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The microwave-impedance oscillations observed in Bi single crystals in a weak magnetic field (0-6 Oe
at 32 GHz) are due to resonant transitions between surface quantum states. After a brief “minimal theory”
description of such surface states, we present a detailed calculation of the surface impedance spectrum for
Bi that allows us to accurately evaluate Fermi-surface parameters from the experimental data. Using the
established Fermi-surface geometry of Bi, we determine the Fermi velocity, point by point, on thecentral cross
section of the electron ellipsoid to an accuracy of better than 29%,. Values range from a maximum of 10.1X107
cm/sec in the binary (C,) direction down to 7.8%X107 cm/sec at right angles to C». A line integral of the
velocities around the cross section agrees exactly with the cyclotron mass, (0.0077=0.0002)z,, as measured
in the present experiments. The accurately known Fermi surface of Bi has made it possible for us to explore
and verify interesting geometrical features of the resonance signals.

I. INTRODUCTION

IN the presence of a magnetic field, electrons are
bound to the surface region in skipping trajectories.
Such electrons move along the surface by periodic
specular reflection and form a system of quantum
mechanical surface states.!? Resonant transitions be-
tween the surface states account for the curious micro-
wave impedance oscillations in weak magnetic fields
that have been observed experimentally for many
years.*® A recent calculation®!® of the impedance
spectrum and the very good agreement with representa-
tive experimental curves provide convincing confirma-
tion of this interpretation.

The present Bi experiments were motivated by an
effort to critically examine the dependence on Fermi-
surface parameters in the theory, as well as to explore
some geometrical aspects on hand of the well-established
Fermi-surface configuration. Measurements of the
surface-state resonances, together with available geo-
metrical Fermi-surface information, yield point-by-
point values of the Fermi velocity. We have aimed to
make such determinations at points around the smallest
central cross section of the ellipsoidal electron surface.
In addition, the Bi data provide a proving ground for
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detailed line shape calculations, because one can hope
to tackle the “k, broadening” problem that has been
ignored in previous calculations.®

The observation of surface quantum states in Bi
also provides eloquent and unimpeachable proof of
specular scattering of electrons at the surface. This
had been surmised in various different transport
experiments in Bi. The sensitive dependence of the
resonances on the condition of the surface, however,
should convince the reader that such specularity is to
be achieved only with careful preparation and treat-
ment of the surface.

The first observations of the weak-field impedance
oscillations in Bi were reported by Khaikin.® However,
his analysis and interpretation of the effect as the skip-
ping orbit counterpart of the Koch-Kuo skimming
orbit theory® leaves much to be desired. This serves to
emphasize that the effect is very much a quantum-
mechanical affair. The dominant resonances are due to
transitions between states with small quantum numbers
n, and the resonance condition is not immediately
related to the skipping frequency, but instead occurs
when the microwave frequency w equals the quantum
mechanical difference or beat frequency w,—wnm.

In the following section, we give an elementary
derivation of the Prange-Nee surface states. This
“back-of-an-envelope” approach emphasizes essential
physical aspects, without involving the reader in
Hamiltonians, choice of gauge questions, expansions,
and complicated mathematical functions. Section III
gives some experimental details with particular empha-
sis on the matter of surface preparation. Section IV
presents a detailed numerical calculation of the im-
pedance oscillation spectrum and establishes how to
obtain accurate values of Fermi-surface parameters from
the experimental curves. Section V deals with the
results of the present investigation and relevant dis-
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cussion. In Sec. VI we conclude with some remarks on
aspects of future work in Bi.

II. SURFACE QUANTUM STATES:
A “MINIMAL THEORY”

While we refer the serious reader to the detailed
theoretical discussion by Prange and Nee,? and sketch
here only a “back-of-an-envelope” approach to surface
quantum states to provide the necessary background to
the present experiments. This is decidedly a minimal
account that leaves some details unanswered.

As in Fig. 1, we consider an electron moving along the
surface of the metal by periodic specular reflection.
This skipping trajectory describes a state in which
the electron is bound to the surface region. It is trapped
in a potential well formed on one side by the metal-
vacuum interface potential, on the other by the mag-
netic field induced potential that confines it to the
classical turning point of the circular motion. In the
weak magnetic fields (a few Oe) where the experiments
are done, the cyclotron radius R, is typically on the
order of 1 cm. The microwave fields penetrate to a
characteristic skin depth on the order of 10~° cm. With
these considerations in mind, we see that out of the
entire spectrum of possible colliding orbits only those,
for which the electrons are moving essentially parallel to
the surface (i.e., very shallow trajectories), will make
an important contribution to the surface currents.
Their duty-cycle is much larger than that of electrons
which move deeply into the metal between successive
collisions. Together with the fact that the microwave
photon energy %w is very mcuh less than the Fermi
energy Er (and transitions, consequently, take place
only in the immediate vicinity of the Fermi surface),
this implies that we may restrict our attention to
electrons moving along the surface with velocity v,
approximately equal to vr, the Fermi velocity. More-
over, we may take v, to be essentially constant through-
out each cvcle of the skipping motion and consequently
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F16. 1. Electrons skipping along the surface of the metal
correspond to quantum-mechanical states in the triangular
Fotergtlal well. Allowed transitions give rise to series of spectral
ines in the microwave surface impedance. Each series is character-

ized by a given lower level and transitions going to successively
higher states.
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the electrons experience a nearly constant Lorentz force
F=evpH ¢Y)

impelling them toward the surface. The corresponding
potential may be taken as

V(2) = (evrH)z. (2)

We are therefore concerned with a particle confined
to a triangular potential well, rattling around between
the impenetrable potential barrier at the surface and
the classical turning point of its circular motion. The
possible energy states €, (as measured from the Fermi
energy Er) are described in terms of quantum-mechan-

ically allowed values of the maximal depth of penetration
Zn a8

€p = (e'UFH)zn . (3)
For the periodic z-directed motion, we require
o V2(z,—2)'
§ puis=2 [ o dsm b, @)
° R1I2

where p. has been expressed in terms of the Fermi
momentum pr and appropriate geometrical factors.
R represents the radius of the skipping trajectory. The
phase factor of % is chosen appropriately for the case
of a single linear turning point of the motion. Evaluating
the integral and solving for z, we obtain

3 hR!/2 2/3
Zn= _-(n—l)
'4\/2“ ! pr
®
W1
= ltve=B(2) ——,
e H113K1/3

where in the final step we have chosen to relate both
the cyclotron radius R and Fermi momentum pr, to
the radius of curvature K of the Fermi surface in
k space (i.e., R=#%K/eH, Pr=#K). Consequently, the
energy-level scheme for the surface states appears as

€, = [%\/W(n—%)[2/3(8%)1/3[12/3( UF > ©

K3

In the adjoining figure we have sketched a few of the
lowest-energy levels and indicated possible microwave
transitions between them. The spectrum of surface
impedance oscillations is expected to consist of several
series of peaks each characterized by a given ground
state and going to successively higher states.

Since we have made use of the Bohr-Sommerfeld rule
in our derivation and short-circuited more exact
mathematics, the energy-level scheme in Eq. (6) differs
from the expression derived by Prange and Nee? by
about 19; for the lowest-lying states. The factor
[$#v/m(n—%)|*3 ought to be replaced by ¢/ (24/7)%3,
where {, is the nth root of the Airy function. For the
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comparison of calculated and observed peak positions,
we shall take advantage of this more accurate formula-
tion, using the ¢, in later formulas.

We conclude the present discussion by calling the
readers attention to an amusing alternative interpreta-
tion of the quantization of orbit depths z, [Eq. (5)].
The area swept out in each cycle of the skipping motion
is readily shown to be (4v2/3)RY%3,3/2, and consequently
the flux enclosed between the surface and the classical
trajectory will be quantized as

&, =(4V2/3)R\2%,32H = (n—%)h/e. (7

We may contrast this result with the elementary dis-
cussion of Landau levels, which gives the flux enclosed
by electrons in allowed cyclotron orbits as (n—%)k/e.

III. EXPERIMENTAL ASPECTS

The experiments are carried out using a standard
microwave reflection spectrometer. The sample forms
the end wall of a cylindrical cavity resonator operated
in the TE;;; mode. The earth’s magnetic field is can-
celled to better than 0.05 Oe by a set of three mutually
perpendicular pairs of Helmholtz coils. A fourth set
of coils provides the experimental field. This last field
is carefully calibrated from the observation of electron
spin resonance of a diphenyl picryl hydrazyl sample
in an NMR apparatus to an accuracy better than
+0.3%.

Single crystals of the major symmetry planes of Bi,
and several orientations in which the long axis of the
electron ellipsoid was parallel to the surface, were
prepared by spark-cutting from Cominco 69 grade
ingots. Because the long axis of the electron ellipsoid
is tilted out of the trigonal (C;) plane by approximately
6.5°, we had to take great care in orienting and cutting
specimens. The sense of tilt was determined by studying
the variation of the cyclotron mass in the binary (Cs)
plane as the magnetic field was rotated about the
bisectrix (C,) axis. The sign of the tilt was referred to
the triangular etch pits on the side of the binary sample.
The sense of tilt could then be obtained unambiguously
for other samples with reference to the triangular etch
pits, as has also been noted recently by Brown ef al.lt

After spark-cutting, the sample surface was lapped
gently on a Teflon cloth saturated with a solution of
nitric acid, glacial acetic acid, and water (6:6:1). The
final step in the surface preparation was electro-
polishing in a saturated solution of potassium iodide
and concentrated HCI (49:1). The polishing procedure
was to use high current densities (~ several A/cm?) for
short periods. The deatils were dictated by the forma-
tion of a brownish film on the surface of the sample.
This film should be produced quickly and the current
removed precisely when the surface is completely

1R, D. Brown, R. L. Hartman, and S. H. Koenig, Phys. Rev.
172, 598 (1968).
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covered. This technique worked well for all orientations
other than the trigonal (C;) plane. The Cs plane was
polished chemically by immersion in the lapping solu-
tion, while it was being stirred. This method generally
proved satisfactory for small specimens and gave some
of the best data in the present experiments.

A third method of sample surface preparation, was
to grow samples from the melt against lightly carbon-
coated polished quartz slides. The surfaces, when re-
moved from the mold, appeared smooth and shiny but
had a considerable amount of small carbon particles
imbedded in it. These samples have really inferior
signals, and improved when they were electropolished
to remove the surface layer. Because of the difficulties
in accurately seeding such as-grown samples, we re-
verted to the technique of cutting, lapping, and polish-
ing for most of the samples.

IV. CALCULATIONS OF THE
IMPEDANCE SPECTRUM

To make an accurate evaluation of the Fermi-surface
parameters from the experimental data requires an
exacting analysis and interpretation of the line shape of
the resonant impedance variations. The original sup-
position that dR/dH peaks approximately correspond
to the resonance condition! has since been confirmed
and supplanted by a detailed calculation of the imped-
ance due to Nee, Koch, and Prange (NKP).° Such
calculations have been based on what the authors
refer to as the cylindrical approximation, where all
electrons contributing to the resonance are assigned
constant values of Fermi-surface parameters, relaxation
times and other ingredients of the calculation. This
magnanimous approximation to the real Fermi surface,
it has been suspected, accounts in large part for the
remaining discrepancies apparent in a comparison of
theoretical and experimental resonance curves. Below
we shall show that following along the lines suggested
by Koch,”? it is possible to calculate the spectrum
including the %, broadening for certain restricted
Fermi-surface geometries.

The ellipsoidal Fermi-surface geometry of Bi is ideally
suited to this calculation and has allowed us to make a
calculation that compares favorably with the experi-
mental curve. Fitting of theory to experiment allows us
to evaluate accurately the resonance field values from
experimental curves. This is a necessary part of evaluat-
ing the data. Depending on the values of relaxation
time, skin depth, and Fermi-surface geometry, the
resonance field can easily differ by 59, or more from the
observed peak position for the case of the 1-2 transition.

Following the work in Refs. 2 and 9. we write the

2 J. F. Koch, Physik Kondensiertan Materie 9, 146 (1969).
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expression for the impedance derivative dZ/dH as
az d
—-—=const(i—\/3)———/dk,,v,(la,,)
dH adH
amn® (ky,H )
mon &= (H )+l mn (i, H)

®)

The geometry here is such that H is in the y direction
and parallel to the sample surface. The rf current is in
the x direction, which is also chosen to be one of the
principle directions of the impedance tensor. ams is the
matrix element of the normalized electric field E(2)/
E(0) taken between surface-state wave functions ¢,
and ¢,,. The matrix elements depend on the range of
penetration of the electric field, i.e., on the skin depth é.
They are dependent on magnetic field and position on
the Fermi surface, through the dependence of the wave
functions on H and the local radius of curvature K, at
the Fermi surface. wn, is the difference frequency
em—€a/h of a pair of surface states, and obviously
depends on both H and k,.

The finite lifetime of an electron in a surface-state
trajectory is reflected in an energy-level frequency
width T',, which may depend on both %k, and H. The
quantity I'm, is the mean width 3 (T'»+T,) for a pair
of states. The doubly infinite sum over m and # adds
up the contribution to the impedance of all pairs of
surface states at a specific place on the Fermi surface,
whose coordinate along the magnetic field direction is
k,. The velocity v,(k,) is the component of the Fermi
velocity in the direction of the applied electric field.
Finally and most importantly, the &, integral sums the
resonance signals of electrons everywhere on a narrow
strip on the Fermi surface. This effective zone is
centered symmetrically about the line defined by v,=0,
has an angular width of a few degrees in Bi, and contains

A
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Fic. 2. Skipping electrons repeatedly traverse a zone centered
about the line 7,=0 and with an angular width of a few degrees.
For data taken with the magnetic field along the ellipsoid major
axis in the binary plane sample, the skipping zone is as indicated
n the figure.
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electron states for which the direction of v, is such that
they are bent toward the surface.

In Fig. 2, we have sketched the zone containing the
skipping electron states for an ellipsoidal sheet of
Fermi surface aligned with the sample surface. We
expect that the observed resonance signal will be
dominated by electrons on the zone for which wmn (%)
has a stationary value, but recognize that the linewidth
and shape of the resonance will be decisively influenced
by neighboring electron states. The problem is to
calculate the resonance signals taking this &, broadening
into account, and thus to relate the resulting resonance
curve to the parameters associated with the extremal
electron states.

We next express the impedance formula in terms of a
suitably normalized field coordinate % defined by

e
h= ;L(v,3,/2Kw3)‘/2H =vH, 9)

such that the resonant field values are given by
Bonn = (Cm—En) %2 (10)

With reference to NKP, we see that the matrix elements
amn that appear in the impedance formula are functions
of the normalized field # and depend on a single param-
eter 8 given by

B=(v./2Kw)!2(1/8). (11)

As a final step, we interchange the differentiation d/dH
with the %, integration, and express the derivative in
terms of the normalized field to obtain the impedance
formula as

YA / i d
—=const VY —
dH T dh

(i—V3)amn?(8,k)
mon L= 123 =) 4 (i 7).

The level frequency width I', has been taken as 1/7,
the reciprocal of the relaxation time due to bulk
scattering events. This is equivalent to treating the
surface as adequately smooth, so that the lack of
specular scattering (which is expected to be field
dependent) makes no significant contribution to the
level width. A further approximation essential to our
calculation is to take the relaxation time 7 as inde-
pendent of %, and equal to its value for the group of
electrons with extremal wn,. The quantities #, v,, v, as
well as the parameter B, are to be considered functions
of &,.

The factor d/dh 3_ () that appears in the integrand
is obviously a function of % and depends on two param-
eters, namely, 8 and wr. It represents the resonance
spectrum of a single cylindrical section as discussed in
NKP. We have available to us a library of such com-
puter generated curves for physically realistic values of

12)
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8 and wr. Let us call these curves F (h=vH; B,»7) and
suppose the values of 8 and w7 to be constant along a
zone such as that of Fig. 2. If we imagine this zone to
be subdivided into a number of strips with length Ak,
then for every strip the resonance curve in normalized
field % [i.e., F(k; Bw7)] would be identical. Expressed
in terms of the actual field H, the curve would retain
its form but have a different horizontal field scale
H=h/v(k,s). The procedure for computing the %,
integral is completely straightforward now. We start
with a library curve, choose the desired variation of
v, and v with k,, and compute the sum of curves each
of which has had its field scale adjusted according
to v(k,) and has an amplitude proportional to
Akynv(kyn)y (kys). The sum

YA
;E::const > Akyuve(kyn)y (kyn) F(y (kyn)H ; 8; wr) (13)

evaluated over a sufficiently narrow set of strips,
gives the impedance derivative for the actual Fermi
surface.

This deceptively simple evaluation of the &, integral
is possible only when both 8 and 7 can be considered
constant along the entire strip. From the definition of 8,
we see that it is proportional to (v,/Ki)'?, a quantity
which for the case of a quadratic dispersion law is
indeed constant along a zone such as that in Fig. 2.
A constant relaxation time, equal to its value at the
center of the zone, is more difficult to justify. However,
because essential contributions to the resonance come
from Ak, strips in the vicinity of the wam extremum, it
should not be a bad approximation.

We now turn to a critical examination and calculation
of a single resonance curve in Bi. The data of Fig. 3
show oscillations in the surface resistance derivative
observed with the magnetic field along the major axis
of the electron ellipsoid for a binary plane specimen. The
rf current is arranged to flow along the trigonal axis,

——— Experiment

—=== Calculation, 8=4;wr=8

H (Oe)

Bismuth (Binary Plane )
HIZ 03

f=3267 GHz
T=4.2°K

I't. 3. Comparison of the experimentally observed dR/dIl
curve in the Bi binary plane and a calculated curve (wr=8;
B=0.4) that includes the %, broadening. The calculation allows
us to accurately identify the resonance field from the experimental
data.
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which is a principal axis of the impedance tensor. The
frequency is 32.67 GHz and the sample is at 4.2°K.
The spectrum of oscillations below 6 Oe is due to
resonant transitions between surface states, while at
higher fields there appear Azbél-Kaner cyclotron
resonance peaks.

To calculate the spectrum, we have examined a set
of library curves with different values of 8 and wr.
Of these, the 3=0.4; wr=8 curve provides a good
starting point for the %k, calculation. The geometry is
such that electrons in surface states move about on
the zone indicated in Fig. 2. The parameter 3 is constant
along the zone if we take the Fermi surface as ellipsoidal
in shape and assume a parabolic dispersion law (the
EP model). The velocity v, varies along the zone as

vz (ky) = (fiks/ms) (1—k,?/ ks*)'2, (14)

where ki, ke, k3 are the semimajor and minor axes
of the ellipsoid (Fig. 2), and m; is the appropriate
band-mass parameter. The radius of curvature in the
plane perpendicular to the magnetic field is given by

K = (k®/ks) (1 —k,2/ k212, (15)

The quantity »,/K, is constant along the zone, and this
justifies the calculational procedure outlined above.

The variation of the field scaling parameter vy (&,) is
calculated in the same way. We substitute the values
of v, and K, to find

v (ky) =y (0) (1 —k,*/ k)12, (16)

where v(0) represents the field scaling factor for the
center of the zone. y(k,) has its maximum value for
k,=0 and decreases only slowly in the neighbor-
hood of this region. The resonance signals of electrons
along the zone fall at increasingly higher actual field
H as we move out from the center.

With the information on v.(%,), v(k,) at hand, we
are ready to take the library curve 8=0.4 and wr=8
and calculate the &, integral. We choose v (0) such as to
overlap the resonance peaks at 3.34 Oe precisely, and
adjust the amplitude to match the experimental trace.
The two curves are then superposed (Fig. 3) to show
to what extent we can get theory and experiment to
agree. In achieving this fit we have actually examined
curves for which 8 had values 0.35, 0.4 and 0.45, and
wr ranged in integral steps from 6 to 10. The values
B=0.4 and wr=8 gave the best fit and are expected
tobe accurate to 4=0.05 and =0.5 for the two quantities,
respectively. To try harder at achieving a perfect fit
would be meaningless, because we suspect that another
weak signal, due to the other two ellipsoids of the
Fermi surface, is interfering in the experimental trace
and that possibly there is some baseline effect present in
the experiment. The amplitude difference of the peaks
at the very lowest fields is likely to be a real discrepancy.
For reasons as yet unknown, the experimental trace
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always shows the low-field resonances to damp out
more quickly than the calculation would predict.

A critical comparison of the &, broadened curve and
the library curve, that was the starting point of the
calculation, convinces us that the calculation of the &,
integral is important in more than one way. There is a
small increase in the width of the peaks, a notable
decrease in the amplitude of the low-field peaks relative
to high-field peaks due to interference effects, and most
importantly a shift in peak positions by several per-
cent. This is of course crucial to an accurate determina-
tion of the Fermi-surface parameters from the experi-
mental data. Our work with the calculations has shown
that the major resonance peak due to the n=1 to
m=2 transition (at 3.34 Oe in Fig. 3) moves with
changes in w7, B, and the nature of the anisotropy
of v(k,). Because many of our data appear similar
to those of the test case that we have fit and discussed
here, we take our clues from this example. In terms of
numbers, the 1-2 peak in the calculated spectrum occurs
at 2=0.427, while the resonance condition gives
h21=0.432. Thus the resonance field for the center of the
zone will be taken proportionately higher than the
experimentally determined peak field. Since y(k,) is
identical for all the samples used to determine vr on
the central section of the Bi ellipsoid, and since 8 and
w7 do not vary widely, we feel safe in assuming that
resonance fields determined from the experiments are
well within the estimated limits of error.

In the fitting procedure, we have considered both 8
and w7 as parameters, to be adjusted and determined
from the comparison of theory and experiment. This
is fine as far as wr is concerned, but the value of g8
depends on known Fermi-surface parameters and the
skin depth §. Since there exist measurements of the
anomalous skin effect (ASE) resistance in Bi that could
be interpreted in terms of a skin depth, 8 should not
be considered a disposable parameter. If, following
Smith,® we take the ASE resistance value (for the
binary plane with current flowing along trigonal axis)
as 0.075Q at 23.5 GHz, we can derive a skin depth
from the relation R=8xr/3V3(w/c?)8. We find §=1.05
X10~* cm. Scaled to the present frequency of 32.67
GHz, this becomes 0.94X10™* cm. Using the Fermi-
surface dimensions in Eq. (17), and taking the velocity
value derived in the experiments (Sec. V), we arrive
at 3=0.24. A calculation with this value of 8 proved
very different from the experimental curve, so that we
found it necessary to revert to an adjustable 8. We
are disturbed about this discrepancy. Using $=0.4
gives a skin depth and ASE resistance a full 409,
smaller than that measured by Smith. Aubrey’s* ASE
measurements at 9 GHz disagree with Smith’s by about
209%, but in the wrong direction to resolve the present
discrepancy.

13 G. E. Smith, Phys. Rev. 115, 1561 (1959).
M J E, Aubrey, J. Phys. Chem. Solids 19, 321 (1961).
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Another source of concern is the relatively low value
of wr that we derive. Judging by the 15 cyclotron
harmonics that are observed in the specimen, we had
expected a value of w7 close to 15. It is possible that
there is anisotropy of 7 over the Fermi surface, and that
the value of 7 is smaller at the zone responsible for
the surface states. More likely however, the small wr
reflects increased scattering in the surface region be-
cause of larger phonon amplitudes and possibly because
of a greater concentration of diffused impurities close
to the surface. There may also be a small contribution
of diffuse surface scattering to account for the disparity
of cyclotron and surface-state relaxation times.

V. RESULTS AND DISCUSSION

We preface this section with the necessary facts on
the Bi Fermi-surface geometry, as well as some available
information on the band structure. The Bi crystal struc-
ture is rhombohedral, but alternatively may be derived
from a simple cubic lattice in which one of the body
diagonals (the [111] axis of the cube) is elongated
somewhat to achieve the appropriate distortion. This
special body diagonal retains the threefold rotation
symmetry of the cubic lattice and becomes the trigonal
direction C; of the Bi lattice. The binary C; and bisec-
trix C; axes are two mutually perpendicular directions
contained in the trigonal plane as indicated in Fig. 4.

[o10]

Cz ni

RELATIONSHIP BETWEEN CRYSTAL AXES AND ELLIPSOID
PRINCIPAL AXES

_F16. 4. The Bi electron Fermi-surface geometry and relevant
dlorectxons. Tl}e ellipsoids are tilted out trigonal (C;) plane by
6°20’. The principal axes of the ellipsoid are denoted as 1, 2, 3,
and are arranged relative to the crystal axes (Ci, C, and Cj) as
shown in the lower half of the figure.
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Bi is a compensated metal with a single-hole Fermi
surface and three electron surfaces. The angular varia-
tion and symmetry of the surface-state data in this
metal are characteristic of the electron surfaces with no
evidence for any signal due to the holes. For this reason,
we restrict the discussion to the electron surfaces. These
are in the form of elongated ellipsoids arranged with
their major axes nearly along C; as sketched in the
figure. They are tilted out of the trigonal plane toward
the C; axis by 6°20’. We judge the recent de Haas-van
Alphen (dHvA) effect studies of Bhargaval!® to provide
the most definitive and up to date geometrical informa-
tion on the electron ellipsoids. For one, Bhargava’s data
establish the ellipsoidal shape of the electron surfaces,
and secondly from his measured cross-sectional areas
we can derive the dimensions of the major and minor
axes of the ellipsoid. Expressed in terms of the principal
axis system (1,2,3) of the ellipsoid these are

k1=5.16X105 cm™!
ko=84.4X105 cm™!
k3=6.78 X10% cm™!.

(17)

So much of the numerical interpretation of our data
depends on accurate knowledge of the geometry and
dimensions of the electron surfaces, that much of it
would need considerable modification and adjustment
if there were serious errors in the stated dimensions, or
if the shape were not ellipsoidal. In discussing results
and estimating errors, we will deal with the geometrical
data on the ellipsoid geometry as the “truth.” We take
solace from the fact that most of our analysis involves
only values of the minor axes k1 and k3. The axis &; has
been measured independently by cyclotron cutoff!® and
ultrasonic attentuation to yield 5.2)X105 cm™, i.e., it
agrees within 19}, with Bhargava’s value. In turn the
dHvA measurements give the area of the 1,3 cross
section very accurately, so that k; is also well deter-
mined. We are alarmed, however, at the wide discrep-
ancy in numbers quoted for k;. Korolyuk! finds
ky=72X10% cm™, while according to Bhargava’s data
this dimension is 84.4X105 cm™,

While there is relatively good agreement on the basic
geometry of the electron surfaces, the band structure is
another matter. There are three different proposed
descriptions of the relation of energy and momentum;
the ellipsoid-parabolic (EP) model,’® the ellipsoidal
nonparabolic (ENP)® model, and the nonellipsoidal-
nonparabolic (NENP)?* model. Since the velocity values

16 R. N. Bhargava, Phys. Rev. 156, 785 (1967).
16 M. S. Khaikin and V. S. Edelman, Zh. Eksperim i Teor. Fiz.
gbég% (1964) [English transl.: Soviet Phys.—JETP 20, 587

7 A. P. Korolyuk, Zh. Eksperim. i Teor. Fiz. 49, 1009 (1965)
[English transl.: Soviet Phys.—JETP 22, 701 (1966)].

18 D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939).

1 B. Lax, J. G. Havroides, H. J. Zeiger, and R. J. Keyes, Phys.
Rev. Letters 5, 241 (1960).

2 M. H. Cohen, Phys. Rev. 121, 387 (1961).
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derived in this experiment depend solely on geometrical
factors, we need not really concern ourselves with
details of band descriptions. Only for purposes of com-
parison do we want to become involved with band-mass
parameters. For this purpose, we choose the EP

description, where the electron energy is given by

E=312k?/mi+ke/matks?/ms| , (18)

with m; .3 as the mass parameters. Using what we
consider the best available data on cyclotron effective
masses in Bi? and the standard relation between
cvclotron and band masses, one obtains
m1=0.0058m,,
m2=1.28mo,

m3=0.011mo,

(19)

where m, is the free-electron mass. We will later com-
pare these values with some that we can derive from
our velocity measurements.

Below, we consider in detail each of the different
aspects of our experiments on surface quantum states
in Bi.

A. dR/dH Oscillation Spectrum

We start with some qualitative observations on the
inevitable “typical” data shown in Fig. 5. The magnetic
field is arranged to lie parallel to the sample surface
and along the major axis of one of the electron ellip-
soids. The sample surface is such that the surface
normal 7 makes an angle of 56° with principal axis 3
of the ellipsoid. The polarization of the rf currents is
chosen to avoid contributions from the remaining two

dR
dH 1
My
H(Oe)
U
m BISMUTH
2,(h,3) 56°
HIl 2
f=32.89 GHz
T=2.0°K

F16. 5. dR/dH oscillation spectrum in Bi sample No. 7. The
series of resonance transitions starting with the #=1 ground
state and going to m=2,3,- - -, etc, is marked with single arrows.
Double arrows represent the corresponding series with n=2, and
so on. Oscillations above 5 Oe are due to Azbél-Kaner cyclotron
resonance with a mass of (0.007740.0002) 2.

21V, S. Edelman and M. S. Khaikin, Zh. Eksperim. i Teor. Fiz.

49, 107 (1965) [English transl.: Soviet Phys.--JETP 22, 77
(1966) 7.
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ellipsoids, so that the observed dR/dH oscillations are
due to a single sheet of the electron surface.

The spectrum of dR/dH peaks at fields below 6 Oe
represent microwave resonant transitions between sur-
face quantum states, while the oscillatory variations
at higher fields are due to Azbél-Kaner cyclotron
resonance in this specimen. The cyclotron resonance
signal serves to judge the quality of the specimen and
also provides an independent measurement of the
cyclotron effective mass. The series of peaks starting
at H=3.44 Oe and marked with single arrows, domi-
nates the low-field pattern of resonances. Even without
the benefit of detailed calculations, we would ascribe
the four peaks of this series to transitions from the
ground state #=1 trajectory to successively higher
states (m=2, 3, 4, and 5) as the field is decreased.
This is because the n=1 trajectory is most strongly
exposed to the rf fields in the skin layer. Peaks starting
at 4.80 Oe, and identified with double arrows, represent
transitions from n=2 to successively m=3, 4, 5. The
fundamentals of the triple arrow and higher series are
obscured by cyclotron resonance, while second peaks of
these series can still be resolved and have been marked
accordingly.

The pattern of oscillations in Fig. 5 is characteristic
of surface state resonances and serves to identify the
effect. An examination of the relative positions of the
resonance peaks provides a quick check on the energy-
level scheme for the surface states. In Table I, we give
a comparison of calculated and experimentally observed
resonance fields in terms of the normalized field coordi-
nate k. The experimental resonance fields are expressed
relative to the peak at 3.44 Oe, which we identify as
the transition e;—e;=#w, and which is expected to
occur at £=0.432. The lack of perfect agreement arises
partly because of experimental uncertainty in the
determination of the resonance peaks, but also because
the experimental peaks do not exactly coincide with

the resonances. This is apparent from the calculations
of Sec. IV.

B. Calculation of Peak Positions from
Band-Structure Parameters

The established Fermi-surface parameters in Bi
provide us with the means to make an even more
demanding check on the theory of the surface states
by actually calculating the theoretically expected
resonance field H;,. Previous comparisons of theory and
experiment!® had to content themselves with showing
that for reasonable choices of Fermi-surface param-
eters one could get agreement with observed resonance
fields. For the case of Bi, we can make a more critical
comparison.

We take, for example, data observed in the binary
and “almost trigonal” planesamples, listed, respectively,
as samples No. 8 and No. 1 in the Table II of the next
section. With the field parallel to the major axis of the
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TaBLE 1. Normalized resonance fields /.

(@R /dH )max fields (Fig. 5)
normalized s.t.

n n J12m (theory) 3.44 Oe=0.432
1 2 0.432 0.432
3 0.176 0.172
4 0.107 0.103
5 0.075 0.071
2 3 0.583 0.603
4 0.226 0.228
5 0.132 0.132
3 4 0.702 not resolved
5 0.265

ellipsoid in these two planes, we find H;; to be 3.39 and
3.520e for the two planes, respectively, and at a
microwave frequency of 32.77 GHz. These field values
represent, as we have discussed in the section on line
shape calculation, the resonance field for the electrons
at the central cross section of the electron ellipsoid.

The field values measured in the experiments are
to be compared with values calculated from the theo-
retical expression for the energy-level scheme [Eq.
(6)]. For resonant transitions between the »=1 and
m=2 surface states we require that the microwave
photon energy 7w be equal to the energy-level separa-
tion ez—e;. Solving for the magnetic field value where
this is satisfied, we obtain

Hi1y=0.432(h/€)w?2 (2K /o)1, (20)

With the field along the major axis of the ellipse for
the “‘almost trigonal” sample, the electron repeatedly
traverses a zone with local radius of curvature
K =k3?/k1=8.9X10° cm™. The velocity at this point
is given by the EP description of the band structure
as v=rhki/m1=1.0X108 cm/sec. Substituting into the
equation for Hys, we calculate a resonance field of 3.4
Oe at a microwave frequency of 32.77 GHz. This is to
be compared with the experimental value of 3.52 Oe
+2%,. We obtain satisfactory agreement for this orien-
tation in spite of the large uncertainties associated
with the established band parameters.

For the binary-plane data, we proceed as above to
evaluate K and v and calculate a resonance field His

TABLE II. Resonance fields H, and Fermi velocities.

Position
of Position
surface  of skip-
Sample normaln ping zone H,0e=429, vr (experiment)
No. X (n,3) ¥ (zone,1) f=32.77 GHz +1.59%,
1 0° 0° 3.52 10.1X107 cm/sec
2 5° 8° 3.53 10.0
3 10° 17° 3.40 10.2
4 22° 35° 3.45 9.7
5 36° 52° 3.39 9.2
6 44° 60° 3.48 8.6
7 56° 70° 3.49 8.2
8 90° 90° 3.39 7.8
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of 4.0 Oe. The experiment gives 3.39 Oe, with an error
not exceeding #+29%,. This discrepancy of calculated
and experimental values for the binary plane, we sus-
pect, is due to an incorrect value of ms.

This examination and comparison of calculated and
experimental values of resonance fields leads us to
conclude that the theoretical description of surface
states is essentially correct in its numerical aspects.
These studies in Bi are the first to provide an absolute
confirmation of the Prange-Nee energy-level scheme
for the surface states. More recent work in Cu!? and
Ag,? where it is also possible to compare theory and
experiment in absolute terms, give equally satisfactory
agreement.

C. Determination of Fermi Velocities
at Individual Points

Convinced by the reasonable agreement of calculated
and observed peak positions that the formulation of
the surface-state problem is essentially correct, we now
work the experiment backwards. From the experimen-
tally determined peak positions, in conjunction with the
line shape computations, we measure the resonance
field Hy; in a series of eight different samples. These
are cut so that the electron ellipsoid always lies in the
sample plane, but the skipping zone appears at eight
different places. The reader may imagine that we
start with the binary plane sample and rotate the sur-
face normal 7 of Fig. 2 about the k. axis to eight posi-
tions in a quadrant of the elliptical cross section. The
zone moves in such a way that the Fermi-velocity
vector is perpendicular to #. This position is determined
from the measured angle of rotation of 4 away from
the binary axis and the known shape of the ellipsoidal
surface. For each of these points, we then calculate the
appropriate radius of curvature K, and from the mea-
sured resonance field Hy» and microwave frequency w
obtain the Fermi velocity vr at the position of the zone.
We emphasize, that in evaluating Fermi velocities in
this way, we have made use solely of the geometry of
the Fermi surface, without involving band-mass param-
eters or any assumptions about the nature of the dis-
persion relation E(k).

In Table II, we give the Hy; values for each of the
eight samples, together with the measured angle of the
surface normal # relative to the binary axis. The values
H; have been corrected from the measured peak posi-
tions, as suggested by the detailed calculation and
fitting of the binary plane spectrum, and therefore
represent the resonance field for the k,=0 electrons on
the zone. In many cases, the values H, are obtained
by averaging over several specimens of a given orienta-
tion, over runs at somewhat different frequencies, and
using different surface polishes. The possible error in
Hy, is at most =429, due to uncertainties in locating

2 J. O. Henningsen, Phys. Letters 27A, 693 (1968).
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peaks accurately, possible minor discrepancies in the
fitting scheme, inaccuracies in the cutting and aligning
of the sample, errors in the absolute calibration of the
field, etc. The uncertainty in the calculated velocities
is more difficult to ascertain, since it depends so much
on the input of information on the Fermi-surface
geometry. If we consider the geometrical data from
the dHvA effect as sufficiently accurate, the possible
error in the velocities should not exceed 41.59,. One
other possibility of error lies in our assumption that
the entire cycle of the skipping motion may be approxi-
mated as a small portion of a circular orbit with a unique
radius of curvature K, on the Fermi surface. In Bi, the
skipping electron moves through an angular range of
several degrees, and velocity values are to be considered
as averaged over a few degrees of the elliptical section.

The velocity values derived from our experiments are
plotted in Fig. 6 at each of the points on the elliptical
cross section where it has been measured. The velocities
are found to range from a maximum of 10.1X 107 cm/sec
in the binary direction to a minimum value of 7.8 107
cm/sec along the trigonal direction. There exist some
other measurements of velocities at individual points
on the Bi surface, with which the present data can be
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Electron Velocities on the Central Cross—section of the Ellipsoid
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F16. 6. Electron velocities on the (1-3) central cross section
of the electron ellipsoid. The upper part of the figure shows the
measured velocity values at eight different positions on a quadrant
of the ellipsoid. In the lower-half is shown a plot of these velocities
as a function of a the coordinate along the 3 direction of the ellip-
soid, together with a calculated curve based on the EP model
of the Bi band structure.
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compared. From a measurement of Doppler-shifted
cyclotron resonance absorption of Alfvén waves, Edel-
man and Kamberski® derive a value of (10.740.7)
X107 cm/sec in the %, direction. This compares favor-
ably with the present value of 10.1X107 cm/sec.

With the velocity values at hand, we are in a position
to derive band mass parameters m; and ms for the EP
description of the Bi energy bands. The EP model
gives the velocities at points in the 1 and 3 directions
as #ky/my and hks/mas, respectively. Using the experi-
mental values of the velocity we find

my =hk1/7)p(0) =00059mo ,
ma="ks/vr(90) =0.010m,,

to be compared with the values of 0.0058m¢ and 0.011m,
[Eq. (19)] derived from Khaikin’s cyclotron mass
values. The disagreement with 73 is not unexpected. It
was reflected earlier as disagreement in the calculated
and experimental values of Hj.. It is of interest to
compare the present values of 7, and m3 with the pre-
dictions of the EP model which requires

k12/k32 =m1/m3 .

(21)

(22)

From the dimensions given by Eq. (17), we expect
the ratio of masses to be m;/m3;=0.58, which agrees
most satisfactorily with the ratio 0.59 for the numbers
that we have derived. The mass ratio using the values
given in Eq. (19) is 0.53.

An alternative check on the EP model is to compare
the observed variation of velocity along the elliptical
section of Fig. 6 with that predicted by the model.
Fitting the two endpoint velocities, we calculate the
predicted variation from the EP model. The comparison
(Fig. 6) of the calculated curve and the experimental
values shows that the velocities follow closely the
variation expected on the basis of the model.

D. Cyclotron Mass m,

A measurement of the periodicity of the cyclotron
resonance oscillations apparent in Figs. 3 and 5,
determines the cyclotron mass m.. Such measurements
have been carried out in Bi by both Kao* and Khai-
kin.?* With the magnetic field along the major axis of
the ellipsoid, Kao has measured the cyclotron mass as
0.009m,. Khaikin’s work gives 0.008140.0001m9, mea-
sured from the observation of as many as 20 harmonics
in specimens with accurately flat surfaces. We are
disturbed to find that the value of m. from our measure-
ments is only 0.007740.0002m, and fails to agree with
Khaikin’s result. Our value is an average over many
runs in each of the eight samples and with as many as
23 harmonics resolved. We have been careful to avoid
using the high-field harmonics (for which R, is not
<<8) in the determination of the mass. The fundamental

#V. S. Edelman and V. Kamberski, in Proceedings of the
Tenth International Conference on Low-Temperature Physics,
Moscow, 19606, edited by M. P. Malkov (VINITI, Moscow, 1967),

Vol. 3, p. 206.
#Y, H. Kao, Phys. Rev. 129, 1122 (1963).
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and the next nine subharmonics have been discarded
in the measurement.

There is an interesting check that we can make on
the set of velocity values that we have derived. From
the definition of the cyclotron mass as the line integral
of the reciprocal of the velocity around the orbit, we

have
dk Ak;
'nc=hf —=1 Z )

(N LY

(23)

where the summation is over line segments of the ellipti-
cal section of Fig. 6. Carrying out the summation, with
some interpolation between the experimental velocity
values, gives m.=0.0077m,. The good agreement be-
tween the line-integral and the measured value of m,
confirms our interpretation of the surface state reso-
nances and determination of velocity values.

E. General Aspects

The well-established Fermi-surface geometry of Bi
allows us to explore and explain some of the geo-
metrical aspects of the surface-state resonances that
have been discussed by several authors.”1°

We begin our considerations with the case of the
elongated Bi ellipsoid arranged to lie in the plane of the
sample. As the magnetic field is rotated in the sample
plane and away from the major axis by an angle 6, we
observe a variation of the resonance fields as 1/cosf. In
the case of the trigonal plane sample (which contains
all three ellipsoids tilted at the small angle of 6°20’),
there are found three branches of 1/cosf curves? that
establish clearly that the measured effect is due to the
electron surfaces. We had tacitly assumed this in the
previous discussions. Khaikin has shown this angular
anisotropy of the data in his work on Bi,® and there is
no need to bore the reader with a repetition of such
curves. The 1/cosf dependence is explained from a
consideration of angular variation of the (K/u%)!/2.
If we approximate the central section of the elongated
ellipsoid as a cylinder with elliptical cross section, then
for electrons on the zone, one finds K=K cosf and
v=1v cosf. Combining these gives (K/1*),/2« 1/cosf and
accounts for the observed angular dependence.

A second arrangement that we have examined is the
case of the ellipsoid lying in the surface as previously,
but with the field tilted away from the major axis and
out of the sample plane. The data in a tilted field are
exactly the same as data for which H is in the plane
of the surface at an equal angle to the major axis.
This behavior had been noted earlier in samples of
Sn, In, and Al*% and had been explained in terms of the
cylindrical geometry of the section of the Fermi surface
where the signals originate. In the case of Bi, where the
central portion of the ellipsoid is an excellent approxima-
tion to the cylindrical geometry, we account for the
observations in the same way. The skipping motion

% J. D. Jensen, Ph.D. thesis, University of Maryland, 1968
(unpublished).
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of the electron in real space ignores the component
of field perpendicular to the cylinder axis. The electron
moves in an effective field H cosf applied along the
cylinder axis.

A more difficult case to examine is that of a cylinder
(representing the central portion of the Bi ellipsoid)
tilted out of the sample plane as in Fig. 7. The zone
v,=0 appears tilted with respect to the sample plane,
and in real space the electron moves in a segment of
arc that is inclined at the tilt angle 6, relative to the
surface. The cylindrical geometry, as before, implies
that only the component of H in the direction of the
axis determines the motion. Specular reflection of the
electron in the tilted trajectory looks unusual when
interpreted in terms of velocities. The tilted trajectory
at incidence has a component of velocity in the y
direction (parallel to the surface in our geometry)
which reverses on reflection. The reflection is adequately
described in terms of momentum changes Ak,=Ak,=0
and Ak.7#0. With H applied along the cylinder axis,
the electron moves across the zone of Fig. 7 at an angle
6. to the surface. Upon reflection, it moves straight down
by Ak, to the lower edge of the zone. It then repeats the
cycle, starting at this new point, and continues to
zigzag along the zone in k space. Because of the sym-
metry of the cylinder, the real space motion is the same
from one cycle to the next.

When a tilted ellipsoid is present, the variation of
the signal, as H is rotated in the plane of the sample, is
expected to show a minimum when the field is along
the projection of the major axis. At the position of the
minimum, the observed field is expected to be higher
than for the case where the ellipsoid lies in the surface
by the reciprocal cosine of the tilt angle. We have
checked this dependence for some of the samples that
had been used in the velocity studies and have found
generally good agreement with the 1/cosf, prediction.
One disconcerting exception to this rule appears to be
the bisectrix (C1) plane data. This plane has two
ellipsoids, each tilted by nearly 30° out of the sample
plane. The two minima in the angular variation of the

A
n

F1G. 7. Cylindrical Fermi surface tilted at angle 6, relative to
the sample surface. The skipping zone will be tilted at the same
angle. With the field H along the cylinder axis electrons move
along the zone in a zigzag fashion.
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data appear symmetrically on either side of the C; axis
and are separated by 15°, as expected. We measure the
minimum resonance field H;, as 3.58 Oe at 32.77 GHz.
Scaling the in-plane value by the 1/cosf, factor gives
3.92 Oe. This glaring discrepancy has led us to check
and recheck for possible errors in sample orientation or
field readings. We are fully convinced that the missing
0.34 Oe is real, and are at a loss to explain this result.
This aspect, together with all the geometrical intricacies
of the three ellipsoid system, has been explored more
fully in a thesis.?s

F. Geometry of Skipping Orbits

The derivation of the energy level scheme and our
application of the formulas to evaluate the “point”
velocity have assumed that the skipping electrons
move only through a narrow angular range, so that
9;,=~vp and that the motion can be described by a
local radius of curvature on the Fermi surface. We
calculate here some of the relevant numbers to check to
what extent these conditions are satisfied in Bi.

Consider for example the electron skipping about o
the pointed end of the elliptical cross section shown in
Fig. 6. The local radius of curvature at the midpoint of
the trajectory will be K =%k,?/k;=3.9X 105 cm}, so that
in a typical field of 3.4 Oe the corresponding cyclotron
radius R is 0.76X 1072 cm. The maximum depth of the
n=1 trajectory for such electrons is z;=06X10~* cm,
with higher state trajectories moving increasingly
deeper into the metal as (n—1)2/3. It is apparent that
the microwave skin depth 8 in Bi is on the order of
z1; and also that both z; and 8 are on the order of 1/100
of the cyclotron radius. This is what we had assumed in
the duty-cycle argument. The length of each bounce is
2V2RY2512=0.96X 10~3 cm, while the half-angle of the
range traversed in each cycle is nearly 7° with reference
to the assumed locally circular path. Referred to the
center of the elliptical section it is only 4°. At the end-
point of this particular trajectory, the curvature K
will have changed by less than 197, so that our descrip-
tion in terms of a locally circular path should not require
serious modification. For other orbits, away from the
symmetry points, the deviation in K will be larger,
increasing at one end of the trajectory, decreasing on
the other. Using the curvature at the midpoint of the
trajectory ought to be a good approximation. Compared
to a more typical metal like Cu,? where the electron
moves only a small fraction of a degree on the Fermi
surface, the case of Bi seems on the verge of breaking
down the simple assumptions about the geometry of
the skipping trajectories.

G. Surface Preparation

Successful observation and measurement of the sur-
face-state resonances is crucially dependent on careful
preparation of the sample surface. As we have already
remarked earlier, surfaces grown on carbon-coated
quartz plates barely gave observable signals. Subse-
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quent electrochemical polishing made it possible to
observe detailed structure and sharply resolved lines.

Polishing Bi turned out to be a haphazard adventure,
and the results would vary considerably with the type
of polishing procedure or such factors as polishing
time, current density, age of the polishing bath,
temperature and stirring rate. With a poor polish,
we generally found a sharply rising baseline and only
weak surface-state resonances as is evident in one of
the traces of Fig. 8. Cyclotron resonance at the same
time was largely unaffected. The two curves were
obtained with the same crystal under identical condi-
tions, except for the surface polish. We have also
found that the samples deteriorate with time and
require occasional repolishing. A systematic study of the
dependence of the signals on surface preparation should
reveal details of the nature of electron reflection at the
surface.

VI. CONCLUDING REMARKS

The present studies of Bi represent the very first
attempt to systematically use the surface-state reso-
nance effect to explore velocities point by point over
the Fermi surface of a metal. The work in Bi, because
of the independently established Fermi surface param-
eters, also affords a critical check on the theory of
surface states. In Bi, we have seen, it is possible to

SURFACE POLISH I

SURFACE POLISH II

BISMUTH
A(h,3) 56°
HIl 2

f =32.8 GHz
T=4.2°K

Fic. 8. Comparison of data taken on the same specimen with
different surface polishes. Polish I was a poor quality electro-
polish, while II represents the best polish (a combination of
chemical and electropolishing) ever achieved on that sample.
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accurately calculate the impedance oscillation spectrum,
including the %, integration that had been ignored in
previous attempts at fitting theory to experiment.?

While on the whole agreement of the experimental
results with theoretical predictions is satisfactory, some
discrepancies remain. For one, in the impedance
calculations the 8 parameter that was necessary to fit
the experimental curve, differed considerably from its
calculated value based on ASE skin depth measure-
ments. This is a serious deviation that we do not know
how to resolve at present. We also admit that the signals
from tilted ellipsoids are not wholly understood. We
have found at least one case, where the observed peak
position disagreed with the expected position outside of
the possible limits of error in the experiment.

A great deal more could be done in the way of deter-
mining point velocities over other symmetry sections
of the Bi ellipsoid, or for that matter at arbitrary
points. The very time-consuming x-ray orientation
work, and the necessity to prepare a new sample for
each datum, has limited the present investigation to
a single zone about the Fermi surface. It seems to us,
that it would be essential to develop a more sophisti-
cated method of making such measurements, if more
detailed and complete data were desired. We would
suggest using a cylindrical sample where only a small
strip of the sample is exposed to the microwave radia-
tion at one time. Rotating such a sample about its
axis step by step would give the desired set of data in
a single experiment.

Much of the interpretation of the resonance data in
this work had to rely heavily on independently mea-
sured geometrical factors. In principle this is not really
necessary. In recent studies of Cu we have been able
to observe resonances in samples where the surface is
cylindrically curved.”®?” A measurement of the shift
of the resonance for electrons skipping along a curved
surface, determines the curvature K for that group of
electrons. Combining such a measurement with a
measurement of resonance fields in a flat surface
sample, allows one to obtain both K and v from surface-
state resonances.
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