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The method for solving the Faddeev equations for atomic problems proposed in Paper I of
this series is reexamined using a new separable representation for the off-shell two-body

amplitude. Specific details for the determination of the collision amplitudes are worked out.
A new set of reduced equations with proper inhomogeneous terms are obtained for cases with

identical particles (electrons). As an illustrative example, the phase shift for low energy
electron scattering by a hydrogen atom is calculated and compared with that calculated from
conventional methods. In Appendix A, the possibility of applying the Faddeev equations to
heavy-particle reactions using approximate or phenomenological atom-atom pair interactions
is investigated.

INTRODUCTION

In a recent paper, ' we have investigated the
applicability of the Faddeev equations' to atomic
problems with Coulomb potentials. ' A practical
method for reducing the Faddeev equations to a
set of single-variable integral equations was in-
troduced. This set of equations can be solved in
a straightforward manner. As an illustrative
example, the method was applied to the (e, H)
system in which the 8 bound state and the lowest
members of the resonances in both the singlet
and the triplet J=O series were calculated.
the application we left the boundary conditions,
associated with the physical process open, since
all we need for the calculation of three-body
bound states and resonances is to locate the poles
in the kernel of the set of integral equations
which are independent of the inhomogeneous terms.
The boundary conditions must, however, be ex-
plicitly imposed if, in addition, one wishes to cal-
culate the collision amplitudes and wavefunctions.
In the present paper we extend the method to the
calcul. atioq of collision amplitudes and wave func-
tions.

The Faddeev equations and the method of Paper
I for solving these equations are outlined in Sec.
II in a form suitable to the present application.
(A few misprints in Paper I are corrected. ') In
Paper I, the off-shell two-body scattering ampli-
tudes are represented in terms of Sturmian func-
tions in sums of separable terms. Though very
encouraging results were obtained for the (e, H)
system using only a few leading terms, the Stur-
mian-function representation converges in an os-
cillatory manner and involves large cancellations.
In view of this numerical difficulty the Coulomb-
function representation recently proposed by Chen

and Ishihara' is adopted. A new set of single-
variabl. e integral equations is given in a mixed-
mode representation. In this representation, the
Coulomb functions are used for pairs where the
interaction potential is attractive. For pairs
where the interaction potential is repulsive and
the continuum contribution is dominating, the
Sturmian functions are used.

In Sec. III, we consider the problem of putting
these sets of equations back on the energy shell
corresponding to the physical problem of interest
and the problem of calculating collision ampli-
tudes. In the case where two of the three parti-
cles are identical, we show (in Sec. IV) that the
set of integral equations may be further reduced,
just as in the case for the calculation of bound-
state and resonance poles, to a single equation
and a pair of coupled equations. As an illustra-
tive example, the phase shift for low-energy
electron scattering by hydrogen atoms is calcu-
lated in Sec. V. The result is compared with
that obtained by the variational, ' the close-cou-
pling, ' and the extended polarized-orbital' meth-
ods. Detailed investigations of the convergence
problem and the relations between the Sturmian-
and Coulomb-function representations are given
elsewhere in Paper III' of this series.

In Appendix A, the interesting possibility of
applying Faddeev equations to atomic reactions,
using approximate or phenomenological poten-
tials, is investigated. It is shown that our pro-
cedure can be adopted with simple modifications
to atomic reactions if suitable potentials between
each pair of atoms are available. For reactions
involving a three-body force, the Faddeev equa-
tion must be modified to account for the additional
three-body interaction. A simple proof of New-
ton's modification" of the Faddeev equations in
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the presence of a three-body force is given. In
this case, an additional equation involving the
three-body force is coupled into the Faddeev
equations. If the three-body force is smail, a

perturbative scheme may be adopted. In Appen-
dix 8, an alternative set of single-variable in-
tegral equations in the mixed-mode representa-
tion is given.

II. THREE-BODY THEORY

A. The Faddeev Equations

The collision matrix T(s) for a three-body system is a solution of the equation"

T(s) = V+ VGO(s)T(s),

where G (s}=(s ff ) '-
O 0

(2. 1)

(2. 2)

and where s and V are the total energy and total interaction potential of the three-body system, respective-
ly, and Go(s) is the free three-body Green's function. If the total interaction V consists of a sum over only
two-body interactions Vij (i &j= 1,2, 3}, then

v =&.v. ( v. = v. ) .
z jk'

(2. 3)

Faddeev' has shown, using a method which is related to the multiple scattering theory of %atson, " that
the three-body collision matrix can be conveniently expressed as a sum of three terms corresponding to
the three alternative pairs of particles undergoing a final-state interaction (see Appendix A for cases with
a three-body force):

T(s) = T t'&(s)+ T~-&(s)+ T"'(s) . (2.4)

The T z~ satisfy the well-known Faddeev equations

T (s) =T (s)+ Q T. (.s}G (s)T (s), i=1,2, 3,(i) (j)
z . . zjgz

(2. 5)

where the scattering matrix Ti (s) arising from the two-body potential Vi is given by the I.ippman-Schwing-
er equations"

T. (s) = V. + V G (s)T. (s) .
z z i 0 z

(2. 8)

The absence of direct coupling of T( }with itself in the Faddeev equations results in a less singular ker-
nel.

In momentum representation, the nonrelativistic kinetic energy in the c.m. frame may be written

2 2 2
&0-Pg +q, 2 —P2 +9'2 —P3 + 9'3 (2. 7)

m k. —I.k
u j

Pi [2m. m (m. +m )] "'
j k j

m. (k. +k ) —(m. +m )k.
z

i [2m. (m. +m )(m. +m. +m )] '~' '
z j k

(2. 8)

where m„m„and m„and k„k„and k, are the masses and asymptotic moments of the three particles,
respectively. Consequently, the corresponding state vector ik„k„k,) may be written in any of the three
pairs of basis variables

ik„k„k,) = ip„q, ) = ip„q, ) = Ip„q, ) (2. 9)

These sets of basis momenta [defined by Eq. (2. 8}] in cyclic order of i, j, and k are linearly dependent
[see Eqs. (I2. 14)].

Since the total angular momentum 4 and its projection M is conserved, we consider these states to be
diagonal in J and M. The separation of the angular momentum states in the Faddeev equations can then
be carried out ' using the relative angular momentum / between two particles, which is combined with
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the angular momentum L of the third particle in the over-all center-of-mass system. We have [see Eq.
(12.19)]

(P, q, s) =4 (P, q, s) ——,
' + Z f dP f. dq X.. (Pqa )P q a )[P q /(p. q. —s)]

Qj j~i
x q (p. , q. , s), (2.10)(j)

with 4' (P, q, s) = .(P, q, a) T (s)(kl, k2, k3), {2.11)

4 (p, q, s) -=.(p, q, a iT.(s)ik, k, k ), (2.12)

X (Pqn(p q. a.}=—.(P, q, a(T.(s))p. q, n. )(i) jj j i '' i jj j (2.i3)

where for convenience the discrete quantum numbers (ZMlL) are collectively denoted by n.
Since Ti involves only the two-body potential V;, the matrix element i(pq) Ti (s) [piqi)& in the kernel

X. tt may be reduced to a two-particle matrix element. The kernel in the Faddeev equations may be
written as"

X. (Pqa[p. q. a.) = f dcos8- - A (8- -,8- -,8- - )5(q -q. )t (p, p. ;s-q ),(I} 1 2 2 (i) 2

pjqj 0'o'j pipj pjqi pjqj z
' s

'

with

(2.14)

QQ pipj pj qg pj qj q

Z F" (8 -, 0)W (8 -,0)F, {8--,0), (2 15)
'PN) Pl g7%1 I ml mL -mL 0 mL -mL lml pp ' LmL pq ' L'mL qp '

~ 2-~where 8p. p. , for example, is the argle between momentum variables pi and pj. ith p; =pj +qj —@-,
we have

cos8- - = ~. = (ij)[n. . '(q. ' —q')+ll '(q' p..')]/2—n . ti qP. .. ..
piq ' sj ij j vv i'

cos8- - = ~. = (ij)[ I3'P'+a'q. '. .—q.']/2n" P P q. .. .
pjq j ij j ij j ijij jjj j

(2.15)

(2.17)

where a. . == [m. m. /(m. +m )(m. +m&)]"' and P. . -=(1 —n. .')'I',ij i j s ~ j ij ij (2.19)

and where (ij) denotes that (12) = (23) = (31)= 1 and (21) = (32) = (13)= —i.
The scattering amplitude tl (t)(p, pi, s —q'), between particle j and k with angular momentum l, is the

solution of the Lippmann-Schwinger equations

«{p O';E)= i'I (p p')- & f-dp p ~& (p p )«(p, p;E)l(p -&),

with the Coulomb potential"

Vi (p, p ')= (-,' )"'(Z /Pp')ql[. {p +p. )l2pp'],

(2.19)

(2.20)

where the Ql are the Legendre functions of the second kind, pi is the reduced mass for the (j,k) two-
body system, and Zi is the product of the charges (i. e. , Z Z~) of the two particles. The scattering
amplitude is normalized" on the energy shell according to he equation

t {p p p ) =-e I {sin5 )/p.
{i)

(2.2i)

Here P' is the two-body center-of-mass energy.
The partial-wave Faddeev equations with the kernel given by Eqs. (2.14) and (2.15) are effectively a set

of coupled two-variable integral equations. It is clear that if tl (i) (P,Pi;s —q') is expanded in a sum of
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terms separable in p and p;, then the p dependence of 41(i)(p, q, s) becomes explicit, and the two-variable
integral equations can be reduced to equations with one variable. %'e will consider such a reduction in
the next two subsections, using two possible separable representations of t~ in terms of the Sturmian and
Coulomb functions.

B. Variable Reduction in Sturmian-Function Representation

The reduction of the partial-wave Faddeev equations in two variables to a set of single-variable equa-
tions has been carried out in Paper I, using the Sturmian-function expansion for the off-shell two-body
amplitude in sums of separable terms,

f (P,P'; E) =Z [1 r —(E)] '
4 (P, E)4 l(P', E}

The Sturmian functions

(2.22)

2 + X(X —( —((i (2( 3(/4 P ( ~ ( p E
)xl ' I'(X +1+ 1) 2 l+1 L-1 —1 2

P —E) P

which satisfy the orthonormality property

'f -p'py„, (p, )e, ,, (p, )/(p' )=-„, ,

are solutions of the homogeneous Lippmann-Schwinger equations with eigenvalues [y&l ]

[rxl(z)1 'Axi(p, z)=-v 'f" dP "[P'/(P"-z)] vi(p, p')4xi(p', E),

(2.23)

(2.24)

(2.26)

with y l(E) = —X(- 2E/p)'"/Z, (2.26)

where C~ ~
y~+ ~ are the Gegenbauer polynomials.

Utilizing the separable Sturmian-function (S-F) expansion [E(I. (2.22)] for ti, the p dependence of
%z( }(p,q, s} can be made explicit. For simplicity, let us consider now the O'=M=0 case. In this case,
o = (JML) = (00ll) =l and the off-shell three-body collision amplitude g(l ( }(p,q, s), from E(ls. (2.10) with
the ith pair of particles undergoing final-state interaction, can be expressed with the help of E(I. (2.22) as

(p, q, s)=el (p, q, s)+g [r l (s —q )-1] (t l (p, s-q )xxl (q, s).(i) (i) (i) 2 - I (i) 2 (i)
(2.27)

The functions XXI(') can be determined from the set of coupled single-variable integral equations [see E(ls.
(12.14) to (13.16)]:

XXI (q s) nXI (q s)+ + j, dq. X l', l (q q s)X l (q s), i=i, 2, 2,
(i) (i ) (i j) . (j)

(2.26)

, , (q, . ; ) = —J 'jdp B ' (qp q ')[1-, , '( -q. )] ~ (P. — )4
(i,j) U" 2 (i,j) (') 2 -1 (i 2
xl, x'1' ' j ' L" j ll' ' j ' j' x'I' j xl i' x'I'

x(p. , s —q. );2

j
(q, ) = )" dq JL "dP. Bll

'
(q, P. , q; )0 I (P. , -q )C, (P. , q. , );

(i) ~ .- 2 ff; 2 (i,j) (i) 2 (j)
(2.29)

(2.20)

B, '
(q, p q. ;s}=—((-) [(2l.+1)(2l'+1)] /4va. . p. . q(p. ~q. —s)]P ((d.)P, ((d.);

(i, j) l+l' 1/2 2, 2
ij ij j j l i l ' j

where the limits of integration are given by the equations

(2.21)

U"=(a "q +q)'/P ', L"=(o'"q -q)'/P ' .ij ij j ij ' ij ij j ij (2.32)

From the example of applying Eq. (2. 28) to the (e, H) system for the calculation of three-body bound-
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state and resonance poles we have found in Paper I that the S-F expansion, though it gives encouraging re-
sults for the first few leading terms, converges in an oscillatory manner and involves large cancellations.
In the next subsection, the alternative, separable representation for the two-body scattering amplitude
tl(~), in terms of Coulomb functions, will be considered.

C. Variable Reduction in Mixed-Mode Representation

The off-shell two-body scattering amplitude for a Coulomb potential may be represented in terms of
Coulomb functions as a sum of separable terms' "

tl (P,P'; E) = Vl(P, P ')+ ,'vZ' [—(P'—e }(P"—e }/(E —e„}]t„l(nP)4„1(nP'},

with the Coulomb potential given by any of the following expressions:

(2.33)

V (P,P') = ,'v Q-'-(P' —e )rl (nP)p (nP'),
n n nl nl

(2. 34a)

= ——,'vg (P"—e )g (nP)g (nP'},
n n nl nl

(2. 34b)

=-!Z [(P'- )+(P"- )]0 (P)4 (P'),
n n n nl nl

(2. 34c)

where the prime on the summation sign indicates that we sum over (if VI is attractive) the discrete states
and integrate over the continuum states.

The Coulomb functions are solutions of the Schrodinger equation

(P'-e )e,(nP) = v 'f d—P'-'P'V, (PP')C, (nP'), (2.35)

with the orthonormality property

J g (np)g, (n'P)P'dp =5 (2.35)

For discrete states, we have en(') =-Zt2pt/(2n2) (2.37)

and 2 + n(n —l —1)}
t

(2l+5)/4
2

Pl
2 l+2 n —l —1 i 2

IP -e] KP —& /n n

(2, .33)

The separable Coulomb-function (C-F) representation for tl in general converges uniformly and is not,
in principle, limited to negative energies as is the case for the S-F expansion. " Consequently the single-
variable integral equation obtained using the C-F representation for tl should, in principle, be capable of
dealing with problems with positive total energies; this includes the problem of three-body breakup, such
as, for example, the ionization of hydrogen atoms by electron impact.

The convergence property of the C-F representation of tl [Eqs. (2.33) and (2.34)] for attractive Vl has
been investigated and compared with that of the S-F expansion [Eq. (2.22}] in some detail. " In general,
the C-F representation converges uniformly and rapidly to a limit which is displaced from the exact value
unless continuum states are explicitly included. The displacements which depend sensitivelyuponthe argu-
ments P and P' account for the continuum contribution. For most cases the continuum contribution is
usually only a few percent. This suggests that, for pairs of particles with attractive interaction, the C-F
representation, including only discrete states, should constitute a reasonable approximation for tl(&),
especially at low energies. This then permits us to reduce the partial-wave Faddeev equations to a set of
single-variable equations, in the mixed-mode representation suitable for dealing with problems at total
energies below the three-body breakup threshold. In this mixed-mode representation we adopt the C-F
representation for pairs of particles with attractive potential and for pairs of particles with repulsive
interactions, where the continuum contribution that dominates the S-F expansion is used.

When the expressions for tl(~) given by Eqs. (2.33) to (2.34} are utilized for pairs of particles with
attractive potential, several sets of new single-variable equations can be obtained from the partial-wave
Faddeev equations. We consider here the set obtained by using Eq. (2.34a) for Vl. Though Eq (2.34c).
for Vl preserves, term-by-term, the symmetry in interchanging p and p', it increases the number of
final coupled single-variable equations [see Appendix B] and is, therefore, less desirable from a practi-
cal point of view in solving these equations.
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(2.39)

For the off-shell three-body collision amplitude with pairs of particles undergoing repulsive final-state
interaction, we use the Sturmian-function expansion [Eq. (2.22)] and obtain

(P, q, s)=CI (P, q, s)+& b~ (s-q )-11 0~1 (P s-q )X~1 (q s).(j) (j) (j) 2 —I (j) 2 (j) (2.40)

The functions )( l
(~) and )( I

(~) can be determined from the set of coupled single-variable equations:nl xt

X (q, )=n (q, )+ & Z J dq. X l' l. (q, q. ; )X .l (q. , )
(i) (i) (i j) . (j)

n'l' j+i,j ~3

/'5
Utilizing Eqs. (2. 33) and (2. 34a), we obtain, for 41( )(P, q, s) with pairs of particles undergoing an at-

tractive final-state interaction, the expression

s (i)

(p, q, s)=4» (p, q, s)+
2 (. 2 g l (np)y l (q, s).(i) (i) v ~ p n (i) (i)

n s —c —qn

with

+ Q J dq X ', , (q, q;s)y, , (q, s), i=1,2;
x'I'

(q, s) =g (q, s)+ Z Z 5 dq. X ', , (q, q. ;s)y, , (q. , s);(3) (3) ' 2 (3,j) . (j )

n'l' j43

(2.41a,)

(2.4 1b)

2 2 2 (j)(p. +q. —s)(p. —e, )
X '~, , (q, q. ;s) =.—— dp. Bl, '

(q, p , q. ;s) ~. (.)
U n'

(np. )4,, (n'p. );
(i) (j)

(2.42a)

(i, 3) I i3 2 (i, 3) p, '+ q,
' —s (i) (3) 2

i, , l ( , ') = "P3 ll
'

( P3 3 ") '
(3) 2 ~„l (.P;)~, l (P3 —

3 )
L , 1 ,, l. ( -

q3 )
"

(2.42b)

p
2 , (j)

X ' , , (q, q. ;s) = — dp . B , '
(q, p , q. ;s) . . p (p , s —q )(Ct , , (n p.), (2.42c)

(3,j) . s 3j 2 (3,j) j n' (3) 2 (j)

"'3j n'

(q, s) = — Z f dq. dp. B, '
(q, p. , q. ; s)(p. + q. —s)g (np. )4, (p. , q. , s),

(i) ~ 2
t ij 2 (i,j) 2 2 (i) (j)

p j ] j ll' ' j' j' j j nl i l' j' j'jgj
2j

s —1 2' (2.43a)

(q, s) = p J dq. dp. Bll,
'

(q, p. , q. ;s)p&1 (p3, s —q )4'I, (p. , q. , s),
(3) " 2I 3j 2 (3,j) . (3) 2 (j)

XI ' , . & j ~ j It' ' j' j' Xl 3' l'
3j

(2.43b)

where we have chosen, for definiteness, the third pair (i. e. , particles 1 and 2) as having a repulsive inter-
action potential while pairs 1 and 2 have an attractive interaction potential.

Equations (2.40) can be rewritten in the form of Eq. (2.28)

(q, s)=r)
l (q, s)+ Q J' dq 3f l', l, (q, q. ;s))(,i, . (q. , s),

(i) (i) (i,j) . (j) (2.44)

where it is understood that the inhomogeneous terms and the kernels take their appropriate expressions
as given by Eqs. (2.42) and (2. 43) and that the prime on the summation sign indicates an integration,
when appropriate, over the continuum states. If the Coulomb-function representation is adopted for all
the two-body off-shell amplitudes, equations similar to Eqs. (2.44) would again be obtained in which all
the kernels and the inhomogeneous terms are given by Eqs. (2.41a) and (2.42a), respectively.
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III. DETERMINATION OF THE COLLISION AMPLITUDE

184

In our development, we have so far left the initial states [k„k„k,) of the three-body system unspecified.
For the purpose of determining the bound and resonance states, this is sufficient since the energy spec-
trum of the three-body system is determined entirely by the kernel of the integral equations which is in-
dependent of the initial state. The specification of the initial state and the corresponding inhomogeneous
terms as well as of the final states is of importance for the calculation of the collision amplitude and
wave function of the collision problem. %'e now consider the problem of specifying the appropriate initial
and final states for physical col.lision processes.

A. Specification of the Initial Physical State

For a physical collision process, one usually has an initial state consisting of two interacting subsys-
tems, such as an incident particle plus a two-body subsystem in a certain bound state. %e have, for the
initial state,

ik, k, k ).= ip, q, a ). , (3. I)

where p, is proportional to the magnitude of the relative momentum between the two particles in the two-
body subsystem, and q, is proportional to the magnitude of the momentum of the incident particle in the
three-body center-of-mass frame. The corresponding inhomogeneous term 4&z( )(p, q, s) [see Eq. (2.12)]
takes the form

(p, q, s)= .(p, q, o-l7'. (s)lpo, qo, o'0).
(f)

dcos8- A (8- -,8 -,8- - )5(q —q. )f (p,p. ;s —q ),2 2 (i) 2
1 P qo Qeo PPO qPO Po qo i l 'i' (3.2)

where Ao~ . is given by Eq. (2. 15).
OQp~

For definiteness, we consider an initial state consisting of particle "1"and a bound state of (2, 3) with
energy &, angular momentum l„and principal quantum number X,. The corresponding inhomogeneous
term for~a=M =0 then takes the form [see Eq. (I3.17)]

(3.3)4 '"(p, q, s) = f '"(p,p;s —q—')5(q' —q '), for q '-(s —s ),

where t~ '" is the two-body t matrix of the initial two-body subsystem. Since the initial two-body sub-
system is in abound state withenergy s, f &" has apole at s —q =s . 4&f &'&(p, q, s) can be rewritten
in the Sturmian functions as ' '0

4Z [2&& (-s )j'~' 5(q' - s + so)

0 0
(3.4)

and in the Coulomb functions with s0= 6& as
0

C (p, q, s) =—,&» (p'- e '")(p '- e "&)&}& "&(n p)g '"(n p ); for q '- (s —s ),
2 5(q' —s+s 0)

0 0'
(3. 5)

where we have taken && and no to denot the initial (2, 3) two-body state having an energy s in Sturmian
and Coulomb function &I epresentations, respectively.

B. Specification of the Final Physical States

Having specified the initial physical state, we are now in a position to determine the collision amplitude
by simply putting the Faddeev equations back on the energy shell for the desired corresponding final physi-
cal states. As an example, we consider the rearrangement collision in which the incident particle (i. e. ,
particle "1")picks up particle "3"from the initial subsystem (2, 3) leaves behind particle "2," and forms
a new two-body subsystem (1,3) in the final state with energy sf and angular momentum /f. The collision
amplitude for such a rearrangement process can be obtained from Eqs. (2. 27) or Eqs. (2. 39) by taking the
appropriate energy limits that correspond to the energies associated with the initial and final states.
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Let the rearrangement collision matrix element be denoted by q0 'f, we then have from 4/ "& (which

corresponds to the off-shell three-body collision amplitude with particles "1"and "3"undergoing a final-
state interaction [see E&I. (2. 10)] the expression for &(0 f):

s —q —s2 s —q —s2

f 0 0 (2)™. (. .-.*I ™
q'-s —s &N. /

' qp'-s —
sp )., /, 0' 0 f

(s. 8)

wh~~e the first limit q -s - s which operates only on the inhomogeneous terms puts the collision ampli-
tude back on the initial energy shell, and the second limit puts the collision amplitude back on the final
energy shell. In this expression for q'0 f, the initial (2, 3) bound state pt'& and the final (1,3) bound
state P " are properly factored out. "

Utilizing Eqs. (2. 27) we obtain

[242(-s )]'I')/
l

"'(K,s;K )'~', with K =(s —s )'I', K =(s —s )'~', (3.7)

where )/"' is the solution of Eq. (2. 28). The ragmuent K in X&, l
"& is introduced to indicate that the

limit qo -s —so for the initial state has been carried out. The inhomogeneous terms [i.e. , the
&/&/ "&(q, s)] in Eq. (2. 28) for the )/n/ are given, after taking the q '-s —s limit by the equation0 0

"&(q, s) = — " ' ' ' dp 'B "~'&(q,p, K;s)@ "'((p ' s —s —q')'I', s - q')
X/ ' vyK ) ( )

1 /l, ' I' O' X/ 1 0
0 0 I q, K

"~.g, '"(PI 'o' (3.8)

with [see Eqs. (2. 31)]

I/, , (q, Ko) = (u, ,K0+q)'/p„', L„(q,K ) = (a„K0 —q)'///„', (s. 8)

where, on taking the limit q '-s s the 4»/"& inhomogeneous terms [as well as iy/"& in Eq. (3. 7)]
dropped out.

In terms of Coulomb functions, the rearrangement collision matrix element for the pick-up process
takes the form'

s —q -sn (~)

lim
0 f (P2 s (2&)i(t (2&(n P) (P 2 s (1&)&/& (&&(n p ) l (P& /&s)lim (2)

q'-s —sf nf nflf f qg~-s —sp( 0 n n l "0 p f0 0 0 -(s. io)

similarly we obtain, with the help of Egs. (2. 39),

nff 0

with &/n/'2&(q, s) given by

(3. 11)

t'// (q, K )
"&(q,s) =-— dp 'B " "(q,p, K s)(p ' —s )(p ' —& '")&/' '"(n p )&/'

2i'q 0
x (n(p, '+ s - s - q')'s) (s. i2)

where, of course, sp=en "& and sf =en "'.
It is a simple matter to relate the collision matrix element q'0 f to the cross section. The dif-

ferential cross section for the pick-up reaction is given in terms of the usual collision amplitude f as"0-
do /dA=(s /z )jf (A)l', (s.is)

with xf'/2/&f +s =s '/2p, +s, /& =m (m +m )/(m +m +m )0 0' f 2 1 3 1 2 3 (3. 14)
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where x, and xf are the relative wave numbers between the initial subsystems [i.e. , "1," and (2, 3)],
respectively, and y, , and pf are the reduced mass of the initial and final subsystems. For the J=0 case
considered here we have

f (0)= —4v(2p, } 'I'K (3. 15)

where the factor 4w/(2pf
)'I' in Eq. (3. 15) results from our normalization of the T matrix on the energy

shell.
Similarly, the elastic scattering matrix element ~g 0 may be obtained by taking q - ~ - ~ and q -s
~

0 limits for 0 ~
'". This can be done without additional calculations since, once the set of coupled0

equations [Eqs. (2. 28) or Eqs. (2.44)] is solved for a given energy, we obtain all 4 '", kf"', and 4'f"',
as well as the energy spectrum of the three-body system. Consequently, the collision matrix elements
for all the accessible processes are determined by taking appropriate energy limits. Utilizing these col-
lision matrix elements, we may present our results in terms of eigenphase shifts.

C. Determination of Eigenphase Shift

From the solutions of the coupled equations for the X's, the collision matrix elements for all the acces-
sible processes may be obtained by taking appropriate energy limits as outlined in Sec. III B. The S ma-
trix for the interacting system may then be constructed from these matrix elements. Let us return to the
example of the pick-up process discussed in Sec. III B and assume that we are in an energy region where
the pick-up process is the only inelastic collision accessible for the system, with the initial subsystems
consisting of an incident particle "1"and a two-body system (2, 3) in a bound state. The 8 matrix takes
the expression

0 0-0 f 0-f
(s. 15)

with p =2m /(2p )"', p =2» /(2p, }"', (s. 17)

where 1'0 0 and &0 f are the collision matrix elements for the scattering process 1+(2,3)-1+(2,3)
andpick-up process 1+(2,3)-(1,3)+2, respectively, and where V'f 0 and Y'f f are the elements for
the reverse processes, (1,3)+2-1+(2,3) and (1,3)+2-(1,3)+2, respectively.

The example discussed here corresponds exactly, for example, to the physical problem of the collision
of positron by a hydrogen atom at energies below the first excitation threshold of the target hydrogen. In
this case, &p 0 corresponds to the elastic scattering and &0 f corresponds to the positronium forma-
tion, while Ey f and v~ 0 correspond to the reverse processes of positronium scattering and electron
capture by a proton.

These matrix elements are expressed in terms of the X's as follows:

=(Z /X )[2P (-s )]"'}f "&(K,s;K ),
0 0

f-o= 1 o[ "1 'o] ~~ f o"
0 0

(s. 19)

(3.19)

a,nd v' =(Z /X )[2p (-s )]"'y
f

"&(K,s;K ),f f 2 0 2 f off f' ' f ' (s. 2o)

where the additional (last) argument in the X's is introduced to indicate that the corresponding limit for
the initial state has been taken. The expression for y' f is given by Eq. (3. 7). Similar expressions
for these collision matrix elements, such as Eq. (3. 11, can be obtained from Eq. (2. 39) in terms of
Coulomb functions in exactly the same manner.

The symmetric, and unitary S matrix given by Eq. (3. 16), may be diagonalized by a real, orthogonal
matrix"'"

cos& sin&
- sin& cosf (3. 21)
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2i5,
to give OSO '=

0
(3. 22)

where 5, and 5, are the eigenphase shifts and f is the connecting parameter.
In terms of the eigenphase shifts and the connecting parameter, the collision matrix elements take the

form
2 2t5, . 2 2&5

= (i/p )[cos fe '+sin f e ' —1],
0 0

= (i/2p ) sin(2f)[e ' —e '],2i5, 2i5,

=(i/2p ) sin(2f) [e ' —e '],2i5, - 2s

2 2i~, 2 2i5,=(f/p )[sin g e '+cos f e ' —1] .

(3.23)

(3. 24)

If more than two channels are open, the dimension of the S matrix will, of course, increase. More con-
necting parameters are required in the real, orthogonal matrix 0 to diagonalize the S matrix. In general
if there are n channels to be considered, there will be n eigenphase shifts. One would therefore need
»(n —1)/2 connecting parameters to characterize the 0 matrix for the diagonalization of the S matrix.

IV. REDUCTION FOR IDENTICAL PARTICLES

The equations in Secs. I and III can be further simplified for cases with identical particles. As an ex-
ample we consider the problem of electron scattering by a hydrogen atom (or helium ion). This is a sys-
tem with two identical electrons having spin one half. For definiteness let us label the two electrons by"1"and "2"and the proton by "3." The equations derived in Sec. III C can be immediately taken over
for the inelastic direct and exchange scatterings in the (e, H) system. In this case, we have e0= ef. The
scattering matrix elements for the direct and exchange scattering are given, respectively, by Eq. (3. 18)
and Eq. (3. 'I) if the incident electron is "1"and, respectively, by Eq. (3.20) and Eq. (3. 19) if the inci-
dent electron is "2." Because of the identity of the electrons, there is no physical means of telling which
was the incident electron. The two scattering amplitudes as well as the two exchange amplitudes should
therefore be equivalent.

The S matrix may easily be diagonalized, giving two solutions, as, for example, in Sturmian-function
repr esentation

g +}=V'd+ r =(ZI/X )[2}& (-s )]"'[}(
I

"&(K,s;K )+}{ "&(K,s;K )]; (4. 1)

=(Z /X )[2» (-s )]&I'[}( &'&(K, s;K ) —
&t

&'&(K, s;K )], (4. 2)

which correspond to the familiar singlet and triplet scattering matrix elements. From this result it is
apparent that, for singlet scattering, one need only calculate the sum of the direct and exchange ampli-
tudes and, for triplet scattering, only the difference of the direct and exchange amplitudes. The fact that
the S matrix for a nonrelativistic two-electron system is diagonal in spin states is actually a very general
result" (not limited to elastic scattering). We now show that a set of reduced equations for the sum, as
well as for the difference, of the direct and exchange scattering matrix elements may be derived for the
singlet and triplet scatterings.

Utilizing the symmetry relations [see Eqs. (2. 16) and (2. 11)]
l'

P ((u }PI,((u ) =(-) +
PI{(ul)PI, ((u2}, (4.3)

P ((u )PI, ((u3) =(-) P ((u )Pf, ((u ), (4. 4)

lP ((u )P, ((u ) ={-) +
PI((u )Pf, ((o } . (4. 5)

The set of single-variable equations [Eqs. (2. 28) or Eqs. (2. 44)] may be rewritten
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X (q, s)=n
l (q, s}+~ f dq2 X, 1.(q, q2;s}X .l. (qs, s}+ ~ f q3 X l 1

(q l3
(1) (1) 2 (1, 2) . (2) s r d 2 (1, 3)

V, V
v l v l

x X .l. (qs, s),(3)
V

(q, s) =r} (q, s)+ Z (-) f dq X ', , (q, q;s)}t, , (q, s)+ Z (-) f dq x(2) (2) l+l' ~ 2 (1,2) (1) l+l' ~ 2 (1,3)

(4. 6)

x (q, q;s)X ~ (q, s), (4 7)(3)

(4. 8)(q, s}=t} (q, s)+ Q f dq Sf ', , (q, q;s)[}f, , (q, s)+(-) }t, , (q, s)],(3) (3) 2 (3, 1) (1) l+l' (2)

Multiplying Eq. (4. 7) by (-)l, adding the resultant to Eq. (4. 6), and also subtracting the resultant from
Eq. (4. 6), we obtain

u '
(q, s)=$ '

(q, s)+ Q (-) f dq X ', , (q, q';s)u, , ' (q', s)+ Z [1+(-) ] f dq(1,2) (1,2) l' ~ I2 (12), (12) l ~ '2

lll V

(i, s) , (s)
x«st 1' l (q, q';s)X

l
(q', s), (4.9)

v ' (q, s)=& '
(q, s)+ Z (-) f dq SC ', , (q, q';s)v, , ' (q', s)+ Z [1—(-) ] f dq(1,2) (1,2) l'+1 ~ '2 (1,2) (1,2) l' ~ '2

(1 3) .. (3)x sf ', , (q, q';s)}(, , (q', s), (4. 10)

(q, s) =t} (q, s)+-,' [1+(-)] Z f dq Sq ', , (q, q';s)u, , ' (q', s)+ —,'[1 —(-) ] Q f dq
(3) (3) & l ~ ~2 (3,1), (1,2), g l ~ I2

I i(q, ques}v I I ' (q s), (4. 11)

with u ' (q, s) -=}t (q, s)+(-) y (q, s),(1,2) (1} l (2)
vl vl vl

(q, s)-=X,
1

(q, s}-(-)X l (q, s},(1,2) (1) l (2)

(q, s)-=q
l (q, s)p(-) r} l (q, s),(1,2) (1) l (2}

(q, s)=—r/
l (q, s) -(-) 0 l (q, s),1,2) (1) l (2)

(4. 12)

(4. is)

(4. 14)

(4. 15)

where we have rewritten Eq. (4. 8) in terms of u„l ' and vvl ' as Eq. (4. 11).(1, 2) (1, 2)

Since the Pauli principle excludes the possibility for two electrons in the singlet-spin states to have odd
parity, we have

y (q, s) =0, and odd l.3 (4. 16)

l'Equation (4. 16), together with the fact that when l' is even the factor [1 —(-) ] eliminates the y
term in Eq. (4. 10), uncouples v f(ii 2}and }( l(3}in the set of coupled equations. We then have, for
singlet scattering, the reduced set of single-variable integral equations:

(u ( ~ )(q, s}) (& (1~ )(q, s))vl ' vl '
p f~d '2

(3}(q,s) ) (ri (3}(q,s) ] v'l' '
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, , q, q';s(1,2)

xl
X 3~» qq s (4. 17)

v '
(q, s)=0 '

(q, s)+ Q (-) J dq X ', , (q, q';s)t, , ' (q', s).(1,2) (1,2) I'+ I ~ '2 (12), (12)
v

(4. 18)

Similarly, since the Pauli principle excludes the possibility for two electrons in the triplet-spin states
to have even parity, we have

)(q, s) = 0, for even l . (4. 19)

Equation (4. 19), together with the fact that when I' is odd the factor [1+(-) ] eliminates the y~if 1(3)

ms inEq. (4. 9), decouples the functions ~ 1(I 2)with ~ 1(3)in the set of equations. We then have, for
triplet scattering, the reduced set of single-variable integral equations:

u '
(q, s) =& '

(q, s)+ Z (-) J dq X ' (q, q';s)u, , ' (q', s),(1,2) (1,2) l' 2 (1,2), (1, 2)

v

(4. 20)

&~„(3'(q') i ('~, f'3'(q s) i t' 0

e ' qs &
' qs v'l' 23: ', , q q';s

x(' ", , (q, q;.)vl, v'l'

(X I.( )(q', s)

(v, , ' )(q', s) j
These are interesting results, since they simplify the actual calculation considerably. [It is of interest

to observe that Eqs. (4. 17) and (4. 21), except for the inhomogeneous terms, are identical to the equations
used in Paper I for the calculation of three-body bound and resonance states with )(&f(I) and )(&f(2) replaced
by u~f(I& 2)and u~f(li 2) respectively. ]

For singlet scatterings into even-/ states, instead of having to solve the three coupled sets of equations
[Eq. (2. 28) or Eq. (2. 44)], one needs to solve only Eq. (4. 17) which has just two coupled sets of equa-
tions. For singlet scattering into odd-I final states one needs to solve only a single set of equations [Eq.
(4. 18)]. We have for J'=M=0 singlet-scattering matrix elements, for example, in the Sturmian-function
representation:

(ft) =(Z /X )[2p, (-s )]"'u
I

Ii 2 (K, s;K ), for l even, (4. 22)

(it)=(Z /X )[2p (-s )]'i'v
i

Ii )(2Ks; K), for I odd, (4. 23)

where the 0 and 0 arrows denote spin up and spin down for the two electrons, respectively, and where the
u& I and the v& I are obtained from the solution of Eqs. (4. 17) and (4. 18), respectively.

The scattering matrix elements corresponding to the two possible final states resulting from direct and
exchange scatterings can be easily recovered by forming linear combinations of u& I (1, 2)and v~ I (I 2)
We have, for direct scattering,

(4S-&S)=(Z /2~ )[2q,(-s )]'I'[u
i

1 2 (K, s;K )+~ i
' 2)(K, s;K )], (4. 24)

and, for exchange scattering,
I

(44-44)=(-)f(Z /2X )[2p, (-s )]'i' [u I
' (K, s;K ) —v

I
' (K, s;K )]. (4. 25)
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The two scattering processes can be directly studied experimentally, using polarized electron beams. In

the first case, the scattered electron retains its spin orientation, and in the second case the scattered
electron has its spin flipped.

For triplet scatterings we solve Eqs. (3.38a) or (3.38b), depending on whether the final state has odd-

or even-ff, respectively. We have

(ti) =(Z /X )[2p (-s )] 'I'u ~' '&(Ã, s;K ), for f odd, (4. 26)

(&&) =(Z /& )[2@1(-s )]' 'v
&

" '&(1C, s;E ), for lf even. (4. 27)

Here the u& f and the vy f are now obtained from the solutions of Eqs. (4. 20) and (4. 21), respectively.~ff f

V. LOW-ENERGY (ePI) SCATTERING

As a simple illustrative application, we consider
here the calculation of a phase shift for low-ener-
gy electron scattering by hydrogen atoms. For
the present we confine our interest to energies
below the first resonance in the elastic channel.
(These resonances in the elastic channel have
been calculated using Faddeev equations in Paper
l. ) A very accurate variational calculation of the
phase shift for this system has been carried out
in this energy region by Schwartz' for both the
singlet and triplet scatterirgs.

For the calculation of singlet phase shift, we
may use either the full three coupled sets of
equations: Eq. (2. 28) [or Eq. (2. 44)], for )('„"
and X",,'; or the reduced equations Eq. (4. 17),
for u, p~". Calculation has been carried out using
both the full and the reduced equations. The re-
sults from the two sets of equations, of course,
agree and are shown in Fig. 1, together with the
variational result of Schwartz. Similarly, the
result for triplet phase shifts obtained from Eq.
(4. 18) agrees with that from the full equation and
is shown in Fig. 2 together with the variational
results.

There are several methods for solving such
coupled single-variable integral equations. In
the present calculation the matrix inversion
method was adopted. For numerical accuracy,
the branch points associated with the ground
target state were removed from the matrix to be
inverted, by the Fredholm reduction method as
described in Paper I. The matrix inversion was
carried out by straightforward digitizing the con-
tinuous variable q and q' for each fixed value of
the three-body energy s. To check the accuracy,
we have also solved this set of equations by a
stationary variational method. ' The variational
results converge to the results obtained by the
matrix inversion.

The present calculations were carried out by
retaining only the first term [i.e. , the (Al = 10) 1s
term] in the Sturmian-function expansion. The
inclusion of more states does not pose any diffi-
culty. There are, however, practical difficulties

30-
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FIG. 1. Singlet s-wave phase shift for the (e, H)

system: Schwartz (variational, Ref. 6); 1s-2s-2p
closed coupling (Ref. 7); extended polarization (Ref. 8) .

with the matrix inversion method due to the limita-
tions of computer storage, because the dimension
of the matrix to be inverted after digitizing in-
creases rapidly with increasing number of states
to be included. However, this practical difficulty
does not appear to be serious for the stationary
variational method.

The agreement of the present calculation with
the Schwartz variational result is remarkable for
the singlet case but not at all for the triplet case.
This result is understandable for the triplet case
since, by retaining only the 1s term, we have,
from the fact that Xyp =0, neglected electron-
electron correlations. The presence of the second
electron is felt only through the Pauli exclusion
principle. The remarkable agreement for the
singlet case obtained by using only a single term
is interesting but should not be taken too serious-
ly, as it was pointed out in Paper I that the Stur-
mian-function expansion converges in an oscil-
latory manner and involves cancellations. The
purpose of the present investigation is to demon-
strate our method of determining the phase shift.
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The problem of convergence and comparison of
the Sturmian-function expansion and the Coulomb-
function representation are given elsewhere in
Paper III' of this series.

As expected the 1s term alone fails to predict
the resonances near the first excitation threshold.

These resonances can be accounted for' when
more terms are included as shown in Paper I.
The scattering length obtained in the present 1s-
term calculation is 6.337', and 3.112a, for the
singlet and triplet scatterings, respectively. The
corresponding values obtained by the variational
method are 5.965 a, and 1.769'„respectively. '

For comparison with other methods we have
included in Figs. 1 and 2 recent results obtained
from 1s-2s-2p close-coupling calculations by
Burke and Schey' and the extended polarization
potential by Callaway et al. ' These are repre-
sentative results for the target-state expansion
and the polarized orbit methods. (For other
calculations one should consult the original pa-
pers cited in these two references, in particular,
the paper on the polarized orbit method by Temkin
and I.amkin. 'o) It is seen from this comparison
that the present procedure has interesting possi-
bilities.

0L 03 04 05
K (ou)

06 07

FIG. 2. Triplet s-wave phase shift for the (e, H}

system: Schwartz (variational, Ref. 6}; ls-2s-2p
closed coupling (Ref. 7}; extended polarization (Ref. 8}.
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APPENDIX A. APPLICATION TO HEAVY-PARTICLE REACTIONS

The method proposed in the previous sections may be applied equally well to problems involving com-
posite particles such as atoms or molecules, with some simple modifications. For convenience we will
refer to the composite particles as atoms. In dealing with reactions involving atoms in the framework of
the three-body theory of Faddeev, atoms in different electronic states are considered as different atoms.
For example, the collisional excitation process

A+B A+B*, (A. I)

in which atom B is excited into a different electronic state, may be considered as a three-body system
consisting of A, 8, and 8 (three atoms). Similarly, the exchange reaction

AB+C AC+B (A. 2)

may be considered as a three-body system, provided the three atoms A, B, and C remain in their re-
spective electronic states asymptotically.

Now if the interaction potentials between each pair of atoms for such a three-body system are known
reasonably accurately from, for example, calculations using the molecular-orbital method, the method
for solving Faddeev equations given in Sec. II may be readily applied, since the separable expansion
given by Eq. (2. 20), or Eqs. (2. 33) and (2. 34), are valid for any central field potentials. However, in
the present case the two-body eigenvalue problems [see Eqs. (2. 25) or (2.35)j for each atom-atom pair
potential, unlike for the Coulomb potential, may no longer be solved in closed form. Nevertheless, this
provides no additional difficulties in principle since such two-body eigenvalue problems may always be
solved numerically. The convergence of the partial-wave decomposition for heavy particle reactions may
in certain cases give rise to some practical difficulties. If this is the case, the alternative method for
representing the two-body off-shell amplitude becomes desirable.

In certain cases, the interaction potential for a three-atom system may not be adequately approximated
by a sum of three atom-atom pair interactions, since there may be an additional. intrinsic three-body po-
tential in the system. For such a case, the Faddeev equations must be modified to account for the in-
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rinsic three-body interactions. A modification of the Faddeev equations for systems with a three-body
force was carried out by Newton. " Here we give a simple derivation of the modified Faddeev equations.

In the presence of an intrinsic three-body force, the total interaction V may be written

V=Z. V. + U,
'E g

(A. 3)

where the V are the atom-atom pair interactions and U is the intrinsic three-body interaction. In addi-
Z

tion to the I.ippmann-Schwinger equations for two-body potential Vf given by Eq. (2. 6), we now also have
an equation for the three-body potential U:

T, (+) = UG (s)T, (s) . (A. 4)

Owing to the presence of U, one expects that certain portions of the three-atom collision matrix T(s}will
have all the three atoms undergoing a final-state interaction. %e may now decompose the three-atom
collision matrix into four components:

T(s) = T'"(s) + T"'(s) + T"'(s) + T"'(s),

with T (s) = V. + V. G (s)T(s), f =1,2, 3,(&)

(A. 6)

(A. 6)

T"&(s)= U+ UG (s)T(s), (A. 7)

where T'", T~", and T "correspond, as before, to portions of the three-body scattering matrix in which
alternative pairs of atoms undergo a final-state interaction, and T"& corresponds to that scattering ma-
trix in which all the three atoms undergo a final-state interaction.

Define the expression

(A. 6)

One can readily show by utilizing Eqs. (2.6), (A. 4), (A. 6), and (A. 7) that

A. = V. G A. ,i t 0 (A. 9)

(A. 10)

Since neither Vf G0 nor UG is an identity operator, Eqs. (A. 9} and (A. 10) imply that Qf =0 for all f We.
then obtain the Faddeev equ tions in the presence of three-body force:

T,(s) T,(s) T&(s) ( T"&(s)

T,(s) 0 T,(s) 0 T"&(s)
T,(s) T, (s) 0 T"& (s)

(A. 11)

This is the same set of equations as derived by Newton. "
The difficulty in solving these coupled equations arises primarily from solving Eq. (A. 4). Since U is

now a three-body potential, Eq, (A. 4) unlike Eq. (2. 6) can no longer be effectively reduced to a two-
body equation. However, if the three-body potential is weak, a perturbation scheme may be adopted, in
which one replaces T,(s) in the first-order approximation by U in the equation for T' '(s), and then elimi-
nates T"&(s) by substituting back into the equations for the T('}with i = 1, 2, and 3.

APPENDIX 8. AN ALTERNATIVE SET OF SINGLE-VARIABLE INTEGRAL EQUATIONS

In Eqs. (2. 34) three alternative series representations of the Coulomb potential VI(p, p') [Eq. (2, 20)]
are given. " Though they are equivalent, when all the terms in the series are included, they have rather
different convergence properties, "depending on their arguments p and p'. In Sec. 11 C, Eq. (2. 34a) was
adopted. No essential change in the formulation may result if Eq. (2. 34b) is adopted instead. The third
representation given by Eq. (2. 34c) is a symmetrized version of Eqs. (2. 34a) and (2. 34b). In each term
it preserves the symmetry of VI(p, p') in interchanging p and p'. Though in principle this is a desired
feature, this symmetrized representation, when utilized, would result in a larger set of coupled equations.
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When the symmetrized representation for VI(p, p ) is utilized, the two-body off-shell scattering ampli-
tude may be written

f (p, &';E) =-,'vZ
r.(p'-. )(p"-E)l(E-s ) +(j"- e)(j' E)l-(E s)-]0 (np)4 (nj ').

n n n nl nl
(B.1)

The off-shell three-body collision amplitude with a pair of particles undergoing attractive final state inter-
action may then be written

p2 e 2 2 2

(P, q, )=C, (P, q, )+-& . &,(P)X„, (q, )+-&,. &„,(P)X,
n s-q

n
s —q - f

For definiteness, we consider the same problem as that in Sec. II C in which the 3rd pair (i. e. , parti-
cles 1 and 2) have a repulsive potential, and are represented by the Sturmian-function expansion. We
then have Eq. (2.40) for O'I"'(p, q, s). The unknown functions Xnf(~a) and Xnf( ) with i =1 and 2, and XXI

'~

satisfy a set of coupled single-variable integral equations

(q, s) =q (q, s)+ g E 5 dq. x ', , (q, q. ;s)X, , (q. , s)(ia) (ia) 2 (ia,j a) (ja)
n' ' gal, , g4

I 'I' '' 'I' ' " ~f dq (qq')X ( )
2 (ia,jb) (jb) 2 (ia 3) 3

n g 7g
j n, n j x'l' n

(B.3a)

X„I (q, s)=n
I (q, s)+ 5 2 f dq. & I

'
I (q, q;s)X I (q. , s)(ib) (ib) 2 (ib,ja) (ja)

' ' j~l, j~3 '

+ ~ ~ f dq. &
I I (q q' 's)X III (q s)+ + f dq X I [ (q q3' )XsXlfl (q3 s)

2 (ib, 3) (3)

(B.3b)

(q s) =q (q s)+ Q Q f dq. st ', , (q q. ;s)X, , (q. , s)
(3) (3) ' ~ 2 (3 ja) . (ja)

n' 'jg

+ Z Q f dq. X ', , (q, q. ;s)X, , (q. , s),
2 (3jf) . (jt)

n 3
o j Xl, n ' l ' ' j ' n ' l ' j (B.3c)

with

„I '„ I (q, q; )= 4p I&.
-' (q,j., q;s) (., 2

—0 (np. )4 ~ ( 'p. ),

U (B.4a.)

(ia jb) v ij 2 (i j)
I n'I' ' ' 4 ' ll'

U

(nj, )4„,, (n'pj), .
n'

(B.4b)

(ia, 3)X
I Xqf q(q, q. ;s) =n, X

tp
i3d 2B (i, 3) p, '+ q, ' —s (i) (3) 2

3 II' ' 3' 3' 1-, , ( — ') l
' X'I' 3' 3

(B.4c)
2 2 2 (i) 2 (j)

n 2 n'
j 2

S —6'
U n'
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(B.4d)

2 2 2 (i) 2 2
~U. . (j +q. -q -e )(j. +q -s)

(ib, jb} s ij 2 (i,j) j j n .7 jr', , (q, q. ; ) = —— dp B . '
(q,P, q'. ; )

( )ntn l ' j' 4~&
U n'

x g l (nP )g, l., (n'P. },(i) (j) (B.4e)

(ib, 3)X l, l, (q, q;s)=
j L

Q3

2 2 2 (i)
i3 2 (i, 3) 3

+
3 n (i) (3) 2

dl Bll,
' (q, j''q''s 1- (3)( — 2) ~

l (np')~X'l' (P3' 3S —
A/3 n

(B.4f)

(j)X, , (q, q ;s)= . dp. -Bll, (q, p. , q. ;s) . ~ l (P, s-q )~,l, (n p.),(3,ja) v " 3j 2 (3 j) j n' (3) 2 (j)

'3j n'
(B.4g)

st(3, jb) & 3j 2 (3,j) j qj (3) 2 (j)
(q q;s)=4 dP Bll (q, P q 's) (' 2 @~i (P3 s q )0 l

(n P )

'3j n'
(B.4h)

(q, s) = — Z f dq. dp. B, '
(q, p. , q ;s)(P +q. —s. )P . (nP. )C, (p. , q. , s), (B.5a)

(ia) 2 ij 2 (i, j) 2 2 (i) (j)
aL. .

U

(q, s}=— Z f dq. dP. B, '
(q, P , q. ;s)(P. +q. —. q —e )g (nP. )C I (p. , q. , s),

(ib) ~ 2 ij 2 (i,j) 2 2 2 (i) (i) (j)
nl l' ~~L j ll' 'j'j' j j n nl g l j'j'

1 ~ ~

(B.5h)

(3) 2 ij 2 (3,j) (3) 2 (j)
lU

t} (q, s)= & f dq
'

dj Bii
' (q.j,q;.s}4, (P3, s-q )4'l. (P, q. , s),

v
where the Bll ~ '~' are given by Eq. (2.31).

(B.5e)
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A modulated retarding-potential-difference technique has been used to define the energy
width of an electron beam located in the source region of a time-of-flight mass spectrometer.
Negative ions with energies in the region 0-3 eV are produced by dissociative electron at-
tachment to gas molecules in this source and are permitted to react for a controlled continu-
ously variable length of time with neutral molecules to-produce secondary negative-ion prod-
ucts. From the observed time development of the reactions, the reaction rate constant may
be obtained, and the cross section then calculated if the primary-ion velocity is known. Re-
sults are presented for the reactions 0 +N02-NO&+0, H +H20-OH +H2, and D +D20
-OD +D2 at a number of primary ion energies, and for the reactions 0 +N20 —NO +NO,
HCOO +SF6 SF5 + (HCOOF), and SF6+HC1 F)Cl + (SF4H) at single energy points.

I. INTRODUCTION

It has proved difficult to measure ion-molecule
or charge-exchange cross sections as functions
of the primary-ion energy in the region below a
few eV. Drift-tube techniques' are confined in
practice to energies & 0. 1 eV and yield cross sec-
tions averaged over a range of ion energies. The
flowing afterglow technique' is limited to thermal

energies and collisional heating of the target neu-
trals. The components of the afterglow may make it
difficult to compare directly rate constants ob-
tained in this way with those from beam methods.
The latter' have yielded most of the information
which exists on the variation of cross sections
with energy but are confined4 to the energy region
above a few eV because of difficulties in obtaining
adequate energy resolution and beam intensity at


