible; later we shaH

come to the various approximations used for studying
exchange. It is a characteristic of atomic problems with
partially filled shells that many multiplets arise from
such a configuration, and there is no single determin-
antal wave function which represents the state of the
atom in a satisfa, ctory way. The Hartree —Fock method,
as defined literally, arises when we can set up a wave
function which is a single determinant formed from a
definite set of spin orbitals. In the present more com-
plicated situation, for these transition elements, we
can use instead the formula for the weighted mean
energy of all the multiplets arising from the con-
figuration. We can vary the orbitals to minimize this
averaged energy, thereby getting orbitals which should
be satisfactory for representing the whole set of multi-
plets arising from this configuration, though they might
not be quite the best possible ones for investigating the
lowest multiplet of the configuration. The senior

'F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, ¹ J., 1963).
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author' has set up formulas for this average energy of a
configuration, in terms of the various atomic integrals.
These formulas are based on pioneer work by Shortley,
referred to in Ref. 8. One of the present authors (JBM)
has programmed the resulting problem of finding
orbitals to minimize the average energies, and has made
calculations for all the atoms in the periodic table,
using this method. ' Since this use of the average energy
of a configuration is an important method, and is not
identical with the Hartree —Fock method, it seems de-
sirable to have a name for it. We propose the name
hyper-Hartree —Fock, abbreviated HHF, a name which
does not seem to have been applied to any other
procedure.

An essential feature of our problem is that it is
mathematically useful to consider configurations with
nonintegral occupation numbers, as 3d"+'4s', where
x is a continuous variable which can run from zero to 2.
For the atomic problem we ordinarily give physical
meaning only to the integral values of x, but in the
energy-band problem we run into continuously variable
occupation numbers in transition-element energy-band
problems. The formulas of Ref. 8 for average energy in
terms of such parameters as x are derived for integral
occupation numbers, but mathematically they are
functions of a continuous variable x, being defined for
fractional as well as integral values of x. In Sec. V,
Eqs. (14) and (15), we shall write down these formulas,
and it will be seen that the energy is a quadratic func-
tion of x, the coeBRcients depending on integrals over
the spin-orbitals. We can then regard the HHF problem
as one in which the energy is a functional of the atomic
spin-orbitals and a function of the occupation param-
eters such as x; the energy can be minimized separately
with respect to each of these quantities. When we
minimize with respect to the occupation numbers, we
get a theoretical minimum energy for certain fractional
occupation numbers. The simplest interpretation of
this, for the atomic problem in which physical meaning
is given only to the integral occupation numbers, is
that there may be several configurations (such as
3d"4s' and 3d"+'4s in our case) having low energies,
the minimum of the mathematical energy function
coming for nonintegral occupation numbers close to
these integral values. This question will be discussed
further in Sec. VI.

The determination of the minimum with respect to
the orbitals leads to the ordinary one-electron equations
similar to the Hartree —Fock equations, which we may
call the HHF equations, and which Mann has solved

J. C. Slater, Quantum Theory of Atonic Structure (McGraw-
Hill Book Co., New York, 1960), Vols. 1 and 2. See particularly
Chap. 14, Vol. 1.

For early calculations using such nonintegral occupation
numbers see J. T. %aber and A. C. Larson in Rare Earth ResearchII (Gordon and Breach Science Publishers, Inc. , New York,
1964);J.T. %aber, D. Liberman and D. T. Cromer in Proceedings
of the Fourth Conference on Rare E~arth Research (Gordon and
Breach Science Publishers, Inc. , New York, 1965);E. A. Kmetko
and J. T. %'aber in Plutonium 1965 (Chapman and Hall Ltd. ,
London, 1967),

for certain assumed integral values of x.' These will

be written down later in Eq. (4). But the determination
of the minimum with respect to occupation numbers
leads to a quite different sort of condition, which we
can interpret as the requirement that certain modified
one-electron energies of the orbitals in question (in our
case the 3d and 4s) should be equal for the state of
minimum energy. These modified one-electron energies
are similar to, but by no means equal to, the ordinary
one-electron energies for the Hartree —Fock method.
They resemble instead the one-electron energies met
in the theory of the Fermi liquid, as described by
Landau, and also the electronegativity as met in
chemistry. "We shall denote them by E3&' and E&.', to
to distinguish them from the ordinary one-electron
energies EM and E4,. Like the quantities E3& and E4„
we find that E3d,

' and E4,' are quite sensitive to the
occupation numbers, E3d,

' rising with respect to E4,'

as x, or the occupation number of 3d electrons, increases.
But, E3$ and E4,' differ enough from E3d, and E4, so
that they are in fact equal to each other for the value of
occupation number which leads to the minimum energy,
though E3q is well below E4, at this point. In other
words, these quantities E3&' and E4,' form a mathe-
matical model for the one-electron energies of the
energy-band theory, such that electrons go into the
states of lowest E in order to lead to the lowest energy
of the system. They form the correct model to use for
these one-electron energies, which the ordinary quanti-
ties E; of the Hartree —Fock procedure do not.

In the next section we shall set up the mathematical
formulation of the HHF method, and of these modified
one-electron energies E, so as to furnish the detailed
justification for the general remarks which we have
been making in the present section. Later we shall
take up the relation of the various approximate treat-
ments of exchange to the quantities E, and shall show
that the procedures which various workers have
empirically found to lead to calculations of energy
bands in good agreement with experiment apparently
have the effect of getting one-electron Schrodinger
equations whose eigenvalues, though they do not agree
with the ordinary quantities E; of the Hartree —Fock
method, agree fairly well with the modified quantities
E which are needed to justify a one-electron model.

III. MATHEMATICAL FORMULATION OF
THE HHF METHOD

Let us consider an atom with a number of electron
shells (such as 1s, 2s, 2p, 3s, etc.) denoted by an index i

' L. D. Landau, Zh. Kksperirn. i Teor. Fiz. 30, 1058 (1956);
LEnglish transl. :Soviet Phys. —JKTP 3, 920 (1957)j.The authors
are indebted to P. %'. Anderson for pointing out the resemblance
of the arguments of the present paper to Landau's work. As for
the electronegativity, we are indebted to J. P. Dahl for pointing
out the close resemblance of our work to chemical thinking in this
field. An equation essentially equivalent to our Kq. (12) appears
in R. S. Mulliken, J. Chem. Phys. 46, 497 (1949).See particularly
Kqs. (122) and (144), p. 537. For a good review of literature in the
Geld of electronegativity and chemical bonding, with many
references, see R. Ferreira, Advan. Chem. Phys. I3, 55 (1967),
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Such a shell with azimuthal quantum number
could hold 4l,+2 electrons if it were filled. However,
let it hold only q; electrons, where q; may take on any
value from zero to 4/;+2. It is then easy, using methods
which are taken up in Ref. 8, Vol. 1, Sec. 14-2, to set

up a formula for the energy of the atom, averaged over
all multiplet states found in the configuration in
question. This formula is

E-=2 t q'I(i)+lq'(q' —1)(i,i)j
+ Q q,q, (i,j), (1)

pairs i, j, iWj

where the sums are over shells, and where

I (i) =I (u;l;),
c~(l;0; l,o)

(i,i) =Fo(n, l, ; n, l,) —Q
* '

F(n, l, ; u, l,),
~o 4/. +1

(i,j)=F'( ul;; n;1,;)
c"(l;0; l,o) 6"(n;1;; u;1,) . (2)

L(41,+2) (4l, +2))'"
In these formulas, the symbols have their usual mean-
ings as defined in Ref. 8. That is, I(n;i;) is a one-
electron integral involving the kinetic energy and the
potential energy in the field of the nucleus. The quanti-
ties F"(u;I;; n, l,) an. d G~(n;1;; n, l,) are the standard
integrals involving Coulomb and exchange interactions
betv een the orbitals, and the c~'s are the coeScients
arising from the products of three spherical harmonics.
The first summation in Eq. (1) is the sum of one-
electron integrals followed by the sum of interactions

between the q, (q;—1)/2 pairs of electrons in the ith

shell, and the last is the sum of interactions between

the q,q; pairs of electrons in which the Grst is in the ith
shell, the second in the jth. Equation (1) is derived on

the assumption that all orbitals in the ith shell have

the same radial functions, independent of the quantum

numbers m~ and m„and that the angular dependence is

given by a spherical harmonic of the angles in the usual

way. Ke postpone the spin-polarized case, or use of
diferent orbitals for different spins, until Sec. VII.

We now wish to minimize the energy expression of

Eq. (1) by varying the radial functions involved. in the
spin-orbitals, keeping the occupation numbers q;
constant, and preserving the normalization and

orthogonality of the spin orbitals, which are required
to make the expression of Eq. (1) valid for the energy.
To do this, we shall vary the expression

E, Pq;E; u—;*u;dk —2 Q q;q, E,; u;~u, dk (3)
pairs s,j

in which the quantities E;, E;; are undetermined
Lagrange multipliers, and in which E;;*=E;;.The non-
diagonal Lagrange multipliers E;; are diGerent from
zero only between radial functions associated with the
same azimuthal quantum numbers, since in other cases
the orthogonality automatically results from the func-
tions of angles.

We vary this expression by varying the radial wave
function associated with the ith spin orbital I;, which
we write as R„,~, (r)=P„,i, (r)/r. . When . we do this,
as indicated in Ref. 8, Vol. 2, Eq. (17—57), the result is

d' 2Z l;(l;+1) 2 ( n, l, 2 n;l; (q, —1) 2 f N, l,—+ +P q,—I',
~ u, l;; —I', u, i, ; — g c~(i,O; l,O)—I',

~
u, i, ; —E,

dri ri ri j ri E ri fi rl 4l+1 40 rl ~ ri

q,c"(l;0; l,o) 2 rc;1,
XP„,), (ri) = Q —I'g u;l;; +E;; P„,.(,. (ri). (4)

+2&i&~i&i -t (4l '+2) (4' +2)$'12 ri ri

In these equations, energies are expressed in terms of
Ry, and distances in multiples of the Bohr radius.
It is Eq. (4) which Mann (Ref. 6) has solved. The
functions I'~ have their usual significance; that is,

~l, &~ 't ~l I rs $ ~9 Prtj)j
'r 1

+rl P l;(r2)I l (r2)r2 dr2 ~ (5)
7'1

As mentioned earlier, we shall refer to Eq. (4) as the
hyper-Hartree —Fock equation.

Mann in his calculations of Ref. 6 adopted the usual
procedure of assuming integral occupation numbers q;
for the various shells, in accordance with our usual
interpretation of the filling of the shells in the ground
state of the atoms in the periodic system. He then has
solved for the radial functions P,i, (r) for the occupied. .

orbitals, which agree well with our usual assumptions

E,=I(i)+(q; 1)(i,i)+—Q q;(i,j) .
jets

(6)

This is equivalent to Eq. (17—58) of Ref. 8, Vol. 2.
It can be equally well derived by finding the energy of
the ion lacking one electron in the ith shell, from Eq.
(1), using the same equation but with q,—1 substituted
in place of q;, and by subtracting the energy of the

regarding the wave functions. The energies E; agree
well with the negatives of the x-ray ionization energies.
The nondiagonal energy parameters E;;, which are
required. to insure the orthogonality of the radial wave
functions, are diR'erent from zero only for the case
where i and j refer to two shells of the same / value.
They are tabulated by Mann, and prove to be small
enough so that for many purposes they can be neglected.

The one-electron energies E, can be found from
Eq (4), by .multiplying on the left by P„,.i,.(ri) and
integrating over rl, taking advantage of the orthonormal
properties of the I"s. The result is
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BE,„/Bq;= E, (9)

where the diBerentiation is to be carried out k.eeping
all q's except q; fixed, and also keeping all orbitals and
integrals fixed. Then the condition for minimum energy
is, from Eq. (8),

Ei'= E2' ~ (10)

In other words, the quantities E defined by Eq. (9)
are the quantities referred to in the preceding section;
the condition for minimum energy is the equality of
the E;"s for two energy levels such as 3d and 4s which
are capable of interchanging electrons.

Let us look. more closely at the significance of the
quantities E . From Kq. (1) we have

E =I(i)+(q;—-', )(f,i)+Q g;(i,j) (11)
=E;+-', (i,i) (12)

in which Eq. (12) follows from Eq. (6). In other words,
we verify our earlier statement that the modified one-
electron energies E are similar to the one-electron
energies E; of the HHF method, but are not identical:
they are larger by the amounts ', (r', ,i)-

Let us correlate these relations with our knowledge
of the behavior of the self-consistent field method. We
ordinarily consider an electron to move in the potential
field of the nucleus and of all electrons including itself,

ion so found from the energy of the atom given in
Kq. (1).

In the 3d transition elements and in many other
important cases, we have but two partly filled shells,
such as the 3d and 4s. Let us therefore see how the
results of the preceding discussion work out in this
case. We assume that the partly filled shells are
numbered 1 and 2. Let there by S electrons in the two
shells taken together. Let the values of q& and q2 be

qr q——=n+xq2 3T ——q=—X n —x, — (7)

where n is a fixed constant, and x is the variable which
allows us to change the occupation numbers. In the 3d
transition group q could be taken to represent the
number of 31 electrons, and q2=E —

q the number of
4s. We shall often take n to be the value of q for which
q2=2, and E=n+2, so that we are considering a
configuration 3d"+*4s'- as before. Sometimes, how-
ever, particularly in Sec. V, we shall find it convenient
to use other values of n.

We can now consider the other part of our minimizing
process: the variation of occupation numbers to make the
energy a minimum, subject to fixed orbitals. In this
case in which E remains constant, we can vary E,
with respect to x, and the condition for minimum energy
will be BE, /Bx=0. In the expression of Eq. (1), E.
will depend on x through the dependence on q& and q2,
each of which is a function of x by Kq. (7). Hence we
shall have as the condition for minimum energy

BEg~/Bx= 0= BEg~/Bgg BEg~/Bgm (8)

Let us define

diminished by the repulsive interaction of the electron
with itself. The one-electron energy of an electron
moving in the potential of the nucleus and of all

electrons including itself would be I(i,)+q';(f,i)
+p;„;q;(ij) . We see that E; of Eq. (6) differs from
this by having the interaction (i,i) subtracted from it.
This then stands for the self-interaction correction, in

this form of writing the relations. When we compare
with Kq. (11),we then see that to find E we use only
half the self-interaction correction used in the HHF
calculation. There is, in other words, a large difference
between E and E;, and, on account of the quite large
positive form of (f,i), the one-electron energy E,' is a
good deal more positive than E;.

We can even see from this in a qualitative way how
the diHerence E3~'—E4,', which will be the value of
BE,„/Bx for the transition elements according to Eq.
(8), will behave. We know that E3q is considerably
more negative than E4.. However, the 3d orbital is a
good deal more concentrated than the 4s, and as a
result the self-energy term (3d,3d) is larger than
(4s,4s). The difference L~'3q' E4,' is grea—ter than
E3s E4. by -', L(3—d, 3d) —(4s,4s)g. Consequently it is
considerably more positive than E3d—E4,. It is this
fact which makes it possible for E3~'—E4,' to be zero,
leading to the energy minimum for a reasonable
occupation number in the transition elements, even
though E3&—E4, is strongly negative throughout that
series of elements. But at the same time we can under-
stand why, if we use one of the various approximate
treatments of exchange and replace E3d—E4, by the
corresponding difference in eigenvalues of the approxi-
mate Schrodinger equation, we can arrive at quite
diferent results. ' We preceed in the next section to
specific calculations which we have made for the cases
of Co and Ni, and a few for Cu, to illustrate these facts.

IV. CALCULATIONS FOR COBALT AND NICKEL

To test the phenomena we have been discussing, one
of us (JBM) has made HHF calculations for the Co
atom in the configurations 3d"+ 4s' and for the Ni
atom in the configurations 3d'+ 4s' with x equal to 0,
0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 1.8, and 2.0; calculations
have also been made for Cu in the configurations 3cP4s'
and 3d"4s. In Fig. 1, we show the average energy E,
of Eq. (1), for each case of Co and Ni, as a function of

q, the number of 3d electrons, resulting in very similar
curves for each atom and leading to a minimum energy
at q= 7.464 for Co, 8.517 Ni. We tabulate the values of
E, for these cases in Table I. We find that the com-
puted points can be fitted well by a cubic function of x,
which we give in Eq. (13):

E = —2762.6171—0.1677(q-7)+0.1917(q-7)'
—0.0157(9-7)' Ry for Co

= —3013.6318—0.1971(q-8)+0.2029 (q-8)"-
—0.0157(q-8)' Ry for Ni. (13)
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The deviations between the computed points and those
given by these cubic equations are of the order of
magnitude of 0.0001 Ry.

One can find the one-electron energies E3d, E4„and
the modified one-electron energies E3d', E4,' from the
integrals computed in connection with the HHF
calculation. Alternatively one can find E3d E$ as a
function of x(equal to q-7 for Co, q-8 for Ni) by dif-
ferentiating the average energy E, of Eq. (13) with
respect to x. This procedure follows from Eq. (g),
except that it is only at the minimum of the curves of
Eq. (13) or Fig. 1 that BE,„/Bx equals zero. We 6nd
that the two determinations of E3d' —E4„' agree to the
accuracy of our calculation. In Fig. 2 we show the
quantities E3d—E4, and E3d' —E4,' as functions of q
for Co; the case of Ni is similar. We see the way in
which E3d—E4, is negative for all values of x from zero
to 2, verifying our earlier statement that the one-
electron energies of the HHF method place the 3d
level below the 4s for all possible occupation numbers.
On the other hand, as we have mentioned, E3d' —E4.'

goes through zero at the value of x equal to 0.464
which corresponds to minimum energy according to
Fig. 1 or Eq. (13). In other words, the HHF method
would predict an occupation for these atoms about
half-way between 4s and 4s, or would imply that both of
these configurations lead to low-lying energy levels. We
shall consider the agreement between this fact and
experiment in Sec. VI.

Before we come to this comparison with experiment,
let us describe other calculations which we have made.
The HHF calculations are more diScult than those
carried out with various forms of approximate exchange,
and they were not in fact available until we had ex-
amined the approximate exchanges quite thoroughly.
One of us (JHW) carried out calculations for both Co
and Ni, at occupations corresponding to x=0, 0.2, 0.4,. ~ ~, 1.8, 1.99, using two diferent forms of exchange.
One of these was the so-called XKSG method (Ref. 1),
&n which one follows Kohn and Sham in using an ex-

changee

proportional to the 3 power of the charge density
but —,

' as large as that suggested by another of us (JCS)
in Ref. 3. The other was the so-called Xn method, in
which, again following Ref. 1, one uses an exchange
equal to 0. times that of Ref. 3, varying o, to get a
minimum energy in the self-consistent calculation. The

TABLE I.Energies of Co, Ni, and Cu in various con6gurations, by
HHF method. Energies in Ry.

—2762.30 —-3013.30

40 .40

a
O

V)

.50
4J
CO
Ci

IX

.so

CI

.60

.70
0
7
8

.70
2 x

9 q (Co)
10 q (Nil

FIG. 1. f:0, aS a funCtiOn Of lr, number Of 3d eleCtrOnS, fnr CO a&«
Xi, from HHF method, and Kq. (13).

0.2—

M 0—
C5
IX
UJ
CDa -0.2
IX

-0.4

parameter 0. was varied for each value of x, and the
optimum parameters are given in Table 2. In addition
to these calculations, Herman and Skillman have made
calculations using the original exchange of Ref. 3
(referred to as XS in Ref. 1, arising from using the
factor a=1), for Co 3d'4ss, and for Ni for 3d"4s' and
3d'4s (see Ref. 7), and Snow and Waber (Ref. 2) have
given values also for Co 3d'4s (indicated graphically

Cobalt Nickel Copper

3d'4s2
3d 7.24sl .8
3d7.44s1.$

3d7 64s'6
3d7 04s1.4

3d7.$4s1.2

3d6.04s1.0
3d$.64s0.6

3d6.84s0.2

3d6.0

-2762.61713
—2762.64300
-2762.65444
-2762.65494
-2762.65209
—2762.63664
-2762.60877
-2762.49002
-2762.38915
-2762.31088

3d04s2
3d0 24sl '0

3d8.44sl .6
3d6.64sl .6
3d» .64sl .4
3d6.64s1.2

3d0.04$1.0

3d0.64s0.6

3d0 04s0 2

3+,0.0

—3013.63190
-3013.66322
—3013.67912
-3013.68157
-3013,68043
-3013.667 7 7
-3013.64187
-3013.52380
-3013.42047
-3013.33987

3d4s2 —32 77.90066
3d104s -3277.92775

-0.8 I

0 I 2 x
8 eq

FIG. 2. Quantities E3&' —E4.' and E3d —I'4, from HHF method,
and E3q —E4, from XKSG, Xa, and XS methods, for Co, as
function of q, number of 3d electrons.
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TABLE II. Summary of best n values for Co and Ni as function of
number of s electrons (Vx =aVxs)'.

No. s electrons

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.01

~(Co)

0.735
0.738
0.745
0.745
0.750
0.754
0.757
0.761
0.764
0.765
0.765

a(Ni)

0.736
0.739
0.745
0.745
0.751
0.756
0.759
0.763
0.767
0.767
0.768

& In these calculations, the Latter potential (Ref. 7) has been used at
large values of the radial coordinate r.

on their Fig. 2). In Fig. 2 we show the difference of
eigenvalues of the differential equations for the 3d and
4s levels, found by these various methods, as functions
of q or of x= q

—7, for Co, for comparison with the HHF
values. Curves for Ni are very similar.

The comparison of the di6erences of eigenvalues

E3q—E4, for each of these methods —HHF, XS, Xo,
and XKSG—follows the general behavior of the eigen-
values found in Ref. 1. There it was found that the
Hartree —Fock one-electron eigenvalues lay lowest, then
the XS followed by the Xn, while the XKSG lay highest,
just as we find here for the energy differences between
3d and 4s. The reasons for the differences were discussed
in Ref. 1, in which we also discussed another assumed
exchange, denoted XLSW, which gave results in
rather close agreement with the Hartree —Fock values.
We have not used this method, which is considerably
more complicated in practice, in investigating the
nonintegral occupation number problem. It was in-
dicated in Ref. 1 that the higher eigenvalues found for
the Xo' and XKSG methods were a result of rather
accidental features connected with the potentials used
in those methods. But it was suggested also that study
of the nonintegral occupation number problem, such as
we are now giving, threw a diferent and more funda-
mental light on these methods.

From study of Fig. 2 we can see what this new light is:
the eigenvalue differences E3~—E4, found for the XKSG
method and to a lesser extent for the Xe method,
though they are far above the HHF differences
E3&—E4„begin to approach rather closely the dif-
ferences of the modified one-electron energies,
E3g' —E4,', which we are discussing in the present paper.
In other words, if one merely used the XKSG method,
and used the difI'erence of eigenvalues, E3d, E4„
determined by this method rather than the HHF
quantity E3&'—E4,', one would not be far from the
correct HHF values. We could use XKSG eigenvalues
as one-electron energies, and determine the ground
state by letting the electrons go into the lowest one-
electron states, and we should end up with occupation
numbers which are not far from those resulting from
the IIHF values. In fact, as we shall point out in Sec.
VI, it seems that the results of this very simplified

treatment agree better with experiment, in the matter
of the relative energies of diferent configurations or

occupation numbers, than do the HHF results. This

appears to us to be the reason why it is found in practice
that the use of an exchange corresponding to a value of

n considerably less than unity gives energy bands much

closer to experiment for these 3d transition elements

than does the original value o.'=1 of Ref. 3. We give
references to some of the calculations which have led

to this result in Ref. 11.
One can define one-electron energies A' for all of the

orbitals of the atom, and later in Sec. VIII we point
out some of their properties. It is only the 3d and 4s

energies which we use in the present connection, but
it is interesting to see that in all of these cases the
eigenvalues of the Schrodinger equations derived from

the various approximations to the exchange potential
agree much better with the E;"s than with the E s

of the HHF method. This is illustrated in Table III.
in which we compare the values of E; and E, as deter-
mined by the HHF method, with the eigenvalues

ExKHG, Ex~, and Exp found with the approximate ex-

change, for all the orbitals of the Ni atom, in the con-

figuration 3d'4s'. We also give experimental x-ray
term values, as well as certain other quantities ex-

plained in the table. Similar results are found for other
atoms and occupation numbers.

We shall not attempt to answer the question as to
whether the reason for the approach to similarity
between the values of ExE~G and E'HHp is ITloie than
accidental. One must realize that in the original deriva-
tion of the XKSG method" the authors have used a
variation method which reminds one of that employ ed
in the present paper. They did not, however, separate
the variations in the charge density and in the energy
produced by varying the orbitals, and by varying the
occupation numbers, as we are doing in the present
paper. For that reason we cannot regard the derivation
of the XKSG method given in Ref. 12 as being more
than suggestive. However, it is certainly interesting
that there is at least a resemblance between the eigen-
values found by that method and the quantities I'-

found by our present more realistic scheme.
In Sec. VI we go into the question as to the agreement

between the nonintegral occupation numbers found by
minimizing the energy, and by experiment. Before v e
do this, however, there is one rather complicated point
which we wish to discuss. It is well known, and was
shown in Ref. 1, that if one takes the wave functions
resulting from the XKSG, Xe, or XS methods, and
uses the integrals arising from them to compute the
average energy of the atom, and the one-electron
energies, the resulting values agree fairly well with those
obtained by HHF methods. In that reference, we de-

"See references of Connolly (Ref. 4), of Yamashita et cl.,
(Ref. 5). See also P. D. DeCicco and A. Kitz, Phys. Rev. 162, 486
(1967); E. C. Snow, ibid. 171, 785 (1968); and L. F. Mattheiss,
ibid. 133, A1399 (1964).

''W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965};
R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).
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TABLE III. Total and one-electron energies of Ni 3d 4s' determined by different methods, in Ry. '

Total energy
1s E

gf
2s E

gl
2pE

gl
3$ L'

+I
3p L"

gl
34 L~,

g&P

4s I'
C

+~I

3d—4s

013.6319
611.2537
611.2537
594.1117

75.8529
75.8529
72.1913
65.9006
65.9006
61.8391
9.7871
9.7871
8.5838
6.5661
6.5661
5.4605
1.3942
1.3942
0.4516
0.5536
0.5536
0.2567

0.8406
0.8406
0.1949

XKSG
—3013.5054—595.697

70.723

61.731

7.914

5 201

0.4951

0.2163

013.5382
597.3477
611.5378
594.4158
71.0181
76.5591
72.9171
62.1633
65.7994
61.7335
8.0261
9.8450
8.6422
5.3066
6.6254
5.5125
0.7859
1.4390
0.5088
0.5095
0.5758
0.2822

0.2764
0.8632
0.2266

XS

—72.57

5.756

1.1151

0.5831

0.5320

Exp.

—604.66

—72.37

—62.52

7.93

4.87

0.28

a Total energies determined by Eq. (1) from integrals computed by each method. E, eigenvalues of the differential equations, for HHF, XKSG, Xa, and
XS methods. e, one-electron energy determined from integrals by Eq. (6.) For the HHF method, this automatically equals the eigenvalue E, but this is
not true in other cases. However, e in each case forms a good approximation to HHF value. E', modified one-electron energy of Eq. (11),computed from
integrals. Experimental value from K. Siegbahn et al. , Atomic, Molecular. and Solid State Structure Studied by Means of Electron Spectroscopy (Almqvist
and Wikselboktryckeri AB, Uppsala, 1957), Nova Acta Regiae Societatis Scientiarum Upsaliensis Ser. IV, Vol. 20. Corrected by methods of Ref. 7 toremove
the relativistic effect.

noted the one-electron energies coniputcd in this way as
~xi-sG, ~xe, and exs. They are quite different from the
eigenvalues of the differential equations, which were
denoted in Ref. 1 as ExIqso, E~n, and Exp,' it is only
in the HHF method that the two sorts of one-electron
energies agree with each other. These facts can be seen
in Table III, in which we have given exo. for Ni, as well
as Exot. Ke discuss these quantities in the next section,
and show that it is not as straightforward as we should
suppose to compute them and that in fact the values
given in Table III must be properly modified before
they can be compared with those from the HHF method.

V. CALCULATION OF ENERGIES FROM
APPROXIMATE WAVE FUNCTIONS

As a preliminary to the discussion which we shall
give in this section, we shall carry further our treatment
of the HHF method. In the course of our calculations
of the Co and Ni atoms with ten different sets of occupa-
tion numbers, enumerated at the beginning of Sec. IV,
we have found ten different sets of orbitals and the
resulting integrals of the one- and two-electron oper-
ators, though the last case, for 3d' or 3d", lacks the
integrals involving the 4s orbital, which is missing in
this case. Ke then have a number of different
complete sets of integrals I(i), (i,i), and (ij), of the
type mentioned in Eqs. (1), (2), and later equations.
There is nothing to prevent our using the set of orbitals
and integrals computed by minimizing the energy for
one value of q, the number of 3d electrons, to calculate
values of the energy for other values of q. Ke need

merely substitute the one set of integrals and the other
set of q s into Eq. (1).But for any set of q, 's, we shall
find that the lowest energy E, comes from the set of
integrals which were found by solving the HHF
equations for that set of q, 's, because the HHF equa-
tions are equivalent to varying the orbitals to minimize
the energy, at constant occupation number.

It is interesting nevertheless to carry out these
calculations with the wrong integrals, for it gives us
insight into the sort of results which we shall find by
using wave functions which are not proper solutions of
the HHF method for the occupation numbers in
question. It points the way to the method of handling
the orbitals and integrals found by the approximate
exchange methods, which are not derived by a method
of varying orbitals to minimize the energy. As a 6rst
step toward this discussion, we rewrite the expression
of Eq. (1) for E, in the form appropriate to our pre-
sent problem. %e take the q s of the 3d and 4s orbitals
to be given by Eq. (7); that is, we have the configuration
3d"+ 4s~ "—,where E is the total number of electrons
in the 3d and 4s levels. In most of our previous work,
we have taken n to equal the number of 3d electrons
in a configuration with two 4s electrons, which implies
that n=E —2. In the present case, however, we shall
choose n to be that nonintegral number of Bd electrons
for which the integrals are to be computed from our
HHF calculations. Since the expression of Eq. (1) is
quadratic in the q s, and therefore in x, and since we
are taking the integrals to be constant, we shall f'Ind
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made for a particular set of occupation numbers, or +

particular n. From each of these sets of integrals, we

can compute quantities E, , E3&', E4,', and A, using

Eqs. (1), (2), (12), and (15). If we identify these

quantities with E (0), Esp', E4,', and A of Eq. (14),
we can then find a parabola, representing the energy

computed as a function of occupation number, using

the integrals found from the XKSG or Xa method.

These parabolas resemble those found for the HHF
case in Fig. 3. We can draw an envelope curve tangent

to the parabolas, and the arguments we have given

earlier indicate that, for any value of occupation number

q, the energy will be lower for the envelope curve than

for any of the parabolas except for that parabola tangent

to the envelope at this q, so that the envelope represents

the best approximation to the true energy that we can

find from this restricted set of variation functions.

However, we must remember that these functions

are not true solutions of the HHF problem. Thus our

argument that, the slope of the parabola at x=o,
where E„(x) equals E„(0),must equal the slope of the

curve giving the computed average energy E, as a
function of q=n+x breaks down. Since the average

energy computed from these functions does not satisfy

the HHF equations, we find that BE, /Bx=Esd, ' Es'—
+(additional terms which do not vanish in this case).
If we interpret E (0) as being the value of E, com-

puted for q=n by using the integrals found from the

XKSG or Xo. method, as we are doing, the slope of the

parabola intersecting this curve at a given q will not

exactly equal the slope of the curve E„(0).Thus the

parabolas will cut through this curve, and it will not

be the envelope which will necessarily lie lower.

The consequence of this is that the point of tangency

between one of the parabolas and the true envelope

curve will not come at the value of q for which the

eigenfunctions were determined. For instance, one set

of eigenfunctions for Co was found by assuming the

configuration 3d'4s', and by using the XKSG method.

That is, the program (essentially the Herman —Skillman

program of Ref. 7) takes the orbitals resulting from one

stage of the calculation, computes from them a charge

density using the assumed occupation numbers, de-

rives a Coulomb potential from this charge density,

and an exchange potential found by the XKSG assump-

tion, and iterates until the orbitals found by solving

the Schrodinger equation for this potential are identical

with the original orbitals, to a predetermined tolerance.

When this is carried through, it is in fact found that the

resulting parabola is tangent to the true envelope curve,

not at q=7, but approximately at q=7.4. In other

words, these orbitals and integrals, which were intended

to be used for the configuration 3d'4s', prove to be even

better approximations for the configuration 3d744si 6

than the orbitals which were determined by carrying

through the analogous procedure for that occupation

number.

We have carried through these calculations not only

for the XKSG exchange, but also for the Xo. exchange,

as mentioned earlier. We had supposed that the envelope

curve derived from the Xn exchange would lie below

that for the XKSG exchange, since the parameter 0.

was varied to minimize the energy calculated by Eq. (1)
from the orbitals of the Xe method, awhile the orbitals of
the XKSG method lead to a considerably higher energy
with fixed occupation numbers. But when the calcula-
tions are made, we find that the Xn method leads to a
lower energy only for q less than about 7.4, while the
envelope found from the XKSG method crosses the
other at this point, and corresponds to lower energy for
larger q's. However, the parabolas found by the Xa
method are tangent to the envelope at different values
of q from those found by the XKSG method. For
instance, the parabola found by the Xn method by
solving the Schrodinger equation with the Xn exchange
for the configuration 3d' 4s' proves to be tangent tp
the envelope at approximately q= 7.4. This means that
we have two functions, that determined by the XKSG
method for q=7, and that determined by the Xn
method for q=7.2, both of which are tangent to en-

velopes at approximately 7.4, at which both envelopes
correspond to the same energy. It would seem reason-
able, then, that these two wave functions must be very
similar. They prove to be, when one intercompares them

by comparing the various integrals, or the orbitals
themselves.

We may well ask how it can be that the use of different
exchange values (different u's) and different occupation
numbers, can lead to approximately the same wave
functions. In Ref. 1, we found that when we had good
agreement between different procedures for computing
orbitals, the reason could be traced back to good agree-
ment between the potentials used in the corresponding
Schrodinger equations. We have not traced through
this agreement in detail in the present case, but it is
inherently plausible that the same situation would be
found here too. It would be of interest to find the
coulomb and exchange potentials arising in these two
cases, and see whether they agree fairly well, as we
suspect they will.

Since the wave function giving the lowest envelope
is presumably the best, from the point of view of the
variation method, we have fitted a composite envelope
to those determined from the Xo. and XKSG methods,
and have found values of the various integrals from
the wave functions giving the parabolas tangent to the
envelope at each occupation number. We then can And

equations, like Eqs. (16) and (17), expressing the best
values which we have found from the statistical ex-
change approximation method. These equations are:

Co: Ea(*)=—2762.5320—0.1532(ss 7)~0 1893(„7)~
—0.0123(ss-7)'+gL —0.1532+.0 3786 (ss 7)
—o 0369(~-7)'j+x-'L0.42~0—0.0184(~ 7)

—0.0080(as-7)mj, (18)
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Ni: E„(x)= —3013.5390—0.1799(n-8)+0.1940(n-8)'
—0.0106(n-8)'+xL —0.1799+0.3880(n-8)
—0.0318(n-8)'j+x'$0.4620—0 0080(n-8)

—0.0120(n-8)'j. (19)

It will be seen that aside from the fact that the HHF
method gives energies almost 0.1 Ry lower than the best
calculations using statistical exchange, the agreement
between these equations and those of Eqs. (16) and

(17) describing the HHF method is quite good. The
values of the quantities E3~'—E4,' found by diGerentia-

ting these functions derived from the statistical ex-

change agree well enough with those found from the
HHF method so that the diBerences would hardly be
noticeable in a graph such as Fig. 2. Similarly we
can find values of the one-electron energies e; and the
values &3'—e4, are in good agreement with those found

by the HHF method.
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Ke now understand the calculations which have
been made well enough so that we can start comparing
the results with experiment. As a preliminary, and for
general interest, we show in Fig. 4 a figure prepared by
the senior author a number of years ago'4 to illustrate
the experimental situation regarding the average
energies E, found in the 3d transition atoms. Experi-
mental energy levels were described as well as possible
by fitting to them values of E, and of the various
atomic integrals involved in the multiplet separations,
regarded as empirical parameters, using methods de-
scribed in Ref. 8. As one will see from Fig. 4, this was
done for a number of configurations of several transi-
tion-group atoms and ions, and E was plotted as a
function of the parameter which we are calling q in the
present paper. Calculated points of course correspond
only to integral values of.q, and in Fig. 4 they are
connected by straight lines, rather than being fitted
to smooth curves.

Theoretical curves were not available when Fig. 4
was prepared, with which to make comparison. Now,
however, curves of E, as a function of q, such as we
have in Fig. 1, represent theoretical curves to compare
with the particular cases of the configurations 3d"+ 4s' *

shown in Fig. 4. If the theory agreed perfectly with
experiment the calculated points found for integral
values of q= n+x in Fig. 1 would agree with the values
shown in Fig. 4 (or in corresponding figures for the
atoms not included in Fig. 4). It is clear that in a
general way the calculations agree with experiment,
the theoretical curves of E, as a function of q having
minima between the configurations 3d"4s' and 3d"+'4s

"J.C. Slater, Ref. 8, Vol. 1, p. 381. Ke also call the attention
of the reader to the interesting paper on a similar subject by C.
R. Claydon and K. D. Carlson, J. Chem. Phys. 49, 1331 (1968),
which appeared too late to be considered in our discussion in the
present. paper.

3ds4
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wads

I
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3d r4s
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3d 4s 3d
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4s

Fr@. 4. I', for a number of configurations of atoms and ions of
Sc, Ti, Fe, and Ni, as a function of number of d electrons, computed
from experiment. From Ref. 8, Vol. 1, p. 381.

in Fig. 1, which seems to agree with the experimental
behavior of the curve for Ni shown in Fig. 4 although
Fig. 4 indicates that the minimum of the experimental
Ni curve lies closer to 3d'4s than to 3d'4s'.

Though we have not made detailed calculations for
any atoms except Co and Ni, still we can make estimates
regarding the behavior of the earlier members of the 3d
transition series. From Fig. 4, it would appear that the
minimum of the curve for E, as a function of x should
move to the left as we go to the lighter atoms, passing
to the left of x=0 by the time we get down to Sc and
Ti. We can investigate this point from Mann's cal-
culations for the configurations 3d"4s', from Ref. 6
and from the results of the present paper. From those
calculations we can find E3~'—E4,' for these occupation
numbers. Since this quantity measures the initial slope
of the curve of E (x) versus x, of Eq. (14), at x=0, we
should expect that, as we go to the lighter atoms, the
quantity would change from the negative value which
we have for Co and Ni, indicating that the envelope
curve is sloping downward at x=0, to a positive value,
indicating an upward slope, leading to a minimum of
the curve corresponding mathematically to negative
values of x. A tabulation to test this hypothesis is
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given in Tan~le IV, in which we list values of Ead,
E4„E3~' and E4,', as found from Mann's integrals,
for each of the configurations for which he has made
calculations, including those reported in the present

paper and in Ref. 6.
From Table IV we first note that Eag lies below E4.

in each case, verifying the difBculty which we pointed
out in Sec. I that if we use the Hartree —Fock criterion
the electrons wiLL go into the state of lowest E;. On the
other hand, E3q' lies above E4,' in Sc 3d4s' and Ti
3d24s', so that the initial slope of the envelope curve
for these cases, equal to E3~'—E4,', will be positive,
indicating that the minimum will come for negative
x as in Fig. 4, or for q less than n. As we get to heavier
atoms with configuration 3d"4s', the quantity E3~'—E4,'

changes sign and becomes increasingly negative,
indicating that the minimum of the curve moves to
larger positive x values.

The case of Cr is an exception in the table, since for
this atom we have calculations only for the configura-
tion 3d'4s, or 3d"+'4s, so that the energies are computed
for this configuration. For this case, E3~'—E4,' is
positive, but this now indicates the slope of the curve
at the configuration 3d'4s, so that the minimum energy
comes at a value of q less than that appropriate for this
configuration, but presumably greater than for the
configuration 3d44s'. We note that the case of Cr 3d'4s
shows a behavior similar to Co 3d'4s, Ni 3d'4s, and
Cu 3d"4s, shown in Table IV.

The general behavior of the curves, then, is in agree-
rnent with experiment, but when we come to examine
the results more quantitatively, the situation is not
as good. Thus, from Mann's calculation, as given in
Table I, we find that E, for Co 3d'4s lies 0.0084 Ry
above E, for 3d'4s'. We can find experimental values
of E, . The calculations used in constructing Fig. 4 were
part of a rather extensive study of the experimental
energy levels of the multiplet states of the 3d transition
atoms, which was never published in detail, but in that
study it was found that the experimental value of E,
for Co 3d'4s was in fact 0.0534 Ry below 3d74s'. Hence
there is a discrepancy of 0.0084+0.0534=0.0618 Ry
between theory and experiment, the calculated energy
of 3d'4s lying too high in comparison with 3d74s' to
agree with experiment. A similar situation is found for
Ni, where the value of E, for 3d'4s, as computed by
Mann from the HHF method, lies too high in compari-
son with the 3d 4s by the amount 0.0703 Ry, if we
accept the experimental values. In each case, the
experimental values indicate that a curve, like Fig. 1,
giving E, as a function of q, should have its minimum
at considerably greater values of q than are found from
the HHF calculation, for agreement with experiment.

It need not trouble us very much that we do not have
better agreement. It is a weLl-known fact that the simple
theory of multiplet separations, based on computing
the various integrals from the HHF method and com-

puting the positions of the various multiplets from these

TABLE IV. One-electron energies E; and L, from Eqs. (6)
and (11},for the 3d and 4s orbitals of elements from Sc to Zn,
determined from calculations of Mann in Ref. 6 and from present
work. Integrals are computed by the HHF method for the con-
6gurations tabulated. Energies in Ry.

Sc 3d4s'
Ti 3d24s2

V 3d'4s'
Cr 3d'4s
Mn 3d64$2

Fe 3d'4s'
Co 3d"4s"

3d7.24$1.8

3d7.44$1.6

3d7"54$1'6

3d7.64$1.4

3d7.84$1.2

3d8 04s"
3d"4s"
3d'84s"
3d0'

Ni 3d"4s'0
3d8.24$1.8

3d8' 4$"
3d"4s"
3d8.64$1.4

3d8.84s"
3d 4s'
3d"4s"
3d"4s"
3d10.0

Cu 3d'4s2

3d"4s
Zn 3d"4s'

Ew

—0.6874
—0.8116
—0.9224
—0.6450
—1.1223
—1.2157
—1.3061
—1.2094
—1.1157
—1.0700
—1.0251
—0.9379
—0.8540
—0.6610
—0.5578
—0.4948
—1.3942
—1.2931
—1.1949
—1 ~ 1469
—1.0997
—1.0077
—0.9190
—0.7131
—0.6014
—0.5324
—1.4804
—0.9825
—1.5651

«»
—0.4202
—0.4438
—0.4649
—0.4151
—0.5027
—0.5203
—0.5372
—0.5204
—0.5037
—0.4953
—0.4869
—0.4701
—0.4534
—0.4116
—0.3870

—0.5536
—0.5361
—0.5185
—0.5097
—0.5009
—0.4832
—0.4653
—0.4203
—0.3929

—0.5695
—0.4770
—0.5850

E3a'

—0.1455
—0.2013
—0.2504

0.0144
—0.3372
—0.3769
—0.4149
—0.3303
—0.2489
—0.2095
—0.1709
—0.0965
—0.0259

0.1325
0.2138
0.2616

—0.4516
—0.3622
—0.2761
—0.2342
—0.1932
—0.1138
—0.0380

0.1341
0.2244
0.2786

—0.4871
—0.0497
—0.5217

E4»'

—0.1918
—0.2035
—0.2139
—0.1793
—0.2322
—0.2407
—0.2488
—0.2378
—0.2268
—0.2214
—0.2160
—0.2053
—0.1948
—0.1694
—0.1551

—0.2567
—0.2451
—0.2336
—0.2279
—0.2222
—0.2109
—0.1997
—0.1723
—0.1563

—0.2643
—0,2044
—0.2718

integrals by the methods outlined in Ref. 8, does not
give results which are in very good quantitative agree-
ment with experiment, though qualitatively it is quite
good. The reason of course is that the HHF method is
only a first approximation, to be corrected by some
hypothetical discussion of correlation energy, and these
correl. ation corrections are large enough to modify the
multiplet separations quite strongly. It need not sur-
prise us that similar difhculties should appear in the
matter of E, .

The reader might well ask, are these discrepancies
of the order of 0.06 or 0.07 Ry of significant size) To
answer this question, we give in Figs. 5 and 6 comparison
of the experimental and computed multiplets for the
configurations being considered, for Co and Ni, respec-
tively. Calculated values are plotted as abscissas, ex-
perimental values as ordinates, so that if there were
agreement between theory and experiment, the points
would lie on a straight line with 45' slope. The calcu-
lated P and 6 integrals concerned in the rnultiplet
separations are taken from the calculations by the HHF
method, though the integrals would be very nearly
the same if calculations from the XKSG or Xo. method
were used instead. But the calculated value of E, for
the configuration with a single 4s electron is arbitrarily
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Fio. 5. Observed energies of multiplets in 3d'4s' and 3d'4s
configurations of Co, as originates, plotted against calculated
energies of same multiplets, computed from HHF integrals
appropriate to x=7.63, as in Fig. 8.

decreased by the amount 0.0618 or 0.0703 Ry, respec-
tively, to make the difference of calculated E, 's for
the two configurations agree with experiment.

It is clear that though there is considerable scatter of
the calculated points, they still tend to lie fairly close
to a straight line. The straight line has a slope around
0.80, rather than unity, a common feature of such
calculations. It indicates that the values of the Ii and 6
parameters required to fit the experiments are only
about 0.80 times the calculated values, the discrepancy
being a measure of the correlation corrections which
were mentioned earlier. But the essential point here is
not the slope of the curve but whether the points re-
presenting the multiplets arising from the two con-
figurations 3d'4s' and 3d'4s, or 3d'4s' and 3d'4s,
respectivelv, fall on a single curve or not. If E,„were
given the HHF value, rather than the modified value
which we have used in constructing Figs. 5 znd 6, the
points representing the configurations 3d'4s or 3d'4s,
respectively, shown by crosses in the figures, would be
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FIG. 6. Observed energies of multiplets 3d 4s' and 3d'4s con-
figurations of Ni, as ordinates, plotted against calculated energies
of same multiplets, computed from HHF integrals appropriate
to I=8.63, as in Fig. 9.

shifted to the right in the diagram by amounts cor-
responding to 0.06 or 0.07 Ry. This would clearly
be of such magnitude that it wouM cause the points
representing the two configurations to lie on two
quite distinct lines, rather than falling fairly satis-
factorily on the same line, as they do in Figs. 5 and 6.
In other words, comparison between theory and experi-
ment is capable of deciding on the correct energy
differences between the E, 's of the two configurations
with an accuracy great enough to show that the HHF
calculations must be corrected, even though the spread
of the multiplets arising from either configuration is a
good deal greater than the difference between the
average energies of the two.

It is now interesting to see what the comparison
would have shown if we had used some form of the
statistical exchange approximation, as we would have
done in an energy-band calculation, rather than carry-
ing through the HHF calculation. We would have found
E3$ E4 as computed from eigenvalues, say, of the
XKSG method, but we would not have had the HHF
calculation of EM' —E4,'. Suppose we had tentatively
adopted the hypothesis that it would not be a
bad approximation to substitute (E.-q —E4„)xxso for
(Eaq' —E4,') nnF, in our discussion of Fig. 2 in Sec. IV,
we pointed out that there was a resemblance between
these curves. Ke could then invert our procedure, and
instead of getting E3~'—E4,' by differentiating the HHF
curve of E, as a function of x, we could construct a
curve of E, as a function of x by integrating E3~—E4,
from the XKSG method. Now it is rather easy to
calculate the values of this quantity for the XKSG
method by a quadratic approximation. Thus, we find
to a good approximation

(E3s E&,)xK so= —0.17—82+0.2850(q-7)
—0.0600(q-7)' for Co,

= —0.2170+0 '090 (q-8)
—0.0640 (q-8)' for Ni. (20)

If we integrate these expressions with respect to q to
get an average energy, we find

E,„=Eo—0.1782(q-7)+0.1425(q-7)' —0.0200(q-7)'
for Co,

=Eo—0.2170(q-8)+0.1545 (q-8)' —0.0213(q-8)'
for Ni. (21)

In Eq. (21) Eo stands for the average energy when q
equals 7 or 8, respectively.

For the energies of the configurations 3d'4s or 3d'4s'
respectively, we can now substitute q-7 or q-8= j. in
Eq. (21). We then find

E(3d'4s) E(3d'4s') = —0.0557 Ry,—for Co

E(3d94s) —E(3ds4s~)= —0.0838 Ry for Ni. (22)

The experimental values are —0.0534 Ry for Co, as
was stated earlier, and —0.0803 Ry for Ni. The agree-
ment between the values of Eq. (22) and experiment
is surely fortuitously good. Nevertheless it shows that
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if w'e were to use one-electron eigenvalues determined
bv the XKSG method, in place of the energies I'',"

found from the HHF method, me should have found
energy separations between the configurations in the Co
and Ni atoms in very close agreement with experiment.
'This suggests, in other words, that we may well have
one of those approximate cancellations of errors which
frequently seem to help in energy-band theory, and
that it may well be empirically justified to use eigen-
values of the Schrodinger equation using an exchange
not far from the XKSG value to determine energy
values in an atom containing 3d and 4s electrons, or
presumably also in a crystal containing the energy bands
derived from these atomic levels.

En the discussion which we have just given concerning
the agreement with experiment, we have assumed that
we should use the integrals appropriate to the con-
figuration 3d'4s' of Co, for instance, for calculating
the multiplets of that configuration, and those appro-
priate to 3d'4s for calculating the multiplets of that
configuration. This is a de=irable method of procedure,
but it could well be too complicated in actual practice.
In particular, in an energy-band calculation, we find
a single set of wave functions, which must serve as well
as possible for discussing both the 3d and the 4s parts
of overlapping energy bands. Let us consider, from an
atomic point of view, whether we could find such a set
of wave functions and integrals. We shall ask the
question, is it possible to 6nd a single set of orbitals
and integrals, computed for some fractional occupa-
tion number between 3d'4s' and 3d'4s which will give a
satisfactory description of the whole spectrum, in-
cluding the multiplets arising from both configurations&
We shall base our discussion on the HHF method, but
remeniber that the discussion which we have just
given shows that the results will have to be modified
considerably to bring them into agreement with
experiment.

To answ'er our question, we shall compute the energies
of all multiplets in the con6gurations 3d'4s' and 3d'4s
of Co, or in the configurations 3d'4s' and 3d'4s of Ni,
using integrals calculated by the HHF method for
different n values. We shall plot these energies as func-
tions of n, and shall examine the resulting plots to see if
there is some value of n for which the spectrum of ex-
cited states would agree with experiment. The energies
of these multiplets depend on two quantities, E,
and the collection of I" and 6 integrals which determine
the multiplet separations from E„.The quantities Ii
and G do not vary much with n, so that these separations
will not depend strongly on n. However, as we shall
now show, the average energies J.", of the two con-
6gurations under consideration vary strikingly as n
changes, one configuration moving rapidly upward,
the other downward. Hence we cannot possibly match
the calculated and the observed multiplets unless the
dNerence between the average energies of the con-

6gurations is given approximately in agreement with
experiment.

I.et us then investigate these average energies. In Eq.
(16), we have given the average energy E„(x)of the Co
atom, determined by the HHF method, as a function
of n, the number of 3d electrons in the HHF problem
for which the integrals were computed, and of x= q

—n,
where q is the number of 3d electrons in the atom. In
Fig. 3 we plotted the information from this equation,
by giving parabolas showing the energy as a function
of q, for several different values of the quantity n.
We shall now show some of the same information in a
different way, more appropriate to our present question.
In Fig. 7 we show E„(x) from Eq. (16), as a function
of n, for Co, for the con6gurations given by q=7, 8,
and 9, or for x= 7-n, S-n, 9-n, respectively. The equa-
tions from which Fig. 7 was constructed were set up by
substituting x=7 n, etc. , -in Eq. (16) giving in each
case a function of n. Similar curves for Ni are much
like those of Fig. 7. We can also 6nd v*lues of the
various integrals, such as F'(3d, 3d), etc., which come
into the calculations of the multiplet energies, as func-
tions of n, from our HHF calculations, and can use
these integrals, together with the values of J..', shown
in Fig. 7, to 6nd the energies of each individual multi-
plet of each configuration 3d'4s' or 3d'4s, as functions
of n. We show the resulting calculation for the multi-
plets of Co in Fig. 8, and a similar set of calculations
for Ni in Fig. 9.

When we consider Fig. 7, we must remember the
minimum principle of wave mechanics. If we used the
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function of g, the number of 3d electrons for which the HHF
calculation was made. From Eq. (16),setting q =e+z = g, 8, and 9
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energy of the configuration to the value of n for which

the integrals are computed.
We can now use Figs. 8 and 9 to answer our question:

it is possible to find a single value of e, such that the
multiplets computed from the orbitals and integrals
found for this value of n will represent the experimental
spectrum satisfactorily'? What we must do is locate a
vertical line in the figures, corresponding to a particular
n, such that the points of intersection between this
vertical line and the curves representing the multiplets
of both configurations will agree well with experiment.
Obviously the important thing is to locate the value of
n so that the relative positions of the two sets of multi-
plets will be correct; the absolute value of the energy
is less important, when our problem is to study the
spectrum. In order to do this, from our previous dis-
cussion, we need merely have the energy differences
between the E,„values for the configurations 3d 4s'
and 3d'4s for Co, or 3d 4s' and 3d'4s for Ni, agree with
the experimental values. We can read o6 this value of
e for Co from Fig. 7, or compute it from the equations
of Eq. (16), and can use Eq. (17) for Ni. When we do
this, we find that the required values of n are 7.63 for
Co, and 8.63 for Ni. We have drawn vertical lines in
Figs. 8 and 9 corresponding to these values of n, and
we see by comparison with Figs. 5 and 6 that the

Fxo. 8. Multiplets of 3d'4s', 3d 4s, and 3d' configuations of Co,
as function of n, the number of 3d electrons for which the HHF
calculation was made. The line at n=7.63 intersects the various
curves at the energies marked "calculated" in Fig. 5.

orbitals and integrals appropriate to Co 3d'4s to
calculate the average energy of the multiplets of 3d'4s~,
we should get the lowest possible value for this average
energy; we should find a higher value for the same
energy expression if we used the orbitals and integrals
appropriate to 3d'4s, and still higher values if we used
those for 3d'. Similarly if we were finding the energy
of 3d'4s we should get a lower energy if we used the
orbitals and integrals appropriate to that configuration
than if we used the integrals for either 3d74s' or for
3d', etc. These facts are clearly illustrated in Fig. 7,
where each curve has a minimum for n=q. This fact
appears mathematically when we substitute x= q

—I in
Eq. (16), and write E (x) as a polynomial in q

—n;
the linear term automatically vanishes. From Figs. 8
and 9 we note that the curves for the various multiplets
arising from one configuration shift upward or down-
ward as we change n, very much in the same way as
does the curve for E, ; this is a result of the fact that
the F and G integrals responsible for the multiplet
separations from E, vary only slightly with n. Thus,
the set of multiplets arising from one configuration shifts
upward and downward very rapidly with respect to
those from another configuration, as we change the
orbitals, on account of the sensitivity of the average
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FIG. 9. Multiplets of 3d'4s' 3d'4s, and 3d' configurations of
Ni, as function of n, the number of 3d electrons for which the HHF
calculation was made. The line at n=8.63 intersects the various
curves at the energies marked "calculated" in Fig. 6.
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multiplet levels come in the right relation to each other

along these lines. As a matter of fact, the calculated
multiplet energies plotted in Figs. 5 a,nd 6 were actually
found by the procedure just mentioned from Figs. 8
and 9. In this way, then, we see that we can give a
physical meaning to nonintegral occupation numbers

for an individual atom, in a way not considered earlier

in this paper: these numbers yield a charge distribu-

tion, a set of eigenfunctions, and a set of integrals,
which can be used satisfactorily for calculation of the
multiplets of more than one of the lower configurations
of the atom, without having to use separate values of
the integrals for each configuration. We note that the
nonintegral configurations 3d'"4s" for Co, 3d'"4s' "
for Ni, which seem to give the best agreement with the
optical spectrum, are not far from the values 3d"'4s"4
and 3d "4s'4 quoted in Sec. IV giving the minimum

energy of the HHF method, though they are not ex-

actly equal to these values. We have no explanation
for this discrepancy, beyond the obvious fact that the
use of nonintegral configurations is not a very quantia-
tive concept, though it is useful qualitatively. In the
next section, on spin-polarized calculations, we shall
find still further nonintegral configurations for Co and
Ni, which do not agree exactly with either of the values
which we have just quoted.

VII. THE SPIN-POLARIZED CALCULATION
FOR ATOMS

The calculation that we have been making so far
in the present paper is really only a poor approximation
to the true state of affairs, because we are averaging
over the multiplet structure. We know in fact that as
we increase the number of 3d electrons, from f. to 5,
we get multiplets of larger and larger multiplicity,
which according to Hund's rule are the lowest multiplets
of the system. It is much more realistic, if we are
interested in the true ground state of the atoms, to
take account of this multiplet structure. To do this
in detail, we should make separate calculations for
each multiplet, but we may make a good approximation
by using spin-polarized spin orbitals, which have been
discussed by the senior author in several papers. "
In these references, it was shown how one can set up
formulas for the average energy of multiplets of each
multiplicity, in an atom. For the present purpose, we
consider the multiplets of the highest possible multi-
plicity. We now set up the required formulas for the
average energy of the multiplets of this highest multi-
plicity, and then we treat the resulting formula accord-
ing to the methods which we have been describing for
the nonmagnetic case in Secs. II—VI.

We refer the reader to Ref. 15 for the method used in
deriving the average energy. The case ta.ken up in
those references was a restricted one, in that only one

"J.C. Slater, Phys. Rev. 165, 655 (1968); 165, 658 (1968).
These vrill be referred to as I, II respectively. J. C. Slater, J.
Appl. Phys. 39, 761 (1968).

partially filled shell of electrons was considered. In
the present case we need more than one partially
filled shell, and in fact it is just as simple to set up the
energy formula for the general case where all shells
are partially occupied. "I.et us proceed as in Sec. III
but let us now refer to a shell as consisting of those
spin-orbitals with given e, l, diferent m~, but a given
m„either -', or —-', . If we need to describe it, we can
do so by using such symbols as 3dt', 3dg, where $ and $
refer to the spin orientations. We assume di6'erent
orbitals for diferent spins; that is, the radial wave
function will depend on n, 3, and m„ though not on. m~.

We then 6nd that we can still use Eq (1). for the
average energy, provided we use diferent definitions
for Kq. (2) for the two-electron integrals. In place of
Eq. (2), we must assume

(z,i) =F'(n;l pn„;n, ;l.;m. ;)
c"(l;0; l;0)

F~(n,l,m. ;; n, l,m. ;),
~0 2l;

(z,j)=Fo(n, l,m. ,", n, l,m. ,)
c~(l;0; f,0)—5(m„m„) P" L("+')("+')j'"

XG "(n;1,m. ;; zz;l,m, z) . (23)

The reader can verify Eq. (23) in two cases. First,
if we let there be equal numbers of electrons with
m, =-', and ——,

' in each shell, so that there is no spin
polarization and the orbitals are independent of m„
we can show that Kq. (23) reduces to Eq. (2). Secondly,
if all of the shells except one are filled with electrons
of both spins, but only one is partially 61led, Eq. (23)
reduces to Eq. (8) of Ref. 15 (II).

We can now vary one of the spin orbitals in Eqs. (1)
and (23), set the variation of average energy equal
to zero, and hence find the analog of the Hartree —Fock
equation for this orbital. The resulting equation is
identical with Eq. (4), with the following exceptions.
In each of the integrals, like V&(n, l, ; n, l, /rz), we must
include also the quantum numbers m„, m„. among the
quantum numbers on which the integrals depend. In
the term involving Vk(n;f;m„;; n;L;m„/rz), the de-
nominator must be 2l, rather than 4/;+1. The term
involving Yz(n, f;m„; n, l,m„/r&) is present only in case
m„.=m„., and in that case it is twice as great as in
Eq. (4).

Next we can find the one-electron energies, as I';,.
This can be done, as before, either by multiplying the
modified form of Eq. (4) by the complex conjugate
of I'; and integrating, or by starting with the energy
expression of Eq. (1) and subtracting from it an equi-
valent expression in which q; is replaced by q;—1. The
result obtained by either method is the same as in
Kq. (6), provided we use Kq. (23) for evaluating the
integrals. Since we are assuming diGerent orbitals and
occupation numbers for different spins, the one-

"This fact was first pointed out to the senior author by G. I',
Koster.
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electron energies will depend on m, .%e can then p1'oceed
to vary the occupation numbers, as in Sec. III, and
we again find that the condition for minimum energy
is the equality of the modified one-electron energies
E for two states between which electrons can be
interchanged, provided that in Eqs. (11) and (12) for
the modified one-electron energies we use the integrals
as in Eq. (23).

We can now apply these methods to the case of 3d
atoms, which we have handled in the nonmagnetic
approximation in the preceding sections. We can find
the one-electron energies E3d f E3dg E4g f ) E4gg,
provided we know the occupation numbers of the
various shells and the energy integrals. We start by
assuming the results of Mann, from Ref. 6 and the
present calculations. We assume, as in Ref. 15 (II),
that the integrals depend only slightly on spin orienta-
tion. It was shown in that reference that if we use
Mann's integrals, calculated from a nonmagnetic
postulate, energy calculations for the spin-polarized
case can be made with fair accuracy, and therefore we
make that assumption. As for the occupation numbers,
since we wish the multiplets of lowest energy and
consequently highest multiplicity, we assume that spin
orbitals with spin up are occupied in preference to spin
down, as far as possible consistent with the exclusion
principle.

When we make these assumptions, we find values of
the one-electron energies E3~f', etc. , given in Table V.
The formulas from which these energies are calculated
are given in the Appendix. In this table we give the
assumed configuration, in terms of the occupation

numbers of the four possible 3d and 4s states. Ke can
now examine the resu/ting energies E, and wc; see
that in several cases the one-dectron energies are
arranged in such an order that the assumed Occupation
number would in fact correspond to the Iowest energy.
Thus, in Sc, the one-electron energies, in order of in-
creasing energy, are 4s't, 4sJ, , 3df, and 3dJ, . This is in
agreement with the assumed configurations, in which the
4st' and 4s], states are occupied with the maximum of one
electron each, and the 3df has one electron. In Cr, we
6nd similarly that the 3dt' and 4sf orbitals, which are
assumed to be occupied, have energies below the 4sl
and 3dl, which are assumed to be empty. In Mn, which
has the same occupation as Cr except for the electro~
in the 4sl state, the one-electron energies are again
in the proper order, as they also are in Fe (3dt')"
3dl4s't4sl. Finally, in Zn where all sta, tes are occupied,
we again have agreement with the one-electron picture.

In the remaining cases, there are discrepancies for
the cases of integral occupation numbers, which are
removed by assuming nonintegral occupation numbers.
Thus in Ti, the lowest one-electron energy is the 3df,
mhich contains only two electrons in the assumed
configuration. The 4st' and 4sl states both have higher
one-electron energies. Let us then assume that me in-
crease the occupation number of the 3dt' and see what
happens. We mould naturally do this at the expense
of the 4sl, the highest state which might be occupied.
Ke know from our previous work that as we shift
electrons from a 4s state to a 3d, the energy of the 3d
state rapidly rises, much more rapidly than does that
of the 4s. Thus as the occupation number of the 3df

TABLE V. One-electron energies as deaned in Eqs. (6), (11),and (23), for 3d and 4s orbitals of both spins, in spin-polarized energy
levels for the atoms from Sc to Zn, determined from calculations of Mann in Ref. 6 and the present vvork. The integrals were determined
from the nonspin-polarized case. Assumed configurations for the spin-polarized calculations are tabulated. Energizes in lay.

Sc 3dt'4$ t4sf
Ti (3d))'4st'4$$
V (3d))'4$)4sf
Cr (3dt')'4st'
Mn (3dI)'4sI4sl
Fe (3dl)'3d14sI4sl
Co {3dt')'(3df)'4st'4$$

(3di)'(3dl) "4s1' (4sl)"
(3d't)'(3d j,)"4$)(4s[,) -'

{3df) (3dj, )~ est (4$|,) '
(3dt') '(3d))"4st {4$$)"
(3dt') '(3d))"4$$(4$$)"
(3dg) '(3d j,)3 04st'

Ni (3d)) (3d)) 4st4$&
(3dt)'(3dl)"4$1'(4$$)'"
(3dt') (3df)"4$T (4sl)o. 6

(3dt') '(3d)) 3 54$'t (4$$)0'
(3dB'(3dl)"4sl (4sl)"
(3dI)'(3dl)"4sI (4sl)"
(3dI) '(3d J,)4 s4sI

Cu (3dj)'(3d))'4$$4$)
(3df) '(3d))'4$$

Zn (3d'f)'(3di)'4sI4sJ,

—0.1617
—0.2563
—0.3515
—0.1663
—0.5503
—0.5641
—0.5708
—0.4762
—0.3852
—0.3410
—0.2978
—0.2143
—0.1348
—0.5709
—0.4720
—0.3765
—0.3300
—0.2845
—0.1963
—0.1119
—0.5649
—0.0835
—0.5531

—0.2006
—0.2198
—0.2369
—0.2178
—0.2682
—0.2689
—0.2696
—0.2571
—0.2446
—0.2385
—0.2323
—0.2202
—0.2083
—0.2704
—0.2573
—0.2444
—0.2379
—0.2315
—0.2188
—0.2062
—0.2711
—0.2044
—0.2718

—0.1830
—0.1873
—0.1908
—0.1407
—0.1962
—0.2125
—0.2280
—0.2185
—0.2090
—0.2043
—0.1996
—0.1905
—0.1814
—0.2430
—0.2329
—0.2228
—0.2178
—0.2129
—0.2030
—0.1932
—0.2576
—0.2044
—0.2718

—0.1034
—0.1242
—0.1330
+0.1950
—0.1241
—0.1998
—0.2806
—0.2075
—0.1374
—0.1035
—0.0704
—0.0066

0.0538
—0.3663
—0.2883
—0.2130
—0.1765
—0.1407
—0.0715
—0.0006
—0.4572
—0.0708
—0.5532
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break in properties halfway through the 3d group, at
Cr, with the occupation number of 4sg gradua1ly de-
creasing from unity to zero as we go through the se-
quence from Sc to Cr, and varying in the same general
way as we go through the sequence from Mn to Cu
(though the number does not seem to be quite zero
at Cu).

E, (q;—1)—E, (q,)=— ~Eav

qs

q&—1

E', (q,)dq;. (24)

This is simply the negative of the average value of
E averaged over the range of q s from q;—1 to q;.

In a similar way, we may find the excitation energy,
the energy of an atom with q;—1 electrons in the ith
shell, q, +1 in the jth shell, minus the energy of the
atom with q;, q; electrons in the two shells. This is the
energy required to excite an electron from the ith
shell to the jth. It is

E,„(q;—1, q,+1)—E, (q;,q;)
qs—1,q7'+1

dqs+ dq~' ~ 25
Cs Cj Bq; Bq~

which is a line integral in a two-dimensional space
in which q; and q; are variables. We can rewrite this in
the form

E.„(q;—1, q, +1)—E, (q;,q,)
g —l, @A+I dq. dq.)E +E ids, (26)

ds ds)

VQI. GENERAL SIGNIFICANCE OF THE
MODIFIED ONE-ELECTRON

ENERGIES

We have seen in the preceding sections that the
modified one-electron energies BE, /Bq, =E of Eq.
(9) have an important property: if we have two
partially filled shells in an atom, the condition for
equilibrium between them is that they have equal
modified one-electron energies. Since these quantities
E are rapidly changing functions of the occupation
numbers q;, this equilibrium condition can be satisfied
only for specified q, 's so that it determines the occupa-
tion numbers in the state of lowest energy. Thus
equalizing the E', 's of the two shells which can inter-
change electrons is mathematically equivalent to
minimizing the energy with respect to the occupa-
tion numbers, and presumably it will be easier to
accomplish with numerical computing methods.

Are there other useful properties of these energies?
They have interesting mathematical properties, which
follow at once from their definitions. Thus, let us ask
what is the energy required to remove an electron
from the ith shell. This is the energy of an ion with
q;—i electrons in this shell, minus the energy of the
atom with q; electrons in the shell. Thus it is

where c/s is an element of distance in the two-dimen-
sional space. The integral will be independent of the
path. It we choose a path such that dq;+dq, =0, we
can then reduce it to an integral with respect to dq;
alone. Then we have

E, (q, —1, q, +1) E,—(q;,q,)

(E —E )dq;. (27)

This is essentially the case which we took up in Secs.
III and IV. Here, however, we are carrying out an
average of E,.'—E over a finite range of occupation
numbers, rather than using the vanishing of E,'—E
as a condition of equilibrium, or of vanishing excita-
tion energy from the ith to the jth state.

In the very similar cases of Eqs. (24) and (27),
we note that there are two ways in which the modified
one-electron energies E and E can depend on the
occupation numbers. First, they depend explicitly on
the q's, as we see from Eq. (11). But secondly, they
also depend indirectly on the q's because it is assumed
that at each set of q's, the orbitals have been varied
to minimize the energy for the appropriate q's. When
we take account of these two sorts of dependence on
the q's, we make a correct calculation of ionization or
excitation energy between a ground state and an ionized
or excited state, in which the energy of each has been
determined by the HHF method.

However, we may simplify by considering only the
dependence of the E;"sexplictly on the q's, disregarding
the change of orbitals or integrals as the q's are changed.
In the latter case, the ionization energies which we
compute are those found by Koopmans' theorem.
That is, we find the E s of Eq (6). I.t is well known
that in this case the energy E, (q;—1) will be too high,
since we have not minimized the energy by varying
the orbitals for the ion. Thus the calculated energy
E,„(q,—1) E, (q,) will —be too large. This error in
Koopmans' theorem is shown in Table III in which
the Hartree —Fock energies E; are numerically larger
than the experimental values.

If, however, we calculate the E,'s properly, varying
the orbitals as well as the q's, we should find that the
average of E would be slightly smaller numerically
than E;, and in fact would be very slightly smaller
numerically than the experimental ionization energy.
The reason is that the error in this case would be the
diGerence between the correlation energies of atom and
ion (where we now define the correlation energy as the
diGerence between the true energy and the average
energy of the HHF problem). The correlation energy,
which is known to be roughly proportional to the
number of electrons, vill be numerically greater for
the atom than for the ion, but by a small amount, of
the order of magnitude of 0.08 Ry."This means that
E will have an average value numerically too small
by about this amount, rather than numerically too

' J. C. Slater, Intern. J. Quant. Chem. IS, 783 (1967).



OCCUPATION NUM HERS i N TRANS I TI ON ATOM S 69i

large by several percent, as follows from the results such

as those in Table III. This gives us some feeling for the
magnitude of the differences between the E, as calcu-
lated properly and as calculated with disregard of the
modification of the orbitals on ionization.

For the case of excitation, we have an example of
the corresponding difference between E —E,', as
calculated properly and as calculated disregarding the
change of the integrals, from our calculations as shown

in Fig. 3. In that figure, we are showing tota1 energy
as a function of occupation number, so that the slope
of the curves is what gives the difference between
modified one-electron energies, E —E,'. The envelope
curve is calculated taking proper account of the
modification of the orbitals when an electron is shifted
from one state to the other, in this case from the 3d
to the 4s or vice versa. The parabolas tangent to the
envelope are calculated for fixed values of the integrals.
Suppose for instance that we were to start with the con-
figuration corresponding to the minimum of the
envelope curve and were to ask what energy would be
required to excite the atom to a con6guration with one
additional 3d electron, which had been excited from
the 4s shell. Properly, this would be given by the
difference between the ordinates of the envelope curve
for the two values of occupation number in question.
If, however, we were to disregard the change of integrals
on excitation, we should use the diQ'erence between
ordinates of one of the parabolas tangent to the en-

velope, between the same two values of occupation
number. Clearly, we would get a result several times
too large. Putting it otherwise, this case of shifting of
electrons between 3d and 4s shells is one in which the
errors involved in Koopmans' theorem are greatly
exaggerated in relative importance, though not in
absolute value, as compared to the ordinary- problem
of x-ray ionization.

The cases which we are taking up in the present
section are those in which an atom loses or gains a
whole electron. In the energy-band problem, however,
where an electron is often shared between many atoms,
an excitation may well be a case in which there is only
a small fraction of an electron changing in each atom.
Thus we are nearer the case of an infinitesimal change
of the q s than of a change by a whole unit. In such
a case the integration or averaging over a range of
q s, which we are taking up in the present section, will
not be necessary. In these cases, we may use the change
in modified one-electron energy E,'—E as an excita-
tion energy, without having to carry out an averaging.
This is essentially the case postulated in the use of
Fermi statistics. The problem of excitation is really
more complicated than would appear from this ele-
mentary discussion, since we often are concerned with
an exciton, in which an atom has a large change in the
value of the q s on excitation. We shall not take up
these matters further in the present paper, except for a
mention in the next section, but merely warn the reader
that these complications exist. However, they are much
l.ess severe when we understand that the excitation

energy can better be described in terms of differences

of modified one-electron energies E, rather than in

terms of differences of the energies E; concerned in
Koopmans' theorem.

IX. DISCUSSION

In the preceding sections, we feel that we have
justified the hope expressed earlier in this paper, that
our study of the nonintegral occupation numbers in
the transition atoms may throw light on the general
problem of the one-electron approximation in the
problem of a,n atom, or more particularly of a crystal.
I.et us now ask just how these general considerations
can be applied in actual energy-band calculations.

We must first ask what we hope to accomplish by an
energy-band calculation. To judge by the practical
uses made of the theory of energy bands, we wish to
have a set of one-electron eigenvalues and eigenfunc-
tions, such that we can assign a Fermi energy separating
the occupied from the empty energy levels at the ab-
solute zero of temperature. We then wish the energy
difference between an empty and an occupied energy
level to correspond as closely as possible to the energy
involved in the excitation, optical or thermal or other-
wise, from the lower to the upper energy level, in the
actual physical system. Similarly if the excitation arises
from electromagnetic fields of low frequency, we wish
the excitation calculated from the one-electron eigen-
functions and eigenvalues to agree as well as possible
with that actually observed. We wish the one-electron
eigenfunctions to be such that we can calculate transi-
tion probabilities in the form of one-electron integrals
of suitable operators between the initial and final
state. In other words, we want to be able to use the
conventional one-electron theory of the electrical and
magnetic properties of the system as straightforwardly
as possible.

There has been a good deal of skepticism as to whether
such a program could actually be carried through,
and as to where its limits will come. Surely we have
these limits. The corresponding theory for a single
atom can go no further than to give the sort of one-
electron energies given by a central field model of an
a,tom, with perhaps the spin-polarized feature built
into it. The multiplet structure is necessarily a many-
electron phenomenon, which must come as an additional
calculation superposed on a one-electron treatment.
Such problems will arise in solids, when we have
partially filled inner shells of such ions as 3d transition
ions, and must consider the multiplet structure associ-
ated with the partially filled inner shells, as modified by
the ligand field in the crystal.

Up to this point where many-electron theory is
surely required, however, the more refined the energy-
band calculations have been made, the further it
appears that we can go with the one-electron picture.
Even the former sk.eptics are beginning to realize
that many types of problems which were formerly
throught to be impossible can be treated by energy-
band theory. Consequently, it is highly desirable to
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refine the theory as far as possible, before the point of
applying typically many-electron corrections is reached.

In the history of atomic calculations, this general
situation was met very early. During the 1920's,
central fields were set up with the aim of leading to
eigenvalues and eigenfunctions which could be used in

just the way we have described. The well-known

potential of Prokofjew, " for the sodium atom, is an
example of this sort of work. Prokofjew was interested
in studying the transition probabilities for optical
transitions in the sodium atom, and he set up an
empirical potential which led to eigenvalues and eigen-
functions of the desired sort. It is to be noted that such
potentials, pure functions of position, had excited
energy levels which represented the excited states of
the sodium atom with good accuracy.

This promising line of development was interrupted
by the introduction of the Hartree —Fock method. That
method not only leads to an efI'ective potential which
is not a simple function of position, but is a more
complicated exchange operator; even more, it leads to
eigenfunctions and eigenvalues for the excited states
which are completely inappropriate for describing the
actual excited levels of an atomic system. The reason
for this is well known. " The potential in which an
excited electron (unoccupied orbital) moves, in the
Hartree —Fock method, is that of the nucleus and all
electrons, including the electron which is being con-
sidered, rather than having a correction, which we call
exchange, for the fact that the electron does not act on
itself. The resulting one-electron energies, in the
language for instance of Eq. (6) of the present paper,
instead of containing the term (q;—1) (i,i), in which
the term —1 corrects for the self-interaction, rather
contain terms like q, (i,i). Since the integrals (i,i) are
large quantities, we see that this results in a large
energy gap between the one-electron energies of
occupied and of excited states, a gap which seems to
have no counterpart in the actual physical problem.
In other words, the HartremFock method has led us
into a very unsuitable starting point for a many-
electron system.

Some workers have realized this difFiculty for many
years. Thus, Wigner and Seitz, ' in their pioneering
study of the energy bands of the sodium crystal, based
their potential on the empirical potential of Prokofjew,
not on a Hartree —Fock method. This diQiculty again
was in the mind of the senior author, when he proposed
an exchange potential which was a function of position
only, in 1951.' But the more abstract thinkers about
many-electron theory seem more often than not to be
unaware of these great difhculties with the Hartree-
Fock method.

From the discussion of the present paper, one sees
that these difFiculties are largely removed by the HHF

' W. Prokofjew, Z. Physik 58, 255 (1929).
'9 Reference 8, Vol. 2, Sec. 17-2. J. C. Slater, Qgcaetgrg Theory of

3foleclles and Solids, (McGraw-Hill Book Co., New York, 1963),
Vol. 1, Secs. 5-2, 6-2; Vol. 3, (1967), Secs. 11-3, 11-4.~ E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934).

method. The modified one-electron energies I which
we have been discussing are half way between those
for the occupied states in the Hartree —Fock method,
involving a term (q,—1) (i,i), and those of the excited
states, involving q, (i,i). They indicate no sharp break
in one-electron energies between occupied and empty
states. Thus, for instance, in the problem of the con-
6guration 3d"+ 4s2 which we have been considering,
the 4s level goes from being 6lled when x=0 to being
empty when x= 2; but the energy 8 for this level varies
perfectly smoothly from the one limit to the other, as
is shown in the calculations for fractional occupation
number in Table IV.

In spite of this good feature of the HHF method,
it is too complicated to use for actual energy-band
calculations; even the present calculations, on in-
dividual atoms, have been rather a computational tour
de force We m. ust as a practical matter look for some
scheme, not appreciably more complicated than those
now in use, to approximate the exchange for routine
energy-band calculations.

Suggestions as to how to proceed come from energy-
band calculations which have actually been carried
out by one of the authors (TMW), on the antiferro-
magnetic crystal MnO, and which are underway on
NiO."These crystals have been discussed by the senior
author in several papers, "giving references to earlier
work. For many years they have been regarded as a
test of the possibility of using energy-band theory for
such complicated magnetic problems. In order to be
able to explain the fact that they are insulators, though
they contain partially 611ed 3d bands, it is necessary
to have the splitting of the 3d band into 3df and 3dJ,
produced by the use of spin-polarized orbitals, and also
it is necessary to have the 3dj' and 3df in turn split by
a crystaj 6eld, into the e, and t&, types of orbitals.
Furthermore, there are other energy bands in the
neighborhood of these arising from the 3d, coming from
the 0 ' ion, and these must come in the correct relative
position with respect to the Fermi level to result in the
observed optical spectrum.

Wilson has found that a potential can be set up,
leading to energy bands fulfilling all of these require-
ments (including an u priori calculation of the ligand
field splitting in excellent agreement with experiment),
by what seems at 6rst sight a rather arbitrary assump-
tion: within the APW (augmented-plane-wave) sphere
describing the Mn or Ni ion, - he uses the Xo. method.
Within the sphere describing the 0 ' ion, he uses the
XS method. And in the regions between the spheres,
he uses the XKSG method. Ke may mention that Cho"
in his studies of EuO, EuS, and EuSe, still largely
unpublished, has been led independently to a rather
similar set of assumptions, and he also is obtaining
energy bands describing successfully the behavior of
those interesting compounds. It was largely as a result

"T. M. Wilson, Intern. J. Quant. Chem. IIS, 269 (1968);J. Appl. Phys. (to be published).~ S.J. Cho, Phys. Rev. 157, 632 (1965), and unpublished work.
The authors are much indebted to Dr. Cho for information re-
garding this unpublished work.
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of discussions between Wilson, Cho, and the other
authors of this paper, that the ideas presented here
grew up.

Let us now ask how the rather arbitrary assumption
described in the preceding paragraph can be rational-
ized. The first requirement of the energy bands for
MnO and NiO is that gaps appear in the right places
and have the right magnitudes. Earlier study of the NiO
problem by Switendick" has shown that the energy
bands are extremely sensitive to the occupation numbers
of the 3d states, and he had made one of the early
suggestions that it would be desirable to examine the
problem for variable occupancy. %ilson was led to his
assumptions in order to move the bands around to the
relative positions which seem to agree with our know-

ledge regarding the optical, electrical and magnetic
properties of these crystals. But as a first step, we see
from our present discussion that it must be very im-
portant to use one-electron energies similar to the
E,"s of the HHF method for discussing the relative
positions of the 3d and 4s-like bands, and that of all
the simple approximations to exchange the XKSG
method has one-electron energies most closely ap-
proximating to the E;"s. Since the wave functions
associated with the energy bands close to the Fermi
energy have large amplitudes in the regions outside
the spheres, we can attain approximately the situation
we desire by using the XKSG exchange in this region
between the spheres.

The next difhculty noted, however, was that if one
used the XKSG exchange throughout the spheres, the
energy band arising from the 2p atomic level of the
0 ' came too high. By using the XS exchange for this
ion, the energy levels arising from the 0 ' electrons are
depressed, and they then fall into a reasonable loca-
tion with respect to the Mn+' or Ni+' levels. Cho had
found a similar situation for the 0 2, S ', and Se 2

levels in his crystals. Ke note from Table III that the
eigenvalues arising from the XS method not only lie
lower than those from the XKSG method. but in most
cases they lie closer to the experimental x-ray values
than any other set of eigenvalues. Similarly we may
assume that the Xo. eigenvalues for the lower-energy
levels of the Mn+' or Ni+' are closer to the experimental
values than those that would be found from the XK.SG
exchange. Thus it seems reasonable to use these larger
exchanges for these regions inside the spheres represent-
ing the ions.

Ke should look at this problem more closely, how-
ever. Speaking very roughly, the XS or Xo. eigenvalues
agree better with x-ray energy levels, while the XK.SG
method is better for the energy leveIs met in the valence
and conduction bands. %hy is there this distinction,
and does it make sense to use diferent exchanges in
the diGerent regions for this reasons %e must remember
that there are two quite different sorts of optical excita-
tions of a crystal. When an electron is excited from a

2g A. C. Switendick, Ph.o. thesis, Massachusetts Institute of
'I'echnology, 1963 I',unpublished); Bull. Am. Phys. Soc. 8, 211
(1963)

valence band of a semiconductor into the condutcion
band, for instance, it is in an itinerant state, and almost
immediately travels away from the atom which it has
left to distant parts of the crysta1. . Similarly the hole
left behind travels away, and very shortly both elec-
trons and hole are spread throughout the crystal.
Hence in such an excitation, the change in electron
occupancy of any individual atom is infinitesimal. In
such a case, it is reasonable to use an energy like the
E,' or BE, /Bq; of the present paper to 6nd the energy
difference. On the other hand, when an electron is
ejected from an inner, x-ray level of an atom, the hole
is very strongly localized, corresponding to a very
high effective mass. The electron may remain trapped
by the hole, as an exciton, or may go into an itinerant
state, but in any case the atom remains with a vacancy
of a whole electron in an inner shell. This leads to an
energy indistinguishable from that observed with an
isolated atom, and the energy of excitation is well
approximated by the Hartree —Fock eigenvalues E;,
or in fact somewhat better (on account of cancellation
of errors) by the eigenvalues of the XS approximate
method.

%e wish a set of energy bands which will describe
the most prominent type of optical excitation both for
the inner and the outer electrons. Hence it seems rea-
sonable to try to get eigenvalues which will describe
those of the x-ray levels for the inner electrons, and those
of the conventional energy-band theory for the outer
ones. It is this which, in a crude way, we are achieving
with the assumptions which Wilson has made in his
case.

Further than this we cannot go at the moment in
suggesting potentials to use in individual cases. AVe

believe that energy-band theory at last, 40 years after
Hartree's first proposal of the method of the self-
consistent field, and 35 years after the work of Wigner
and Seitz, has reached a point where by small and rea-
sonable modifications of the assumptions regarding
exchange, one can get energy bands fulfilling the
requirements which we stated in an earlier paragraph.
It will still be a long and dificult task to try such small
modifications for many diferent types of crystals,
and so gradually to build up an adequate knoweldge
of how to predict a priori the exact potential that should
be used in actual cases. But we believe that such con-
siderations as have been brought out in the present
paper can throw enough light on the physical aspects
of the problem so that the workers in the field can make
reasonable guesses as to the direction in which to
proceed.

APPENDIX

We wish to state the formulas for the modified
energies E of the 3dt', 3d],, 4sf, and 4sJ, orbitals in a
spin-polarized calculation for the 3d transition ele-
ments, in the case in which we are disregarding the
e6ect of spin-polarization on the orbitals and the
integrals between them. We shall consider two cases:
Case I, for the d shell less than half full, in which we
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assume a conhguration (3df) "+*4sf(4sg)' *, and Case II, non-spin-polarized one-electron energies. First there-

for the d shell more than half full, with the configura- fore we give the formulas for the non-spin-polarized

tion (3df)'(3df)" +*4sf(4sf)' ~, where in each case x case, the HHF calculation for the con6guration

can be between 0 and 1. It is convenient to give form- 3d"+ 4s' *. These formulas follow from Eqs. (2), (7),
ulas for the difference between the spin-polarized and and (11), and are

Eag'(HHF) =I(3d)+ (n ', +—x-)(F'(3d,3d) —2/63C F'(3d3d)+F'(3d, 3d)jl
+ (2—x)LF0(3d,4s) —,',G'(3d, 4s)]+ Q q;(3d, j),

filled shells j
E4, '(HHF) =I(4s)+(-,' x)F—'(4s,4s)+(n+x)fF'(3d, 4 )s~(& '(3d,4s)]+ Q q, (4s,j).

filled shells j
Equation (28) is used in computing the entries of
Table IV.

For the spin-polarized case, we must. use the inter-
action integrals of Eq. (23) rather than Eq. (2).
However, the interaction between a spin-polarized 3d

or 4s orbital and an inner filled shell j is the same for the
spin-polarized as for the non-spin-polarized case,
provided we disregard the eGect of spin polarization
on the integrals. Hence, the summations over filled

shells j cancel when we take the energy di6erence
between the spin-polarized and non-spin-polarized
cases. Also the one-electron integrals I(3d) or I(4s)
cancel, and likewise the contributions of the Ii inte-
grals. We are left with the following formulas:

Case I
E3gg '(SPHHF) —Egg'(HHF)

= (n ,'+x) ( 5/—12—6)fF'(—3d,3d)+F4(3d 3d)]
—(x/10) G'(3d, 4s),

Eadg'(SPHHF) —E3g'(HHF)
= L(2/63) (~s+x)+ (5/252) j)F'(3d,3d)+F4(3d, 3d)]

+ (x/10) G'(3d, 4s),
E .g '(SPHHF) —E,'(HHF) = $(—n+ x/10) ]G'(3d, 4s),

E4,s'(SPHHF) —E4.'(HHF) = $(n+ /x10)]G'(3d, 4s) .

Case II
Easy'(SPHHF) —E3g'(HHF)

= ((2/63) (n+x) (85—/252) ]$F'(3d,3d)+F'(3d, 3d)]
—(x/10) G'(3d, 4s),

E3gg'(SPHHF) —Eag'(HHF) = L
—(5/126) (e+x)

y (95/252)]/F'(3d, 3d)+.F'(3d,3d)]
+ (x/10) G'(3d, 4s),

E4,g '(SPHHF) —E4,'(HHF)
= ((e+x)/10 —1]G'(3d,4s),

E, , '(SPHHF) —E„'(HHF)
= —L(g+x)/10 —1]G'(3d,4s) . (29)

We have used Eq. (29) in constructing Table V.
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Thermal diBuse x-ray scattering measurements have been made on the L100j L-dispersion curve of chro-
mium in the vicinity of the zone boundary at 329'K in the paramagnetic state and at 277'K in the anti-
ferromagnetic state. Anomalies in the differential scattering intensity LI (329'K) —I(277'K) g were observed
in reciprocal space at {0.87,0,0), (1.11,0,0), and (2.90,0,0) (in units of 27i-/a). These anomalies are interpreted
as arising from the intersection of the x-ray resolution function with a Kohn surface about H. This surface is
due to transitions between the F and H octahedra of the paramagnetic Fermi surface. In the antiferromag-
netic state, this surface vanishes. Correcting for a shift due to the resolution function, an average value for
the F-H transitions along L100j is obtained which is given by q/q, „=0.90~0.01.By comparing the angular
dependence of the scattered intensity with that calculated from known dispersion curves, an estimate of the
one-phonon contributions is obtained. This yields an estimate of 5~/c0=3+o at the anomaly.

I. INTRODUCTION

'Q this paper, we present results of a Kohn' anomaly
~- measurement of the Fermi surface of chromium

by means of thermal diffuse scattering (TDS) of x
rays. These results demonstrate the disappearance of

portions of the Fermi surface when Cr passes from the
paramagnetic to the antiferromagnetic state. In addi-

~ %'ork supported. in part by the U. S. Atomic Energy Com-
mission and the Research Corporation.

f Based on a Ph.D. thesis of J. M. Costello at the University
of Nebraska.' W. Kohn, Phys. Rev. Letters 2, 393 (1959).


