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Electronic Band Structure of a-Brass
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The Kohn-Rostoker method has been used to determine the energy bands, within the virtual-crystal ap-
proximation, of ce-brass. The conduction-band energies have been determined at the points F, X, and L for a
range of zinc concentrations. The averaged effective potential to be placed at the lattice sites of the equivalent
crystal is computed from realistic considerations, and results are compared with experiments and other the-
oretical results. Discrepancies between computed and experimental values reflect the inadequacies of the
virtual-crystal model.

I. INTRODUCTION

HE existing theories of the electronic structure
of disordered alloys are in a very primitive stage

compared with those for pure metals. The theoretical
wolk in the latter field was greatly stimulated by the
large amount of experimental data available. Most of
the experimental techniques employed in obtaining
detailed information about the Fermi surface in ordered
materials require the existence of long electron re-
laxation times, and are, therefore, inappropriate for the
study of nondilute alloys. Nonetheless, rapidly deep-
ening understanding of alloys is being gained by a
steady increase in data from optical studies. The
development of positron annihilation techniques has
opened a new vista towards the delineation of the Fermi
surface in alloys. This method has recently been applied
to determine the Fermi surface of copper-aluminum
alloys. '

Progress is now being made towards the under-
standing of the electronic states of alloys. The averaged
t-matrix approximation, introduced by Korringa2 and
developed by Beeby, ' was cast by Soven4 into a form
amenable to computation. Soven applied the theory
to e-brass. In a later application to a model one-

dimensional alloy, Soven' finds that a "coherent
potential model, " which modifies the electron Green's

function and determines the modified Green's function
in a self-consistent way, provides a more reasonable
facsimile of the density of states. The extension of this
calculation to three dimensions has not yet been
possible. A formal approach to the problem of electronic
states in alloys has been adopted by Yonezawa and
Matsubara, " who suan a selected class of terms in a
perturbation series of the alloy (careen's function. How-

ever, no actual calculations have been reported along
these lines for a real alloy.

' K. Fuiiwara, O. Sueota, and T. Inura, J. Phys. Soc. Japan
24, 467 (1968).

2 J. Korringa, J. Phys. Chem. Solids 7, 252 (1958).' J. I.. Beeby, Phys. Rev. 135, A130 (1964).' P. Soven, Phys. Rev. 151, 539 (1966).' P. Soven, Phys. Rev. 156, 809 (1967)."F.Yonezawa, Progr. Theoret. Phys. (Kyoto) 31, 357 (1964);
". Yonezawa and T. Matsubara ibid. 35, 357 (1966); 35, 759
(1966).
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Amar, Johnson, and Sommersr (AJS) adopted the
"virtual-crystal approximation" in order to investigate
the band structure of noble-metal alloys. In this ap-
proximation, the actual potential appropriate to a
particular arrangement is replaced by its mean value
over all possible random arrangements. The disordered
crystal is thus replaced by an equivalent ordered
crystal with each lattice site carrying a potential
«(r))-

We present here the results of an energy-band
calculation for a-brass, within the framework of the
virtual-cr& stal approximation, using the Kohn-Rostoker
(KR) method. s Our choice of n-brass was dicta. ted by
the availability of experimental data' and by the fact
that the electron spectrum of the host lattice is well
understood.

In their calculations for Q.-brass, A fS postulate that
the effective potential" to be used in the virtual-
crystal model is given by

«(r))-= (f —~) V~(r)+«s(r) (l)
where Vz(r) and Vs(r) are the atomic potentials'0 for
copper and zinc and c is the zinc concentration. Their
results are in close agreement with Biondi and Rayne's'
experimental results. This agreement, however, appears
to be fortuitous in view of the fact that, for copper,
Ballinger and Marshall" find that the atomic potential
did not give an over-all satisfactory representation of
the energy bands. Therefore, AJS had to adjust their
bands for O'Po Zn, in order to make them agree with
Segall's" results for pure copper.

The present work seeks to assess the intrinsic worth
of the virtual-crystal model by making a better ap-
proximation to (V(r)).„, and comparing the resulting
bands with those obtained from experiments. Besides
being a better approximation to the alloy potential, this
has the advantage that no adjustments of the bands are
necessary for 0% Zn. The average potential (V(r)),„is

' H. Amar, K. H. Johnson, and C. B. Sommers, Phys. Rev.
153, 655 (1967).

8 W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).' M. A. Biondi and J. A. Rayne, Phys. Rev. 115, 1522 (1959).-'F. Herman and S. Skillman, Atonic Structure Calculations
{Prentice Hall inc. , Englewood ClifFs, N. J., 1963)."R. A. Ballinger and C. A. K. Marshall, Proc. Phys. Soc.
(London) 91, 203 (1967)."B.Segall, Phys. Rev. 125, 109 (1962).
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TABLE I. Conduction-band energies and level separations (in Ry) for a-CuZn (vvith Heine-type potentials)
over a 0—30oqo range of Zn concentrations.

X4I
X1
L2
L1
L1-L2

O'Fo

—0.256
0.881
0.541
0.305
0.672
0.367

—0.298
0.822
0.489
0.259
0.610
0.351

107o

—0.339
0.776
0.444
0.212
0.544
0.332

—0.382
0.708
0.397
0.165
0.477
0.312

—0.426
0.652
0.348
0.120
0.419
0.299

25ojo

—0.469
0.596
0.301
0.076
0.364
0.288

—0.515
0.540
0.255
0.026
0.299
0.273

then simply an appropriate crystal potential for pure
copper.

The conduction-band states at the symmetry points
I', X, and L were computed using the KR method when
the zinc concentration varied from 0 to 30%%uo at intervals
of 5%. The more tightly bound 3d electrons of copper
have been assumed to remain unaffected by the changes
in potential induced by the substitution of zinc atoms.
Within this limited calculation, the Fermi energy is
determined on the basis of the simple approach sug-
gested by Cohen and Heine. "

The KR method is particularly suited for this kind
of an investigation on account of the following reasons.

(a) The rapid convergence of the KR method, to-
gether with the use of symmetry considerations in
choosing the basis functions, results in a 2X2 deter-
minant being the largest secular determinant in the
present work.

(b) The bulk of the computation is involved in
evaluating the structure constants, which need to be
calculated once and for all. The effect of changing the
zinc concentration is then simply to change the effective
potential, which enters the secular determinant through
the logarithmic derivatives of the radial wave functions
at the "mu6in-tin" spheres. Calculating these is a
relatively simple matter.

II. POTENTIALS

A. Heine Potential

This class of potentials is often used for orthoyonal-
ized-plane-wave (OPW) calculations of normal metals
and is obtained as a sum of several individual con-
tributions of the core and conduction electrons, com-
puted according to the method first suggested by
Heine. "The potentials for copper and zinc are con-
structed in this manner and used for V~(r) and Vs(r),
Eq (1).

The Wigner-Seitz cell is assumed to consist of a
positive-ion core, embedded in a uniform distribution
of negative charge to make the cell neutral. We have
evaluated the core contribution as the sum of the
Coulomb contribution of the core plus a screened Slater

"M. H. Cohen and V. Heine, Advan. Phys. 7, 395 (1958).
'4 V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957); A240,

354 (1957); A240, 361 (1957).
'~ J. E. Robinson, F. Sassani, R. S. Knox, and J. R. SchriefFer,

Phys. Rev. Letters 9, 215 (1962).

exchange. " The conduction-electron contribution was
determined as the Coulomb contribution of a charge
uniformly distributed within the signer-Seitz cell.
Exchange and correlation between core and conduction
electrons is accounted for, according to the approach
by Robinson et al." Prima facie, the above scheme
seems to be a better approximation to the crystal
potential than would be the atomic potential. However,
when we consider the fact that, for copper, the classi-
fication into core and conduction-band states is not
quite natural, it appears that any advantage gained by
such detailed considerations may be offset by the

difhculty of defining the "core."
If we assume that a copper cell is represented by a

Cu+ ion within a uniform distribution of unit negative
charge, and a zinc cell by Zn++ vithin a distribution
of two electrons, the potential for Cu in o,-brass is
found to be deeper than that for Zn. This seems un-
reasonable and causes the bands to be pushed up with
increasing zinc concentration, contrary to the results
of Soven and of AJS. The prescription was, therefore,
deemed unreasonable, and we assume a uniform dis-
tribution of one electron in all the cells and treat the
cores as Cu+ and Zn+. This is consistent with Friedel's
proposal" that the excess charge on the nucleus of the
solute is locally screened out by the excess electronic
charge. The potential for zinc is then very much deeper
than that for copper, and the bands are pulled down to
a much greater extent than calcula, ted by AJS. The
energy values for this potential are listed in Table I.
There is a general downward displacement of the levels
as the zinc concentration is increased. The displacement
of L~ is somewhat greater than that of L~, resulting
in a reduced L"—Lj gap. The computed decrease for
30%%uo Zn is found to be 1.278 eV, compared with the
experimentally observed9 value of 1.3 eV. AJS also
find a value of 1.3 eU for the reduction in this gap. The
upward shift of the Fermi level above I.z for 30%%uo Zn
is found to be 0.952 eU, compared with the value of
1.84 eV obtained by AJS.

B. Superposed Atomic Potentials

The type of crystal potential which has been found
to be most successful in describing the band structure
of transition and noble metals is obtained from a super-

"J. Friedel, in Advances in Physics, edited by N. F. Mott
(Tayler and Francis Ltd. , London, 1958), Vol. 3, p. 461.
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TABLE II. Energy values and level separations (in Ry) for the conduction bands in n-CuZn with overlapped potentials,
{Cu potential VI) for a range of Zn concentrations.

FI
X4
Xl
Lg
LI
LI-Lg

07o

—1.479—0.694—0,4002
-—0.9256—0.6354

0.2902

—1.477—0.6916—0.4015—0.9244—0.6359
0.2885

20~go

—1.475—1.6912—0.4020—0.9232—0.6372
0.2860

—1.473—0.6907—0.4041—0.9219—0.6376
0.2843

—1.472—0.6895—0.4046—0.9207—0.6381
0.2826

2501

—1.4703—0.6892—0.4050—0.9190—0.6396
0.2794

30'Fo

—1.4702—0.6890—0.4064—0.9164—0.6407
0.2757

position of atomic potentials on neighboring sites."
The crystal potential is represented as the sum of a
Coulomb and an exchange part, both being obtained
from atomic wave functions. At any lattice point the
Coulomb part is taken to be the Coulomb potential
located at that site plus contributions from neighboring
sites. This is evaluated by employing Lowdins +-
function expansion technique and retaining only the
spherically symmetric term as implied in the muS. n-tin
approximation. The crystal charge density is obtained
by a spherically symmetric superposition of the atomic
charge densities in an analogous manner. The exchange
potential is calculated from Slater's formula.

Mattheiss" has shown that this prescription generates
a potential which gives a satisfactory representation of
the band structure for the iron-transition series. How-
ever, the work of Davis et al. '~ on Cu reveals that the
details of the band structure are very sensitive to the
choice of atomic charge densities employed in the
calculation. Examining three di6'erent sets of atomic
wave functions for Cu, they conclude that best results
are obtained for the potential constructed for an as-
sumed 3d"4s' con6guration using the atomic wave
functions of Watson' for a 3d'4s' configuration. This
can be understood in terms of the s-d hybridizations in
noble metals. Since our intention here is to use realistic
crystal potentials for the alloy constituents, we have
calculated the Cu potential from atomic charge densi-
ties for a 3d"4s' con6guration using wave functions
generated by the Herman-Skillman program'0 for a
3d'4s' configuration. This potential will be referred to
as V~. VVe have also performed calculations using a
potential Vii derived from a 3d"4s' con6guration

throughout. Davis et al. 6nd that Vi is more satis-
factory than Vi& for pure copper.

The behavior of Zn is known to be signihcantly
free-electron —like, and there is no admixture of core
and conduction states. %e, therefore, employ wave
functions for a 3d"4s' con6guration. Mattheiss" obtains
quite satisfactory agreement with experiments by
using such a potential in an augmented-plane-wave
(APW) band calculation for pure Zn.

The virtual potential for the equivalent ordered
crystal is taken to be

Ke use the symbols A and 8 for the solvent and solute,
respectively, and (V&(r)), or (Vs(r)), is the average
potential for an A or 8 atom for the given alloy con-
figuration. The probability that, if a given site is
occupied by an A atom, then a site which is its ith
neighbor will be occupied by a 8 atom is denoted as
PPA ~B(i)j. If r locates the various lattice sites re-
ferred to the A site under consideration as origin, then
the potential at a point r with respect to the A site is,
on the average,

(Vg (r)), = Vg(r)+P (P(A
~
A (i)jVQ(~ r r

~ )

+PEA [B(i)gvg([r —r, [)), (3)

where V~(r) and V&(r) are the potentials of the con-
stituents. This sort of superposition is done along the
lines of the Mattheiss prescription involving a separate
overlap of the Coulomb potential and the charge

TABLE III. Energy values and level separations (in Ry) for the conduction bands in u-CuZn with overlapped potentials,
(Cu potential VII) for a range of Zn concentrations.

Fg
X~
XI
Lg
LI
LI-L2

00~

—1.297—0.495—0.124—0.729—0.350
0.379

5~/c

—1.304—0.505—0.140—0.739—0.367
0.371

20/o

—1.301—0.514—0.155—0.749—0.384
0.362

5f7o

—1.317—0.523—0.172—0.758—0.400
0.355

20'Po

—1.325—0.533—0.287—0.769—0.417
0.347

25Fo

—1.331—0.542—0.203—0.779—0.432
0.340

30'Fo

—1.338—0.551—0.218—0.791—0.448
0.334

"L.F. Mattheiss, Phys. Rev. 133, A1399 (1964).'s L. F. Mattheiss, Phys. Rev. 134, A970 (1964).
'9 H. L. Davis, J. S. Faulkner, and H. %. Joy, Phys. Rev. 167, 601 (1968).~ R. E. Watson, Phys. Rev. 119, 1934 (1960).
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TABLE IV. Comparison of experimental and theoretical results for the level shifts and changes
in energy gaps {in Ry) from Cu to e-Cup. zpZnp. ap.

F.xperimen t:
Biondi and Rayne

Theoretical:
AJS
Soven

Present calc. :
Vr
~rr

0.051
0.050

—0.006
0.056

DL2

0.043
0.045

—0.009
0.062

DLI

0.139
0.058

0.0053
0.098

h(LI—L. )

0.096

0.094
0.013

0.015
0.045

6 (I'f—L2 )

0.135
0.825

0.099
0.120

a(zf—L )

0.026

0.035
0.062

0.0504
0.1083

density. The exchange potential is calculated from
Slater's approximation using the overlapped charge
density. The difference from the procedure for pure
metals is that the overlap contribution of the ith
neighboring 2 (or 8) atom has to be multiplied by the
probability of its occurrence. Otherwise the procedure
is similar to the Mattheiss prescription. The I"s can
be related to the short-range order parameters of a
disordered alloy. " For n-brass, however, neutron dif-
fraction experiznents do not show the presence of any
short-range order. The pair-correlation factors
PfA

~
B(i)j and I'(A ~A (i)] are then simply equal to c

and 1—c, respectively, independent of the neighbor-
hood. Potentials constructed from this prescription are
more soundly based than the potentials used by AJS.
The disparity with experimental results should now
reQect mainly the weakness of the virtual-crystal
model and not the inadequacies of the potentials of the
constituents.

The results for this scheme and employing Vz for
the Cu potential are shown in Table II. Table III
shows the results with Vzz as the Cu potential. It is
seen that the potential Vz for Cu leads to the surprising
result that the levels I'r, X4, and L2 shift slightly
upwards with increasing Zn concentrations but the Lr
and Xz levels are pulled down. The net e6ect is that
the L2 —Lz gap is reduced. The computed reduction
for 30% Zn compares well with Soven's results but
does not agree with the experimental results. For the
other potential Vzz all the levels are pushed downwards
with increasing Zn concentration.

III. DISCUSSION

The optical properties of n-brasses over a range of
0-30/o Zn concentration has been measured by Biondi
and Rayne and interpreted by Lettington23 in terms of
band calculations for pure Cu. It was observed that
the 2.2-eV absorption edge in Cu, which is due to
transitions between the d band and the Fermi level near
L2, shifts to 2.6 eV at n-Cup. yp Znp. 3p. The secondary
absorption peak at 4.2 eV in pure Cu shifts to lower
energies, the reduction being 1.3 eV for 30%%uz Zn. This
secondary peak at 4.2 eV is attributed to transitions

2~ M. J. Klein, Am. J. Phys. 19, 153 (1951).~ D. T. Keating, Acta Met. 2, 885 (1954).
23 A. H. Lettington, Phil. Mag. 11, 863 (1965).

between the doubly degenerate d state X.- and the p
state X4. Transitions across the L. —Lz gap are also
associated with this edge.

In Table IV, we compare the changes in these level
separations for the present calculations using copper
potentials Vz and Vzz with experimental and other
theoretical results. If the d bands are assumed to be
unaffected upon alloying, the shift in the secondary
absorption peak is given by the downward displace-
ment of the X4 level. It is seen that for Vzz the shift
is in fair agreement with both Soven's and the AJS
results, but in marked disagreement with the experi-
mentally observed shifts. The displacement of the Fermi
level with respect to the d band for Vzz is about twice
the experimental value, and lies in between those
calculated by Soven and by AJS.

In their calculations, AJS used the structure con-
stants tabulated by Segall and Ham'4; the corresponding
errors in interpolating the secular determinant are
estimated at &0.01 Ry. This magnitude of error is too
large since the observed reduction in the L2 —L~ gap is
of the order of 0.03 Ry. We have, therefore, evaluated
the structure constants at yp the energy intervals of
Segall and Ham. The corresponding interpolation
errors should be &0.001 Ry.

We see that for both potentials Vz and Vzz, the
agreeznent with experiznental data is poor. The po-
tentials used in our calculation have been obtained
from a prescription proven to be successful in describing
the band structure of pure metals. We can therefore
attribute the discrepancy with experiments to the
inadequacies of the virtual-crystal model.

It is concluded that though the virtual-crystal
approximation gives a qualitative picture of the
electronic states for n-brass; it fails to produce quanti-
tative agreement with experimental results.
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