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The coherent-potential approximation (CPA) for single-particle properties of electrons in a disordered
alloy A,B'I (Soven and others) is extended to complex admittances. The one-electron Kubo formula is
used. The CPA is viewed as a single-site decoupling of the averaged multiple-scattering expansion. It
properIy gives the exact formulas in the limits of weak scattering (Edwards) and of dilute alloys (Langer).
For any x and any random-potential strength, CPA satisfies a number of physical conditions, including
energy and particle-number conservation. The CPA equations are exactly soluble for a single-band model
with short-ranged random scatterers. The vertex corrections are related to the response of local densities
to a given disturbance. For the electrical conductivity 0., they vanish. Variation of 0 with the random-
potential strength is studied nuInerically. A low-mobility region appears well before the band splits. In the
split-band limit, CPA yields a reasonable Rnite cr in the host band, but it fails in the impurity band.

I. IHTRODUCTION
' PRESENTLY available theories of electronic trans-

port in disordered alloys concern either the weak-
scattering or the dilute-alloy limits, as represented by
the works of Edwards' and I.anger, ' respectively. One
important feature of these theories is that the equilib-
rium and transport properties obtained are mutually
consistent, being treated on the same physical basis.
Recently, the so-called coherent-potential approxima-
tion (CPA) was proposed by Soven' and Taylor, 4 and
subsequently treated by various workers. ' ' This theory
is capable of dealing with single-particle (equilibrium)
properties of elementary excitations (electrons, phonons,
Frenkel excitons) in substitutionally disordered crystals

for arbitrary x and for moderately different
characteristics (potentials, masses, atomic levels) of
A and B.

It is the purpose of the present paper to develop a
theory of the linear response of electrons in the alloys,
which should be parallel to and consistent with the
single-particle CPA. The ranges of validity of this
theory and of the single-particle CPA are expected to be
equally broad. Although Ref. 1 was extended to deal
with the third" and the fourth" orders in the scattering
potential, the CPA approach to the linear response is
the first to cover a really wide range of alloy parameters.

*Work supported in part under grant No. GP-8019 of the
National Science Foundation.
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To make the whole task feasible, the commonly used
restrictions are made: The alloy is assumed completely
disordered, and the electrons are described by a one-
electron Hamiltonian whose random part is composed
of atomic contributions of two types, A and B.

The use of genuinely many-body techniques may be
avoided within the one-electron approximation. Simi-
larly to Refs. 1 and 2, we use the Kubo formula in-

volving the single-particle density matrix. " Its con-
figurational average reduces to averaging of a direct
product of two one-electron resolvents (GG). In con-
trast, the equilibrium properties are simply determined
by (G). The extension to the linear response consists,
basically, in determination of the "vertex corrections"
(GG) —(G)(G).

Formally speaking, this paper is characterized by
constantly representing all quantities in operator
(invariant) form. No specific basis is used until the very
final, practical stages. This is in accord with the deriva-
tions" of the CPA, which are based on the multiple-
scattering theory. In Ref. 3 and, especially, in Ref. 5, the
CPA is treated as a single-site decoupling of the closed-
form multiple-scattering equations" "for the averaged
resolvent (G). In the present paper& this approach is
extended also to (GG).

The alloy potential is referred to the self-energy of
an electron in the averaged alloy, and the difference is
treated as a scattering potential. The total scattered
wave is a sum of atomic contributions, each of which is
a result of the scattering of an eNective wave by the
given atom. The eGective wave contains the incident
wave and all atomic contributions to the scattered wave,
except that coming from the atom in question. Such an
exclusion is characteristic of multiple-scattering theories,
and motivates the Zubarev-type" single-site decoupling
yielding the CPA: The atomic t-matrix and the effective

"M. Lax, Phys. Rev. 109, 1921 (1958)."M. Lax, Rev. Mod. Phys. 23, 287 (1951).' R. G. Newton, Scattering Theory of Waves ard, I'articles
(McGraw-Hill Book Co., New York, 1966},p. 195."D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) I English
transl. :Soviet Phys. —Usp. 3 321 (1960)g.
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184 ELECTRONIC TRANSPORT IN DISORDERED BINARY ALLOYS

wave are configurationally averaged independently of
each other. Applied to (G), this procedure leads to the
CPA condition for the electronic self-energy: All atomic
t matrices must vanish on the average. ' ' The applica-
tion of the CPA to (GG}may be viewed in the following
manner: Each G is associated with propagation of one
independent particle. For each of the particles, the
atomic 3 matrices and their eR'ective waves are assumed
to be statistically independent. However, this does not
preclude statistical correlation in the motion of both
particles.

The corresponding vertex corrections obey a coupled
set of equations which replace in the CPA the exact
averaging over all configurations. The multiple-scatter-
ing exclusions are vital for the theory, since they prevent
an unphysical, immediately repeated scattering on the
same site. However, they seem to bar an effective use of
the Edwards-type diagrams. " Alternative diagram-
matic techniques used by Leath and Yonezawa' to
obtain the single-particle CPA have the potential to
make the exclusions, but are fairly sophisticated. All in
all, the author believes that the method of diagram
summation is most effective if the corresponding
"renormalized coupling constant" is intuitively known.
To his knowledge, this is not the case for the CPA. On
the other hand, the notion of small fluctuations of the
eA'ective wave is at least well defined physically, if not
fully justified. This suggests the decoupling technique
as most natural and straightforward. The simplicity of
the theory presented below seems to support this
viewpoint.

An outline of the paper is now in order. The paper is
divided into two major sections: Sec. II is devoted to a
general discussion of the CPA and Sec. III to applica-
tions to a single-band model.

Section II: Under the above assumptions, the Kubo
formula for complex admittances X~,c, is reduced to
a form requiring only the configuration average
E=(GCG}, where C is a configuration-independent
operator. This holds even for some configuration-
dependent Ci, C2 (e.g., total energy and energycurrent)
(Sec. II A). To obtain the CP decoupling for E, two
preparatory steps are made. The weak-scattering re-
sults' are rederived by the decoupling technique
(Sec. II B 1), and the CPA for (G) is reviewed (Sec.
II B 2)."Then, the equations for Ein CPA are ob-'
tained as outlined above (Sec. II B 3).

These equations coincide, to linear terms in x, with
the results of Ref. 2, and with Refs. l, l0, and 11 to
the third order in the scattering potential. The CPA is
an interpolation scheme between the two limits, in
agreement with the results'6 for (G) (Sec. IIB4).
Several physical conditions on xc,&, (its behavior in the
complex energy plane, conservation laws, and spatial
symmetry) are expressed in terms of K. A kind of
Ward's identity not only implies the energy and
particle-number conservation, but also provides a com-
patibihty criterion for Eand (G) (Sec. II C 1). All th'e

conditions are satisfied in the CPA. This indicates that
the CPA is free of trivial inconsistencies. Most im-
portant is the Ward's identity, whose proof depends
sensitively on the CPA condition for the self-energy as
well as on the multiple-scattering exclusions in the
vertex corrections (Sec. II C 2).

Section III deals with an application of the CPA to
the specific case of a single-band model with short-range
random atomic potentials. There are two model param-
eters, x and b. The latter measures the strength of the
random potential. The single-particle CPA for this
model was studied in Refs. 5—7. These results are
reviewed in Sec. III A. The short range of the atomic
potentials allows an explicit solution of the CPA equa-
tions for X (Sec. IIIB 1). The vertex corrections
measure the response of local densities to a given
disturbance. The kinematic effect of the disturbance is
separated out and a relation to the density-density
response is obtained (Sec. III B 2). In the two-particle
interpretation of E, the vertex corrections are equiva-
lent to an e8ective interaction whose properties are
discussed (Sec. III B 3).

For the electrical conductivity cT, the vertex correc-
tions exactly vanish in the CPA, again because of the
short range of the random potentials. A simple ex-
pression fora. results(Sec. III C 1).This result coincides
with Ref. 11 to the order 8' and with the Boltzmann
equation solution to 8'. Vanishing of the vertex correc-
tions and of the backward scattering in the collision
term of the transport equation are physically related
(Sec. III C 2). An extension of the Hubbard model ~ is
used to obtain numerical results for 0. with x=0.1 as 8
is varied from 0 to ~. As b is increased, a low-mobility
region is formed and eventually splits o6 as a minority-
component sub-band. After that, the CPA seems to be
reasonable only in the majority sub-band, where 0-

tends to a 6nite limit (Sec. III C3).

II. CPA IN GENERAL

A. Reduction of the Kubo Formula for
Electrons in Alloy

We shall consider the following model of a completeIy
disordered binary substitutional alloy A,B~ .' In an
ideal monatomic lattice with E sites in a large volume
0, each side is occupied at random by an atom of type

or of type 8, with respective probabilities x and
y= 1—x. There are c electrons per site. AII interactions
are neglected, so that the electrons are described by a
one-electron Hamiltonian H, which is assumed to have
the form

The operator IV is the periodic part of H. The random
part U is formed by single-site contributions U„,which
assume one of the two possible forms U„",U„+in
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correspondence with the kind of atom occupying site n.
Operators W, U„",and U„~are assumed to be inde-
pendent of both x and c. To a given concentration x,
there are many equivalent distributions of atoms A and
8 among the sites. Only the averages over all these
distributions (configurations) are macroscopically ob-
servable, and will be denoted by the brackets ( ~ ).

For each configuration, the state of the electrons is
specified by the single-particle density matrix p. At
equilibrium,

(2)

(7) and (8) can be transformed to

(Cof(H)) = dl~f(X)yo(X) TrCo'(h(X —H)), (10)

f(l~) -f(nl
&c,c,(s) =- dug Lvi(n)+xi(t )j

s —X+q

XLpo(it)+Vs(&)]Ic c, (&,it), (11a)

Ic;c;(A,iti =TrCo'(fi(X H)C—i'5(rt H))—. (11b)
where

(3) Introducing the resolvent

G(s)= (z —H) ', (12)
and p, P, and c are rela, ted by the normalization
condition into (10) and (11) with the help of the identity

Trf(H) =eV (4) 8(X—H) = (2iri) 'LG(X —i0) G(—li+i0) j, (13)

i(d/dt) p= PH+H', pj.

Without the loss of generality, the form of II' may be
restricted to that of a harmonic disturbance turned on
adiabatically:

H'(t) = e '&"+io&'FCi (6)

Here or is real, 5: is a c amplitude, and C~ is time-
independent. The initial condition is p( —oo) = f(H)
in this case. The average value of a single-particle ob-
servable C2 at time t is given by

(TrC&p(t) )= (TrC&f(H) )
+Xc,c,(oo+ j0)Pe ""+"'+O($'), (7)

where Xz,&, is called the complex admittance, and equals

xc,c,(s) = i dr—e"'(Tr[e' 'Coe ' ', Ci]f(H)),

Ims &~ 0. (8)

The linear response of the electrons to a single-particle
external disturbance H'(t) can be described by a single-
particle version of the Kubo formula, as used, e.g., by
Lax. 'o The equation of motion for p(t) is'o

we see that the quantities to be averaged directly are"
G(s) = (G(z) ) (14)

E(si,C, s&) = (G(zi)CG(s&)), C config. -independent. (15)

These quantities enter (10) and (11a) through the
relations

and
(5(X—H)) = (2m.i)—'LG(l~—

)—G(X+)j (16)

Ic, c;(X,rt) = (4n') ' TrCs'LE(li+, Ci', rt )+EP,—,C,', it+)
—E(lb+, C,', it+) —E(l~-,C,', it-)j, (17)

where X+= A.+i0, etc.
This completes the reduction of the Kubo formula to

the form convenient for CPA. In short, the difFicult
configuration averages in (7) and (8) were replaced by
averages (14) and (15), yielding quantities G and E.
The advantage of the latter is that they involve only
the resolvent 6, so that they have simple analytic
properties, allow the perturbation expansions, etc.

The quantities 6 and K can be given a simple physical
interpretation. First, 6 is the averaged resolvent of an
electron in our alloy, so that it represents the Green's
function of a single electron propagating through an
effective medium with self-energy Z given by the
natural definition

The configurational averaging in (7) and (8) applies
to f(H), e'~', and also to Ci, Co. In the following, we
restrict our considerations to operators C having the
general form

C= ',Py(H) C'+ C'y(H) g, —

where C is configuration-independent. This class is
broad enough to include important quantities like the
coinponents of total current m 'p (a=1, 2, 3), the
total energy H, and the total energy Aux components
se~= sire '(Hp~+ p~H). For Ci, Co of the form (9), Kqs.

' %e use the units in which A= I.

G(z) = Lz —W —Z (z)j-'. (18)

Second, K is a linear function of C, so that it is equiva-
lently represented by a set of elements in any ortho-
normal basis:

E(si C so) Q ~Q)(G e(zi)G $(so))Ce (8
~
. (19)

a,P, y, b

Hence, K corresponds to the averaged direct product of
two resolvents, i.e., to an effective problem of the
averaged propagation of two particles, which are com-
pletely independent (or even not identical) for each
configuration. However, they both respond to the same
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random potential U associated with that configuration.
On the average, this leads to a correlated motion of both
particles. It is apparent that the operator E contains all
two-particle correlations appearing in the correlation
function (8). We shall refer to this "two-resolvent
approach" occasionally.

6rst; (ii) an approximation for I' consistent with (i)
must be developed. For the CPA, the first problem,
which has an independent importance for equilibrium
properties LEq. (16)j, has been already solved. ' ' To
answer the second question is the task of this part of
the present paper.

B. CP Equations for 6 and X

The e6ect of the alloy Hamiltonian H can be best
described by relating it to some auxiliary periodic
Hamiltonian and observing the scattering corrections.
An example of such decomposition of H into periodic
and random scattering parts is the virtual crystal ap-
proach, where H= (W+(U))+(U —(U)). We shall use
only the self-consistent approach, in which each con-
figuration is related to the true eGective medium, as
de6ned in terms of G. Using Eq. (18), we see that the
Hamiltonian H should be decomposed as follows:

H= (W+Z)+(U —Z). (20)

The self-energy Z is not known at the beginning and
must be determined in the course of averaging —hence
the self-consistency label. To obtain the self-consistency
conditions, we write the equations for G in terms of 6
and U —Z, e.g.,

G=G+G(U —Z)G=G+G(U —Z)6. (21)

Averaging these equations, we get the equations deter-
mining the self-consistent Z:

1. Simple Example: B~eak-Scattering Limit

Using the operator form (15) for K has some im-
portant advantages. The system has no preferred
orthonormal basis in which the formalism simplifies. On
the contrary, the multiple-scattering expansion is most
transparent in the invariant form. At the same time,
however, the resulting equations appear in a less
familiar language. To remedy this difhculty, the well-
known weak-scattering result of Edwards' will be
obtained first. This will also provide an example of the
power of the decoupling scheme used and, finally, will
serve later for comparison with the CP equations.

In the weak-scattering limit, the potentials U„~,
U„~do not diQ'er too much, and it is reasonable to
expand all quantities in terms of U —(U), and to retain
at most the second-order terms. The equation (24) for
Z then becomes

Z = (U&+ &(U—&U&)6(U —&U)) & (26)

or, after simple transformations using the equation

&U) =Z(U. )= Z(xU-"+~U-'),

((U —Z)6)= 0 or (G(U —Z) )= 0. (22)
Z=+ L(U )+xy(U. "—U )6(U "—U )] (27)

It is more useful to define the related t matrix by

G= 6+6'T6'. (23)

Again, T is a functional of Z, and averaging of (23)
yields the equation'

(T)=0 (24)

for the self-consistent Z.
Introducing (23) into (15) and using (24), we obtain

E in the form'~

K=GCG+G(TGCGT)G= G(C+ I')G. (25)—

The first term on the right side results from an inde-
pendent averaging of both resolvents entering (15).The
second term comes from the fact that both G's in (15)
refer to the same configuration at a time. This gives
rise to the vertex corrections I' to the operator C.
Returning to the discussion of Eq. (19), we may say
that the vertex corrections are due to the correlation in
motion of the two particles appearing in the two-
resolvent approach.

Any approximation for determining K splits into two
problems: (i) The approximate Z and 6 must be found

"Wherever possible, the arguments z1, 2, C will be omitted. The
rules for restoring them are simple, as the example of Eq. (25)
shows whose explicit form is E(z1,C,z2) =G(z1)fC+F (z1,C,zm) jC(z2).

This is still an implicit equation for Z, because of rela-
tion (18). If we dispense with the self-consistency and
put Z = (U) in 6, the second-order perturbation expression
for Z results, ' with the typical "Nordheim"-concentra-
tion dependence's x(1—x). More interesting is the
decoupling for K. Using Eqs. (21), K is brought into
the form

K= GCG+6((U —Z)GCG(U —Z))6.
Keeping only terms of the order (U—(U))2 or
allows us, 6rst, to approximate Z by (U) in the vertex
corrections. Second, it also leads to an immediate
decoupling in the vertex part, as the diGerence GCG —IC= GCG —(GCG) can be neglected to the lowest order, so
that the following dosed equation for IC is obtained:

K =GCC+GQ ((U„(U„))K(U„—(U„—&)&('

=GCG+GQ xy(U A U B)K(U A U B)6 (29)

It is easy to see that (27) and (29) are essentially
identical v ith the results of Ref. 1. The hint contained
"N F Mott and H Jones The Theory of the Properties ofMetals aed Alloys (Dover Publications Inc New &ork f9/8)

Chap. VII.
'7

P y
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in (29), as to the form of ladder equations in our
approach, will he useful in Sec. II 8 3.

Z. Mgltiple Sca-ttering Theory and CPA for
Single-Particle Green's Function

The next preparatory step is to review the form of the
multiple-scattering theory used (following Lax, " see
also Newton'4) and to obtain the CP equation for the
self-energy in the way used in Refs. 3 and 5. In order
that the multiple-scattering expansion of 6 or T may be
possible, we have to decompose the "perturbation"
V—Z in (20) into a sum of single-site contributions.
Since U=P U by hypothesis, it remains to write Z as
a sum of periodically repeating atomic contributions:

(30)

All these quantities are configuration-dependent, and
exact averaging of Eqs. (33)—(36) is no easier than, say,
of Eq. (24). The CPA contains tivo ingredients: (i) The
single-site approximation consists of the assumption
that there exists a decomposition (30) for which the
statistical correlation of T„and of the corresponding
effective wave is negligible. Equations (33) and (34)
then average to

&»=& &Q-),

&Q-& = &2-&(1+G2 (Q»)),
n Wnl

(39)

and similarly for Eqs. (35) and (36). (ii) The self-
consistency condition (24) becomes in either case

(40)

This relation is connected with no additional assump-
tions, since Z is periodic and there are in6nitely many
different decompositions (30). The quantity (30), with
one of the Z„replaced by the true atomic potential U„,
describes the effect of one true atom (A or 8) embedded
in the eA'ective medium, with self-energy Z. The
corresponding single-atom t matrix satisfies

(41)*Z.~+yl „~=0
or, still more explicitly, '

(31)2 „=(V„—Z.)L1+G2'.].
=xU "+vU e—(U„"—2 )G(V e—2 ). (42)In terms of these atomic t matrices, the full operator

T is given by the standard series

the CP equation for the self-energy.
We obtain as many Eqs. (40) as there are sites, but

they are equivalent o~ing to the periodicity of the
averaged quantities. With obvious definitions, Eq. (40)
reads

T=Q T.+QQ T.GT +QPQ T.6'T„GT(+ (32)
n rt re'-m num&l

with the characteristic exclusions which prevent the
electron from scattering twice in sequence on the same
site. There are two equivalent ways of replacing the
series (32) by a closed set of equations: either

3. CI' Approximation forE'
To extend the CPA to E, we introduce the atomic

t matrices and their effective wave factors into the
expression (25) for the vertex corrections F, doing it in
a way that allows a decoupling similar to that made in
Eq. (28) for the weak-scattering limit. Thus, we get

(33)

(Q.GCG0„&

F =Q Q (Q.GCGQ„), (43)

Q-=2'-(1+G Z Q-) (34) =&2'.(1+GP Q„)GCG(1+P Q,G)2„&.
ol

T=P Q„, (35)

Q.=(1+Z Q-G)2'' (36)
n, Qm

Because T(s*)= T'(s), the quantities Q, Q are related by

Q.(s*)=Q-'(s) . (37)

Equations (33) and (34) or (35) and (36) may be
interpreted as follows: The total scattered wave is a
sum of contributions coming from each atom. Each
atomic contribution is given by the atomic t matrix
applied on an effective wave. This eQective wave con-
sists of the incident wave and of the contributions to
the scattered wave coming from all other sites.

(Q.GCGQ„)

=(2'.((1+GZ Q )GCG(1+ P Q.G)&T &. (45)

For num„ the operators T, T are statistically
independent and are averaged separately, each yielding
zero, according to (40). Therefore, we may define
quantities F„by

(Q.GCGQ„&=r„s„„. (46)

The CP decoupling consists, again, of neglecting the
statistical correlation of the atomic t matrices and
the effective wave factors. Therefore, (i) G is given by
(18) with Z defined by (40) and (ii) Eq. (44) is ap-
proximated by
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This result may be used to simplify the internal average
in (45), considering, naturally, only the case n= m:

(47)

The system of linear equations (47) for the unknowns
I"„is closed and yields the vertex corrections in the
CPA, since from (43) and (46) it follows that

I =g r„. (48)

This relation, together with (25), allows us to give (47)
the form

E=GCG+GP r„G, (49)

I' =(T„ET) (T„GI'G—T.), (50)

useful, in particular, for comparison with other approxi-
mations. Equations (47) and (48) or (49) and (50)
together with Eq. (40) represent the CPA for the
quantity K and, by (11a) and (17), also for xz,z, .

Equation (48) (or (49)j tells us that, in the CPA, the
vertex corrections are a sum of single-site contributions.
This is in agreement with the general single-site
character of the CPA. The direct reason, as seen from
(46), is that the contributions coming from different
sites to both the scattered waves are regarded as sta-
tistically uncorrelated. The two-resolvent interpretation
of X permits still another viewpoint: The two particles
propagate independently through the effective medium
unless they meet at the same site. In the latter event,
they both feel the same atomic scattering potential
U„—Z„,and their motion becomes correlated.

The prominent feature of (47) Land of (50)j is the
appearance of multiple-scattering exclusions. We shall
see later that they are very important for the consis-
tency of the CPA. Fortunately, the single-site approxi-
mation simpli6es substantially the structure of (47) as
compared to the exact relation (45). In fact, the struc-
tures of (47) and of (34) are analogous. This is par-
ticularly clear if (47) is solved formally:

suits obtained by an expansion of the exact Z in terms
of the corresponding small parameters in two important
limits: weak scattering (U„"—U ~ small) and dilute
alloy (x or y small). Because these expansions are
asymptotically exact, the CPA appears as an interpola-
tion scheme between the two limits. As for the other
possible limit, that of strong scattering, it is not well
defined in general, but we shall discuss it for the special
model of Sec. III.

Here, we shall extend the notion of the CPA as an
interpolation scheme to the quantity E'. The case of
weak scattering will be considered erst. As pointed out
by Soven, ' ~ the CPA self-energy is exact up to the
order (U„"—U„o)s.To this order, the second right-
hand term of (50) is formally negligible. Equation (50)
then allows us to eliminate I'„from (49), which becomes
a single equation for E. Expandin'g (31) in U„"—U„o
yields, finally,

E =GCG+xyGQ (U„" U„e)K(—U„" U„o)G—

+xy(x —y)Q [G(U."—U.o)E(U„"—U„o)

XG(U."—U.o)G+G(U."—U.s)

)&G(U "—U o)K(U "—U o)Gj

+0L(U"—U')'j (52)

The first line is identical with the weak-scattering
equation (29), with the characteristic xy-concentration
dependence. The rest of the right side represents the
cubic corrections. Its concentration dependence is, of
course, xy(x —y). Not surprisingly, the cubic term is
identical with the results of Verboven, ' and the third-
order' corrections of Moore. "

For the dilute alloy with the 8 atoms as the host, we
have x((1.With the use of (41), Eq. (50) is brought to
the form indicating that the multiple-scattering correc-
tion may be neglected again:

r.= xy-iT„~ET.~ —xy-~T„~Or„Gr„&
=xT„"ET„"+0(x'). (53)

I' P (T GCGT )

+Q P (T„G(T„GCGT)GT„)+, (51)

Equation (49) becomes an equation for E;
K=GCG+xQ T„"KT.", (54)

and this series is compared with the exact series for T,
Eq. (32). It is the averaging after each step in (51)
which guarantees the single-site approximation. The
role of the exclusions is best seen in the two-resolvent
picture. They prevent an immediate return to the same
site by both particles.

4 Limiting Cases: CPA as Interpolation Scheme

It was previously observed "that the CPA for the
single-particle Green's function coincides with the re-

which is essentially identical with the low-concentration
results of, e.g. , I.anger. ' Thus, the CPA for E' is seen to
be asymptotically exact for weak scattering or low
concentration of one component. By this, the CPA is
also established as an interpolation scheme for all con-
centrations and all scattering strengths. This is also
supported by the evident fact that the CPA is sym-
metric with respect to 2 and 8, i.e., the equations do not

'9The fourth-order terms treated in Ref. 1I include also the
coherent scattering on the pairs of impurities. These eGects can
not be properly described within the CPA.
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change under the transformation x~~y, U„"~~U„~
(compare the single-particle case of Ref. 5). However,
such interpolation is not at all unique. In particular, the
multiple-scattering subtraction in (50) was negligible
in both limits, so that, as an interpolation, the equation
I"„=(T„ET„)would be equally valid. Section II C is
devoted to clarification of such uncertainties.

C. General Properties of CPA

No general quantitative criteria for the validity of
the CPA seem to be available. But there are some
qualitative properties of the observable quantities Xc,c„
which may be regarded as necessary conditions for the
internal consistency of any approximation. In Sec.
II C 1, several general features of complex admittances
are listed and expressed in terms of t and E. Section
II C 2 is devoted to the proof that 6 and E in the CPA
render the relations for Xc,c, obeyed for any concentra-
tion of alloy components and for any choice of the
atomic potentials.

1. Egad Properties of Compteg Admittances

The behavior of Xc,c, in the complex frequency plane
is discussed in any of the general references" "or can be
derived from (8) or (11a) and (11b) by inspection. The
function xc,c,(s) is analytic in both complex half-planes
and satisfies the crossing relation

xc,c,(z) =xc,c,'(—s*) .

For s-+ ~, we have

xc*c.(z) = ~'(»L&iCi]f(H))+O(~'), (56)

(e.g. , the Joule heat is a quadratic effect), so that
energy conservation implies

XHCI

Considering now Eqs. (11a) and (17), we see that
the analyticity of & does not depend on properties of E,
and the following properties of E, defined by (15), are
sufhcient conditions for the validity of (55)—(61):

E(zi,C,z2) =E~(zs*,C,zi*)
& (62)

(Tr(Cs,Ci]f(H)) = ——,', ir ' ditdP, L74(X)+pi(it)]

Xb'2(&)+y~(4t)]lc, c, (X,it), (63)

TrCQE(si Ci z2) =TrCiE(zs, C&,z&),

OE(zi, C,s2)Oi =E(si,OCO&, zi),

E( itip2) (sl z2) LG(zl) G(z2)] ~

(64)

(65)

(66)

The operator arguments of E are, naturally, con-
figuration-independent; the function I in (63) is given
by (17).The logical relationship between (55)—(61) and
(62)—(66) is as follows: (62) —+ (55), (63) ~ (56) and
(57), (64) ~ (58), (65) ~ (59), (64) and (66) —+ (60)
and (61).

Equation (63) merely expresses the left side in terms
of E and, for approximate treatments, becomes the
definition of TrLCi, Cs]f(H). In the special case of both
Ci, C2 configuration-independent, however, we also have
the simpler relation (16) for obtaining this average from
known G. The equivalence of the two definitions is
guaranteed by the relation

so that the sum rule

00

xc,c,(E&i0)dE= (TrI C2,C4]f(H)) (57)

is satisfied. Finally, the upper and the lower half-planes
are connected by

xc,c,(z) =xc,c,*(s') . (58)

~ocelot, ocelot ~cycle ~

The particle number conservation is expressed by

The configurational averaging restores the symmetry of
the crystal lattice, so that for any transformation 0
from the crystal symmetry group, we have I'(zi, 1,z,) = —(si —z2) '[Z(z ) —g(z )] (68)

This equality resembles closely the form of the Ward's
identity common in the many-body theory (compare,
e.g., Ref. 21, p. 268).

E(zl)Cyz2) zi 'CG(zq)+O(zi ) s —+ oo (67)

between 6 and E The validity of such a relation is
important for any approximate treatment, since it indi-
cates that the approximate 6 and E are mutually
consistent.

Another relation of this character is Eq. (66). It may
be called the Ward's identity, since it expresses the re-
sponse E of the electrons to changes of the origin of
energies, "by means of G. Equivalently, (66) relates the
vertex part I' and the self-energy Z:

Xic,=o (60) Z. Proof of Identities (6Z)—(6g) in CP&

Energy is not dissipated in the linear approximation

~o R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
~'P. Nozihres, Theory of Interacting Fermi Systems (W. A.

Benjamin, Inc. , New York, 1964), p. 36ff.

Averages in the formal CPA solution for I', Eq. (51),
can be carried out successively with the use of Eq. (41).

~'In a many-body treatment, this would correspond to the
variations of the chemical potential.
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The formal solution for E' becomes

K=GCG+xy-'P CT„"CCCT„"0

+(xy ')'Q Q GT„"GT"GCGT "GT„"g+

Ward's identity (68). As a by-product, the "single-site
Ward's identity" (70) was obtained. This single-site
relation may be more convenient than the integral rela-
tion (68). It is only valid in the CPA, however.

III. SINGLE-BAND MODEL
(69)

A. De6nition and E1ementary Properties of the Model
Considering this expansion, term by term, shows
immediately that the identities (62), (64), and (65) are
satisfied by the approximate E. To ve'rify (67), we
observe first that G(z) =z ' for z ~ ~. The "free" part
of (49) GCG has the asymptotic behavior zi 'CG(z&). If
we show that I' ~ Oaszi ~ ~, Eq. (67) will beproved.
But T„(z)~ U„—&U„)for z —+ ac, as follows from (31)
and (42). Equation (47) then shows that I'„=O(zi ')
for zi ~ ~. This completes the proof of (67).

It remains to prove the Ward's identity, which ap-
pears to be the most interesting of the discussed prop-
erties of E: It provides an important link between E
and C and it implies particle-number and energy con-
servation. First of all, however, its validity depends
more sensitively on the detailed structure of the CPA
equations than was the case with the other identities.
Hence, the Ward's identity represents important evi-
dence of the internal consistency of the CPA.

To demonstrate this point, we shall give a more
detailed proof considering the identity in the form (68).
By (30) and (48), Eq. (68) is satisfied, if we put

P~(zi, 1&z2) = —(zi —z2)-'[Z. (zi) —&.(z2)j. (70)

The validity of this choice may be verified by substitut-
ing P„into the CPA equations (47), which should then
become identities. The right side of (47) becomes

P.=&T.(zi)C{1—P (zi —z2) '

H=W+P U = P (n)b &m(+P ~n)e„(n[. (73)

The periodic part of H is diagonal in the Bloch basis:

&k) W~k')=. (k)S„„..
Here, k and k' are from the first Brillouin zone,

(k)=&—'~'P e'~ R~(n),

(74)

(75)

In Sec. II of this paper, it was shown that for all
systems having Hamiltonians of the general structure
(1), the CPA can be extended to the calculation of the
linear response to external fields. The single-particle
self-energy is determined first by solving (40), then the
quantity Eis obta'ined as a solution of (49) and (50).
Finally, (11a) and (17) are used to find the complex
admittance X~,~,. It is now desirable to consider at least
one system for which this program is practical, to see
the actual results. There is only one, particularly simple,
single-band model~' for which the single-particle prop-
erties in the CPA have been studied in any detail. Ke
shall extend these studies to transport properties.

The Hamiltonian (1) is specialized to the single-band
modeP ' by assigning" a single Wannier orbital ~n) to
each site n, and assuming

~
n) to be independent of the

kind of atom at site n. Assuming further that the ran-
dom potential U is diagonal in the Wannier basis, (1)
becomes

X[& (zi) —~ (z2)j)g(z2)T (z2))

= —(zi —z ) '(T (z )g(zi) [~ —& (z2)j and the label n stands for R„=niei+n2e2+n&e3. All
energies will be measured in units in which the half-

[U g (z,)~g(z,)T (z,)) (71) bandwidth equals 1:

= —(zi—z2) '[&-(zi)—&.(zz)j. (72)

The left side equals the input to the right side of the
original equation (47). This completes the proof of the

In manipulations, Eqs. (18) and (31) were used, but the
multiple-scattering exclusion m&n was essential. %ere
there no exclusion, the result would be

—(z,—z,)
—'(T„(z,)[g(zi) —G(z2) jT„(z~)),

instead of (71). Continuing with (71), the self-consis-
tency condition (40), i.e., (T )=0, is used together
with (31):
r„=—(z,—z,)- &T„(z,)g(z, )[V.—Z„(z,)j

—LU.—~-(»)7G(z2) T-(»))

w = -',[max'(k) —mine(k) j= 1. (76)

The random atomic contributions to H have the
shortest possible range. An isolated U wouM represent
a Koster-Slater impurity at site n. The "atomic levels"

assume one of the two possible values e" or eB, with
respective probabilities x and y. Th origin of energies
is chosen so that

A — 6B 1$~ 1$ (77)

The dimensionless parameter 8 measures the relative
strength of the random and the periodic parts of H. The
averaged properties of the system are specified by e(k)

~'The sects of the electron spin, neglected here, mill be in-
cluded simply by multiplying the resulting g by tmo; cop@ze
Eq. (bio}.
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and the two dimensionless parameters, x and 8; x varies
between 0 and 1; 8 may assume any real value.

The special case 8=0 corresponds to the x-indepen-
dent pure crystal with Hamiltonian IV. All charac-
teristics of this crystal will be regarded as known. Ke
shall Deed the following quantities:

G(o)(s) =(z—II') '=P IP&I s —~(P)7
—'(P (78)

(79)

F (o)(;)=go(z) = dL(z —E) 'g(0&(&), (80)

g«&(E) = W&T. r.-~(E W)—=~ImF('&(E~&0) (81.)

Here, g"' is the state density per atom.
The CPA for 6 is greatly simplified when the Hamil-

tonian has the form (73). From Eq. (42), it follows~r
that.

z„(s)=In)(nIZ(s) In)(nI, (82)

so that the equation becomes a scalar one for a scalar
unknown, denoted simply Z(s):

Finally, from (31), (73), and (82), it follows that

T„(s)= In&t„(z)(nI, (91)

t„(s)= Le„—Z(s)7{1—Le„—Z(s)7F(s))—', (92)

and the density of states per atom is

g(F) = W&r ' ImF(E& i0) . (93)

B. CP Approximation for g
1. General Soluti on

For definiteness, we shall use (49) and (50) as the CP
equations for E. In contrast to Eq. (42) for Z, the
equations for E have a general solution for II of the
form (73). Substituting (91) into (50) yields

r.= In&z(nIlt In&(nI, (94)

Z= Z(s„s,)
= ('(z&)& (z~) &L1+F(z&)(~ (z&)~.(s~) &F(s~)7 ' (95)

As indicated, Z(s&s&) is universal for all C and is site-
independent. The latter statement is easily demon-
strated if the averages in (95) are carried out using (92).
As a function of s~ and s2, 2 is analytic if neither
variable assumes a real value, and

z(s) = e (e"—z)F—(s) Les z(s)—7 (83)
C0(s182) +(s2)sl) cC (zl )z2 ) . (96)

Here we have

e= xe"+yes= —,'(x —y)(&, (84)

Substituting (94) into (49) eliminates the vertex
corrections, and an equation for E; is obtained:

F(s)= (nIG(z) I,n). (85)
It =GCG+zG 2 In&(nlzln&(nIG. (97)

+z Z LF„„(z&)F„„(s2)7(nIIcln&,(98)

The short range of Z„is the most important qualitative The diagonal elements of (97)
result of the CPA as applied to (73). It has two joint
causes: the short range of the atomic scattering poten- (ml&lm) =(mlGCGlm)
tials, and the single-site approximation, which gives Z
the range of the corresponding U„.By (30), we have

&.,=& In&~(nI =&I, (86)

where the operator unity refers to the single-band space.
Therefore, we have

G(s)=(s —W —Z,R)
'

= {Lz—~(s)7—II'} '=G"'I:s—~(s)7, (87)

represent a system of linear equations for the diagonal
elements (nIlkIn) Definit. ion (90) was used to stress
the fact that an element of the system's matrix depends
only on the difference between the indices, n —m.
Because of this circumstance, the system (98) is readily
solved by Fourier transformation. Dining a& and ~I,by

F(s) =F('&Ls —Z(s)7. (88) ok =+ e-"'-(mI GCGIm&, (99)

The latter equation eliminates F from (83) and shows
that, in the CPA, a sufhcient input for determination of
Z is the crystal density of states g( ~ instead of the full
knowledge of e(k). Equation (83) is functional, however,
and a numerical solution is generally necessary. Fortu-
nately, it appears to be comparatively easy.

By analo with 78 and 79 we have

ik 'RmF (100)

we obtain the following solution of (98):

(milk Im&=cv 'p e'"' ak(1 —go', ,)—&. (10])

gy () (),
Introducing (101) into the right side of the original

(&IG(s)Ik'&=(&kkg(k, s)=Ls —&(s) —e(&)7 ', (89) equation (97), we get an explicit expression for the
whole I, completing the solution of the CP equations

F (,) = (n I G(z) I m) =F„Ls—Z(s)7. (90) (49) and (50).
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Two comments on Eq. (97) are in order. The vertex
corrections to C have the form P=g„ln)(nlKIn)(nl.
A slowly varying local potential @(r) is represented in

the single-band model by P I n)ztz(R )(n I
. It is seen that

I' behaves as an effective local potential added to C. We
have made use of the fact that the diagonal elements

(n I
K

I n) determine, uniquely, the whole K. For a given

C, the operator K is equivalent to the set of all quanti-
ties TrC'K, which in turn determine all Ic c by (17)
and, hence, all complex admittances Xc,c by (11a).But
&nIKln)= Tr(ln)(nlK). This is of the form TrC'K,
with C'= In&(n I

corresponding to the local density at
site n. Thus, via Eq. (97), the whole family {TrC'K),
determining all possible responses to C, is completely
specified by the subfamily {Tr(ln&(nlK)) describing
the reaction to C of the local densities at all sites.

(a)

Edwards

+ pf' + -. ~

Langer

+

Verboven

+ ~ ~

+ ~ ~

Z. Vertex Corrections in Terms of
Density Densit-y Response

It was observed in the preceding subsection that the
CPA for the model (73) is characterized by expressing
the vertex corrections in terms of the response of local
densities to the C in question. Here, we show how F for
any C can be related to the response of local densities
to one very special external disturbance, namely, that
localized within the zeroth cell.

Using (64) and (97), we obtain

(n I K(zi, C,zz)
I n) =TrCK(zz, I n)(n I,:i)

=Tel&( &I && I@ &+&(", )&(.-)
Xg lm)&mlK(. „ln&&nl.z.) lm)(mlt (z,)]. (1O2)

Inserting (102) into (94) and employing (96) and (64),
we get

r„(zz,c,z ) =Z(z, zz) Im) P (llG(z )CO(zz) Il)

FIG. 1. (a) A diagrammatic representation of Eq. (108) for the
quantity E.The momenta k, are not indicated, for simplicity; the
heavy lines correspond to the averaged single-particle Green's
function g(k)b» . The equation is seen to have a ladder structure.
(b) The CPA effective interaction " as given by (95) and (109)
cannot be conveniently represented by Edwards's diagrams. For
b or x small, however, is represented by a sum of the single-cross
Edwards's diagrams: one, three, and all such diagrams are ac-
counted for in Refs. 1, 10, and 2, respectively, as labelled by the
authors' names.

expressing I' through the single-indexed quantities J&,
which are related to the response of local densities to
the disturbance Io)(ol concentrated at the zeroth site.
The convolution in (105) separates the influence of the
kinematic properties of C from the dynamic charac-
teristics of the system represented by J~. Since the
convolution should be equal to (101), a similar inter-
pretation of this formal relation may be given. Indeed,
rearranging (101) to

1
(mlKim&= 2'"—"-" I+~

E ~ 1—g~,
one can easily verify that the right side is, term by
term, the Fourier transform of the convolution in (105).XD;z„yg(z„z,)&mlK(», ll&«l;, ) Im&3&ml . (1o3

Of all the elements (m I K(si,
I
n) (l I, zz) I p) of K Lcf (19)j,

only those with m= p, n= l enter (103). They describe
the response of the local density

I m) (m I
to a disturbance

of the same form
I l)(l I. Their total defines, through

(11a), the equivalent of the density-density correlation
function for the single-band model. Hence, (103) shows

the close relation between this function and the vertex
corrections, again for the model (73) treated in the CPA.

The periodicity condition (65) leads to

(mlK(s„ll)(ll,s,) Im)
= &m —llK(.„IO)&OI.,) Im —l&—=I„,(z„z,). (1O4)

3. Block Representation: Egectise Interaction

The relation (19) allows Kto be represente'd in the
Bloch basis by the quantity

«ki»z' kz»4& = ((kil G(zi& Ikz&&k4l G(zz) Ikz)& (1O7)

The energy arguments s&, s2 are omitted for brevity. The
CP equation (97) for K is equivalent to the equation

X(ki,kz, kz) k4) = g(kz) g(kz) hi, i,hz, i4

1
+g(ki) g(kz) Q —Zh(ki+k; —kz —kz+B)

Ic5,k6, B .$'Introducing (104) into (103) and changing the summa-
tion variable, we obtain the final result

XX(kz,kz, kz, k4) . (log)
P„(zi,C,zz) =&

I m) Q (m —l
I
6(zi)CG(zz)

I
m —l)

In (108), all k; are from the first Brillouin zone, B are
Xi 8i,o+ZJi(zi zz) j&ml, (105) the reciprocal-lattice vectors, and 8(k&0) =0, h(p)= ]
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Equations (107) and (108) are simply interpreted in
two-particle terms. The quantity E describes the
averaged propagation of two independent particles.
Introducing

1
~(kg, k2, k8, k4) =Q —Z5(kg k2+—ka k4+—8), (109)

we see that (108) has a ladder structure, "as represented
in Fig. 1(a). It appears that after averaging, the two
particles propagate, correlated by their mutual effective
interaction ". Equation (109) shows that this is a
contact interaction, i.e., it acts only if both particles
meet at the same site. This feature corresponds to the
result (94) for F„andcan be understood as follows: As
shown in Sec. II B 3, the e6ective interaction is a result
of statistical correlation of the motion of both particles,
and, in the CPA, only the correlation of particles being
scattered both by the same atomic potential is ac-
counted for. Because the atomic scattering potentials
are short ranged in the present model, a short-range
effective interaction results.

Equations (107) and (108) are formally close to the
equations obtained in Refs. j. and 2. There are two
unessential differences. First, the other authors were
concerned with the efI'ect of randomly distributed
impurities on a parabolic band. Therefore, no umklapp
processes appeared in their ".Second, in our model only
U„ofshort range are considered, hence " also is short
ranged (in the CPA as well as in the other approxima-
tions). The only real difference is in the function 2,
which measures the strength of the eGective interaction.
The dependence of g on b and x parallels the results of
Sec. II B 4. For any x and 8, we have the CPA ex-
pression (23). The multiple-scattering exclusion in (50)
causes the correction term in the denominator of (23).
For x or b small, this correction is also small, and 2
becomes (t„(s&)t„(s2))iwhich yields" Z=xt"(s&)t"(s,)
if x is small, and Z=xyb' if 8 is small. The resulting
equations (108) could have been obtained directly from
(54) and (29), respectively. In the two limits, the
effective interaction may be represented by Edward's
diagrams, as shown in Fig. 1(b). These approximations
for are identical with those used in Refs. 1 and 2,
respectively. 'The cubic corrections of Verboven' are
separated out. They correspond to the contribution
xy(x —y)B'l F(s&)+F(s2)j to the quantity Z. The rela-
tion of the single-band results, as well as of the general
results of Sec. II B, to the work of Edwards and Langer
is now obvious. There is no simple way of describing
(95) by Edwards's diagrams. However, there is a
reasonable hope that the alternative diagrammatic
techniques of Yonezawa' and of Leath, ' which have

~4 Some authors refer to (108) as to a Bethe-Salpeter equation.
It should be pointed out that Eq. (108) corresponds both physi-
cally and formally to an electron-hole problem, vrhereas the above
name seems to be commonly reserved for the two-electron case.
See Ref. 21, pp. 239-247.

» The quantity H is obtained by putting ~„=e" in (92).

already yielded the CPA for the single-partide self-

energy, can be extended also to transport coefficients.

2%e
~aP

df
dv ——Tr(p 5(v H)p~8—(v H)). (—110)

dn

Here e and m denote the electron charge and mass,
respectively, 0 is the crystal volume, Greek letters
refer to the Cartesian coordinates, and the p are
components of the linear momentum:

&k l
p.

l
k') = m(a/ak. )~(k) S».=mv-(k)—S». (111).

The two possible spin orientations are taken into
account by an extra factor of 2. Equation (110) is but
a special case of (11a).We can also write

2x8'
(112)

with I„~&given by (17).

l. EIectrical Conductivity in CI'A

The 6rst step necessary in order to determine
X(s&,p, s2) in CPA is evaluation of the quantity

(Il&(s )p &(- ) li)

1=—P Lag —Z(sg) —e(k)j 'mv (k)Ls2 —Z(s2) —e(k)] ',

(113)

where Eqs. (75), (89), and (111) were used. By time-
reversal symmetry, '~

e(k)=e( —k), v (k)= —v (—k), (114)

expression (113) vanishes identically. Looking at the
Eqs. (99)—(101) or (105) for the vertex corrections, we
see that I'„=0 and

&(si p s2)=G(&i)p G(»). (115)

Equation (105) shows clearly that this result comes
from the kinematic properties of p alone, and we do not
even need to know the functions J, which may be

~6 H. Jones, The Theory of Brillouin Zones and Tdectronic States
in Crystals (North-Holland Publishing Co. , Amsterdam, 1962),
p. 28.

C. Example: Electrical Conductivity

Our study would not be complete if we did not
consider the static electrical conductivity of model (73)
in some detail. First, the dc conductivity is the basic
transport coeKcient of electrons in metals. Second,
most of the previous theoretical work on transport in
metals relates to the conductivity. Third, a deeper
insight into both the CPA and the properties of model
(73) is gained. The conductivity tensor 0 is given by
the well-known Kubo-Greenwood formula'
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essential in other cases. Equation (115) may also be
linked with the interpretation of (97). Because no
change of the local densities is expected in a homo-

geneous electric field, TrI n)&nI E= &nIIt In)=0, so that
P„=0, too. Because (97) is essentially dependent on

both the CPA and the short range of the potentials U„,
the same is true about (115)."The simple result (115)
can be used not only in the case of a t', but for any
problem for which Ci'= p or even C2'= p, as follows

from (11a) and (64). This includes, among others, the
electrical and thermal Qows caused by any external
disturbance. With E given by (115),Eq. (112) becomes

2e' df
o. ~=—dit ——P v (k)ve(k)I Imp(k, it+)]'. (116)

mQ ic

The k independence of Z in the CPA can be employed
now. Introducing Q,=X '0,

Z. IVeak S-cattering Limit: Comparison
with Boltsmann Equation

In the v eak-scattering limit, when 8 is small, both
A and 5 are proportional to 8' and roughly of the same
magnitude. The CPA conductivity (120) becomes

e' ( df
dvI ——

0, 4 dit

XL6 '1m@~~(q e—A—i0—)+O(h)]g z(„igz,(„)
(121)

or, still more crudely,

e' df)
dg —

I0„ dg)

XI 6 'ImC o(it —e —i0)+O(1)jz z«~. (122)

(116) becomes

28

A(E) = ReZ(Z&i0) —e,

A(E) =
I
ImZ(E&i0)

I )

(
~(~) 2

X
Lv ( &(n) 1'—+&—'(v—))

(117)
The leading term in o t' in the limit 8~ 0 is of the
order 6 ', as is usual with transport coeKcients. The
approximation (121) is, therefore, seen to be exact to
the order k', as the relative order of O(h) is b'/8 '= b'.
An expression for o equivalent to (121) was given by
Moore. " In the approximation (122), only the lowest-
order ( 8 ') term is kept, and this should be equivalent
to Nordheim's result' obtained from the Boltzmann
equation, consequently. The criterion for approximating
(120) by (122) is

A(it)(B/Brt) Im@ e(it e i0)&—&Im—C ~(rt e i0) —(—123).
X—P v (k)ve(k) SLY—e(k)j. (118)

The three consecutive integrations involved represent
three physical ingredients: the band structure of the
pure substance, the effect of the random alloy potential,
and the statistical distribution of electrons. Let us
introduce a new function of complex energy,

c- (z) = «(z-~)-'(-~)-'E v.(k)"(k)~I ~- (k)j,
k

(119)

specif'ied completely by the dispersion law e(k). It is
analytic in both half-planes and decreases as r ' for
z ~ av. Introducing C ~~ into (118) yields

cr t'=— dg

This is just a precise form of the London-Peierls cri-
terion for the applicability of the transport equation"
to the model (73).Two features are worth noting: First,
the criterion is insensitive to the thermal state of the
electrons (to the sharpness of the Fermi distribution").
Second, the renormalization of the virtual crystal levels
h. is involved, whereas the damping 6 would be im-
portant only in the order 8' Lsee Eq. (121)j.To compare
(122) with the Boltzmann-equation solution, 'v we intro-
duce the distribution functions no(k)= fLe+e(k)j for
the virtual crystal in equilibrium, and n(k) for the
steady state in a homogeneous electric Geld E. The
linearized transport equation for n(k) is

v(k) E— =P IV(k, k')
d6 c=e {k)

X (Ln(k') —Nv(k') $—
I n(k) —nv(k')]), (124)

where

1 —6 ImC e(v —c A iD)——
- h~h (v1), h=h (q) ~

(120)
~~ It should be remarked that the relation (l(gp~G~l)=0 is

exact for the considered band model and is not at all specific for
the CPA. However, it has a very specific importance for the CPA
vertex corrections, in full agreement with the qualitative argument
just given.

IV(k, k') = IV(k', k) = 2~tlLe(k) —«(k'))
I &k I &—&Lr) Ik') I'

= 2v.ryan'A' 'bLe(k) —e(k') j (125)
~ R. E. Peierls, Quantlm Theory of Solids (Clarendon Press,

Oxford, England, 1955), pp. 139-142.
~9 E. J. Moore, Ph.D. thesis, Harvard University, 1966

(unpublished).
"A. H. Wilson, The Theory of Metals (University Press, Cam-

bridge, England, 1953), p. 266.
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section, and the integration extends over the sphere. If
the scat tering is isotropic, I(v) = const, the cosine

integrates to give zero. In our case, a general band shape
is considered, but the scatterers are short ranged and,
hence, isotropic on the energy shell. This isotropy is the
common physical reason for vanishing of both I' in (115)
and the backwards-scattering term in (124).

I

-2
I

0 f

ENERGY/ HALF BANOM/IDTH

I'IG. 2. Single-particle properties of the single-band model {73)
for x=0.1 and b&0 varied (Ref. 5). The unperturbed density of
states g(') is taken to have the form (129). The spectrum of {73)
is exactly contained in the two strips of width 2, one parallel to
eA and one to ~~. The CPA limits of the spectrum are more restric-
tive. The area of allowed energies for which the CPA density of
states vanishes is indicated by dots. The CPA band splits at
6=0.93. The black profiles depict the CPA averaged density of
states per site for the values of 6:0, 0.5, 1.0, and 2.0.The successive
precipitation and separation of the minority sub-band is well
observable. The pole in the CPA self-energy Z appears first at
6 = 1.67 and follows the straight line —e = —&~{x—y) b. Its role is to
screen the two sub-bands for large b.

is the lowest-order probability per unit time of the
elastic scattering process k~ k'. The short range of
U„makes the matrix element in (125) k-independent.
This, together with (114), causes the backward scatter-
ing term {0- Ln(k') —n&&(k') j) to vanish. A current-
relaxation time can be introduced:

1
r '(k) =2m.xyb —P b[«(k) —«(k') j& (126)

I,"

and the conductivity is

2e' dfo'e= P — r(k)&& (k)ve(k)
Qc ~ d6 g (Ic)

2e df
d» ——r(») ImC e(r& « i0). —(1—27)

This coincides with (122), if we identify

r '(k) = 26L«+«(k) j= 2~ In&L«+«(k) j~ . (128)

This identification is correct to the order 6, as a com-
parison of (126) with (83) shows: The current-relaxation
time is equal to the single-particle relaxation time
because the net backward scattering vanishes. This
corresponds to the vanishing of vertex corrections in
the CPA. It was sho~n in Ref. 1 that for parabolic
bands and for weak scatterers of any range, the vertex
corrections give rise to precisely the backward-scatter-
ing contribution to the relaxation time represented" by
thecosinetermin r '~ J'dc'(v)(1 —cosv). Here, vis the
polar angle, I(v) is the corresponding differential cross

3. 1Vnmerica/ Examples

A few numerical examples are now in order. As seen
from Eq. (120), &r~e is determined by two functions of

energy, Z(z) and 4 e(z). The self-energy Z is, by (83),
expressed in terms of g"'(E), x, and b. The quantity
C t' is specified by the function

1—P r (k)ve(k)b$& —«(k)].

Thus, for calculation of 0- ~, the knowledge of the
detailed band structure is not really necessary and it is
sufhcient to know the two above functions of energy.
We shall follow the approach of Refs. 5 and 6, in which
g"' was assumed to have a simple form, convenient for
calculations, without specifying the corresponding «(k).
In correspondence with Refs. 5 and 6, we assume

g&'&(E) = 2&r '(1 E')"'. —(129)

The single-particle CPA then leads to simple equations
for Z(z), g(E), and other quantities. The results' for
x= 0.1 and b&0 («"&«, i.e., the host levels are lower
than the impurity ones) are plotted in Fig. 2. The
concentration 0.1 is chosen because it is beyond the
low-concentration region but, at the same time, small
enough to ensure an "impurity" and a "host" character
to the A and 8 atoms, respectively. A detailed discus-
sion of the results may be found in Ref. 5. The main
features can be characterized as follows: (1) For all b,
the region of nonvanishing density of states is within
the limits required by the localization theorem. ' (2)
For small b, the density of states is symmetric and
shifts as a rigid band (virtual-crystal limit). (3) For
moderate b, a distortion due to the minority A atoms
appears at the top of the band. (4) The increasing
distortion eventually results in the band's splitting into
two sub-bands with relative weights 0.9 and 0.1. These
two sub-bands may be shown to have an increasingly
8 and A character, respectively ("split-band limit" ).

The dependence of the density on 6 is paralleled by
that of the self-energy. For 5 small, we have

ImZ(E&i0) = Wxxyb'g &"(E «)—
in agreement with the Golden Rule. For moderate 6,
the "impurity region" is characterized by a much higher
damping, measured by ImZ, than is found in the host
part of the band. For 8 large, saturation occurs, and
ImZ does not increase beyond a certain level. This can
be related to the appearance of a pole in Z, which
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exhausts most of the sum rules' governing ImZ. The
two sub-bands behave markedly differently, the average
levels of the damping being in the ratio of (x/y)'~' =0.03.

To obtain the conductivity, we have to make an
additional assumption about the functions C &. Ke
assume a cubic crystal, so that C ~= 0 for aWP, and for
the diagonal elements C we assume

=2

P v r B[E—e(k)]~(1—E')"'. (130)
.2 .3 .4 .5 .6 .7 .8 .9 10

OCCUPIED FRACTION OF BAND

It is easy to see that this function behaves properly at
the band edges. Within the band, it has no critical
points. However, this is less crucial in (130) than in
(129), because in (130) the critical points induce
singularities of the form (E—Eo)+'", whereas in (129)
the branching points are of the form (E—Eo)+'". For
the intended qualitative discussion, function (130)
seems not to worsen the physical meaning of the model
considered, which is limited basically by (129)."

The results for cr"=o'2=033—= 0- are shown in Fig. 3
as a function of the fraction of the band occupied by
the electrons. For simplicity, we put T= 0 in (120). In
the virtual-crystal limit (B=0.005), the plot of 0 is
symmetric, in agreement with the symmetry of the pure-
crystal band. The conductivity vanishes for the band
both empty and occupied, of course.

For the intermediate case, 8=0.5, we observe first
the reduction in the magnitude of 0. as compared to the
preceding case, which is of the order (0.005/0. 5)' and
is due primarily to the increase in ImZ in (120). We see
that in this sense, even for 5= 0.5, the "Xordheim rule"
0. ~ xyb is valid. However, the formation of the impurity
part of the band leads to a pronounced asymmetry in
the plot of 0-, which can be understood as follows: For
small occupation numbers, the Fermi level falls in the
host part of the band, where the carriers move mostly
between the 8 atoms and have a higher mobility,
therefore. For the occupation numbers close to unity,
practically all carriers are energetically in the impurity
region and their mobility is reduced. Again, ImZ causes
the dominant effect, although the distortion in

'There exist meaningful dispersion laws «(k) yielding g«&,
arbitrarily close to (129), as shown in Ref. 5, Appendix D. De-
tailed CPA calculations of o and other transport coefficients for
«{k) corresponding to a single tight-binding band in a simple cubic
lattice are reported by K. Liebermann, 8. Velicky, and H.
Khrenreich, Bull. Am. Phys. Soc. 14, 320 (1968). These results
support the conclusion that 4 is rather insensitive to the appear-
ance of critical points.

Fic. 3. The CPA static electrical conductivity cr at O'K for a
model (73) specihed further by the cubic symmetry of the lattice
and by g( ) and 4 given by (129), and (130), (119). The con-
ductivity is given by (120) and is plotted versus the fraction of the
band occupied by the electrons for 5=0,005, 0.5, and 2.0. The
absolute values of a have no direct meaning for this artiacial
model. The ratio of the electron linewidth to the bandwidth is of
the order 10 ~ for 8=0.005, 10 ', and 10 ' in the host and the
impurity parts of the band for 8=0.5, and 10 ', and 1 for 5 =2.0.

C[Er—Z(E~ )j also contributes appreciably. It is
interesting to observe the sharp boundary between the
high-mobility and the low-mobility regions.

The split-band case is represented by 8=2.0. First
of all, the average 0. appears to be of the same order as
for 8=0.5. This is because of exhaustion of the sum
rules by the pole in Z, and shows that in this region the
Xordheim rule is even qualitatively invalid. Function
ImC plays an important role in this case, since it causes
0 —+ 0 when the occupation number approaches 0.9. In
the impurity region, o- is smaller by two orders of
magnitude than it is in the host sub-band, as indicated.
No enlarged plot of this region is shown, since the region
can not be reliably treated in the CPA, because the
clustering corrections are too important. ~ In the host
sub-band, however, the results seem to be reasonable.
For 6 —+ ~, the magnitude of 0 does not change
appreciably; the plot of 0. merely becomes symmetric in
the interval (0, 0.9):In the spilt-band limit, the A and.
the 8 sub-bands are entirely independent, so that
8 ~ ~ and 8 ~ —~ must yield identical results.
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