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The coupling between antiferromagnetic and Mn'~ nuclear resonances in RbMnFI has been studied

both theoretically and experimentally. The electronic and nuclear frequencies have been derived by solving

the coupled equations of motion for (a) a four-sublattice model, consisting of two electronic and two

nuclear magnetic sublattices; (b) a two-sublattice model in which the electron-nuclear:interaction is repre-
sented by a static anisotropy field. For the electronic modes, the difterences in the frequencies obtained
from the two models are negligible. However, only the four-sublattice theory predicts the NMR frequencies
to good accuracy, for applied fields both greater and less than the spin-Qop value. The temperature de-

pendence of the crystal parameters has been included, and comparison is made between theory and experi-
ment in the temperature range where the parallel susceptibility is significant.

I. INTRODUCTION

ITHIN the last few years, the group of com-
pounds X MnF3, where X is Rb, K, or Cs, has

been the subject of extensive investigations. ' These
materials, which have the perovskite structure (with
the exception of CsMnFs), are antiferromagnetic below
their Neel temperatures of 82.6, 88.3, and 53.5'K
respectively. The combination of large eGective ex-
change field ( 10' Oe) and small anisotropy ((10Oe)
permit AFMR to be observed conveniently at X-band
frequencies without the necessity of large magnetizing
fields. Another interesting feature is the large nuclear
hyperfine interaction which, because of the small
crystalline anisotropy, causes the nuclear and antiferro-
magnetic resonance modes to be strongly coupled. The
resonant frequencies are considerably shifted by the
perturbation. It also gives rise to a temperature depend-
ence of the AFMR frequencies at low temperatures and
greatly enhances the intensity of the nuclear modes.
Consequently, magnetic resonance has proved to be a
valuable means for studying the hyperfine interaction
in such materials.

This paper is devoted to a study of magnetic reso-
nance in RbMnF3. Of the above trio of compounds,
RbMnF3 has the simplest antiferromagnetic configura-
tion. It appears to remain cubic down to the lowest tem-
peratures. 2 The Mn'+ ions form a two-sublattic anti-
parallel arrangement of electronic spins, the (111)axes
being the easy directions of magnetization. In contrast,
KMnF3 undergoes a second transition at 81.5'K. into
a canted configuration which results in a small net
moment. ' Uniaxial, orthorhombic, and cubic terms have
been used to characterize the crystalline anisotropy

*Also Staff Associate, M.I.T. Lincoln Laboratory, Lexington,
Mass.

f This paper is based on a thesis submitted in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy
in Electrical Engineering at the Massachusetts Institute of
Technology, 1969.' For an extensive bibliography relating to these compounds,
see J. S. Friebely and W. J. Ince, M.I.T. Lincoln Laboratory
Library, 33rd Ref. Bibliography, 2968.' D.T.Teaney et al., Phys. Rev. Letters 9, 212 (1962).

~ A. J. Heeger et al., Phys. Rev. 123, 2652 (1961).
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energy. 4 As a result of the distortion, there are two
inequivalent Mn'+ sites, so that the electron spins can
be described by a four-sublattice configuration.

CsMnF3 has a hexagonal arrangement. ' The anisot-

ropy in the basal plane, which is an easy plane, is
negligible. The most recent theoretical treatments"
of the resonance behavior of both KMnF3 and CsMnF3
have used a model comprising four electronic sublattices,
which predicts a total of four AFMR modes. Two of
these are high-frequency exchange modes, the remaining
two being low-frequency modes.

The simple cubic structure of RbMnF3 makes it
attractive for both theoretical and experimental in-
vestigations. For example, the temperature dependence
of the sublattice magnetization has been recently
determined' from measurement of the Mn" NMR fre-
quency as a function of temperature. Spin-wave theory'
predicts a T' dependence of sublattice magnetization
for antiferromagnets at low temperatures, whereas the
observed variation is more nearly cubic. Similar infor-
mation has been obtained" from measurements of the
variation of the anisotropy constant with temperature.

The AFMR properties of RbMnF3 were first reported
by Teaney et al. ,

' who calculated values of 4.47 Oe and
8.9X10' Oe for the anisotropy and exchange fields,
respectively, from resonance data. The strong tempera-
ture dependence of the AFMR frequencies was noted.
Heeger et a/. ' "had previously noted similar eBects in
KMnF3, which were correctly attributed to the hyper-
fine interaction. Teaney et a/. ' included an eQ'ective field,
acting on the electrons, due to the polarization of the
paramagnetic nuclear moments. The magnitude of this
field, which at low temperatures is equal to 9.43'K/T
Oe for RbMnF3, was deduced froIn EPR measurements"
of Mn" in diamagnetic KMgF3.

4 A. M. Portis et al. , J. Appl. Phys. 34, 1052 (1963).' K. Lee et al. , Phys. Rev. 132, 144 (1963).' V. Minkiewicz and A. Nakamura, Phys. Rev. 143, 356 (1966).' L. B.Welsh, Phys. Rev. 156, 370 (1967).
8 D. T. Teaney, Bull. Am. Phys. Soc. 13, 164 (1968).
9 T. Oguchi, Phys. Rev. 117, 117 {1960).
'o P. E. Seiden, Phys. Letters 28A, 239 (1968).
» A. J. Heeger et al., Phys. Rev. Letters 7, 307 (1961).~ H. Montgomery et al., Phys. Rev. 128, SO (1961).
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In much of the early resonance work on RbMnF3,
use was made of the Aopped configuration, '" " i.e.,
the applied field was large enough to ensure that the

magnetization was almost perpendicular to the field
direction. For small values of applied field, the mag-
netization is not, in general, Aopped. The mode spectra
are more complex and the resonance analysis is more
dificult. This region was investigated by Ince.""
Calculation of the resonant frequencies required a
knowledge of the static equilibrium position of the
magnetization with respect to the applied field and the
crystal axes. This was obtained for the case of the
magnetization lying in a 110plane. Kith improvements
to the analysis, Cole and Ince'9 obtained close agree-
ment between the calculated and experimentally ob-
served AFMR spectra over a wide range of applied
field. %hen the magnetization is flopped, one of the two
AFMR modes is field independent. This mode was first
observed by Freiser, et al. '4

The AFMR linewidth has been shown' to be in-

homogeneously broadened. For the samples used in the
present work, 2AII ranged roughly between 90 and 300
Oe at 4.2'K, compared with 175 Oe reported by
Eastman. 20 From pressure-dependent AFMR experi-
ments, he estimated the intrinsic linewidth to be less
than 5 Oe.

NMR of Mn" in RbMnF3 was first reported by
Heeger and. Teaney. " They showed that the NMR
signal in the Hopped configuration was suKciently
enhanced by the hyperfine interaction for the resonance
to be observed, using only dc detection. Subsequent
investigations, " using an experimental arrangement
having higher resolution, have revealed the existence
of a mode splitting which occurs in an applied field
strength of about 13 kOe. No explanation of this e6ect
has yet been put forward.

Since the effective field at the Mn" nucleus is of the
order of 10' Oe, the NMR frequencies lie in the uhf
region of the spectrum. Theoretically, two nuclear
modes should exist, but observation of only one of the
mode branches has been reported previously. In Sec. IV,
experimental verification of both nuclear modes is
reported.

In magnetically ordered materials, the nuclear spins
are indirectly coupled via the Suhl-Nakamura (S-N)
interaction. ""Estimates of the nuclear linewidth,
based upon the S-N interaction, are an order of magni-
tude greater than the observed linewidth. The latter is

"D.T. Teaney, Bull. Am. Phys. Soc. 7, 201 (1962}."M. J. Freiser et al. , Phys. Rev. Letters 10, 293 (1963}."A. J. Heeger and D. T. Teaney, J. Appl. Phys. 35, 846 {1964).' M. J. Freiser et al. , in Proceedings of the International Con-
ference on Magnetism, Eottingham, &64 (Institute of Physics and
The Physical Society, London, 1965), p. 432.

"W. J. Ince, S. M. thesis, M.I.T., 1965 {unpublished}.
W. J. Ince, J. Appl. Phys. 37, 1122 (1966).

'9 P. H. Cole and %.J. Ince, Phys. Rev. 150, 377 (1966).~ D. E. Eastman, Phys. Rev. 156, 645 (1967)."H. Suhl, Phys. Rev. 109, 606 (1958).
~~ T. Nakamura, Progr. Theoret. Phys. (Kyoto) 20, 542 (1958).

approximately 100 Oe (= 100 kHZ) in RbMnF3 for the
spin-Hop configuration. Richards has recently shown

that if a well-defined nuclear spin-wave spectrum
exists, the estimated linewidth is much less than the
second moment of the S-N interaction. However, his

estimate is two orders of magnitude less than the ex-

perimental width. Richard's value is reconciled with

the observed value if the inAuence of random strains
is taken into account.

In. most of the previous work dealing with AFMR
in materials which possess a strong nuclear hyperfine
interaction, a common assumption has been made.
Namely, the nuclei cannot react instantaneously to the
precession of the electronic spins. The effect of the
hyperfine interaction on the electrons has been repre-
sented by a static field, pointing in the direction of the
sublattice magnetization. Conversely, the response of
the electronic spins to the nuclear precession is assumed
adiabatic, i.e., they can follow the motion of the nuclei
without delay.

The degree of error introduced by the above approxi-
mations, which is likely to be greatest at low tempera-
tures (=1'K), has been investigated for the case of
RbMnF3. The equations of motion have been solved in
a self-consistent manner, taking into account the in-
stantaneous correlation between the electronic and
nuclear spins. The model for this analysis comprises
four magnetic sublattices —two electronic and two
nuclear. The temperature dependence of the normal
mode frequencies, based upon molecular field approxi-
mations, has also been calculated.

In the following, we shall first discuss the terms which
comprise the Hamiltonian of the free energy. The
problem of determining the orientation of the magnetic
sublattices under the action of an applied field will

then be considered. Next, the resonance analysis,
based on a two-sublattice model, is reviewed. In Sec. V,
the four-sublattice model is introduced, in order to
account for the dynamic electron-nuclear interaction.
The coupled equations of motion for two electronic and
two nuclear sublattices are solved and the resulting
characteristic frequencies of the system compared with
those obtained using the simpler approach. Finally,
experimental studies of the electronic and nuclear
modes in RbMnF3 are described and the data compared
with the computed spectra.

II. HAMILTOHIAN

Throughout this work, the semiclassical approach
will be taken. It will be assumed that quantum mechan-
ical angular momentum operators can be represented
by classical vectors. "The ground-state energy can then
be obtained by replacing spin or magnetization opera-
tors in the Hamiltonian by vector quantities.

'3 P. M. Richards, Phys. Rev. 173, 581 (1968).~ S. Tyablikov, Methods in the Quentlm Theory of Magnetism
(Plenum Press, Inc. , New York, 1967).
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The terms which will be considered in the free energy
are exchange, anisotropy, Zeeman, and nuclear hyper-
6ne interaction energies. RbMnF3 has the cubic
perovskite structure, the lattice constant being"
(4.2396&0.0002)A. The unit cell, whose dimension is
equal to the lattice constant, contains a single Mn~+

ion located at the cube center, Rb+ ions at the cube
corners, and F ions at the centers of the cube faces.
The divalent manganese ions are situated at octahedral
sites, and the super-exchange mechanism, which acts
via the F ions, is responsible for the antif erromagnetic
alignment. The exchange term in the Hamil tonian of
the free energy density can be represented by an iso-
tropic interaction

pcs= —-', Wu(Mg Mg+M, M, )—Wg, Mg Mg ) (1)

where M I and M ~ are the electronic sublattice magneti-
zations and lV~I and 8'~~ are the exchange constants.

The anisotropy energy for a material having cubic
symmetry may be expressed as a power-series expansion
of the direction cosines of the sublattice magnetiza-
tion. The lowest term in the series is the only one needed
to represent the anisotropy term for RbMnF 3 .

E
x,=Q (M,,'3f;„'+M;„'M;P+31;PM; '),

'-I 2M
K&0, i= 1, 2. (2)

The Cartesian coordinate axes coincide with the crystal
axes .

The magnetic interaction between a nucleus and the
ionic electrons" is usually written as

3Chf = gsgÃpspN (8%—/3) ~(r) S I
+[(L—S) I/r']+ [3(S r) (I r)/r']. (3)

Here, gg and g~ are the electron and nuclear g factors,
pE and p~ the Bohr and nuclear magnetons, L and S
are the usual electronic orbital and spin quantum
numbers, and I is the nuclear spin quantum number.
The vector r is the radius vector, measured from the
nucleus. For the Mn'+ ion, there is no orbital angular
momentum, i.e., L=0.

In order to 6nd the mean hyper6ne interaction,
Eq. (3) is integrated over all space. When this is done,
the two terms, which are analogous to the classical
dipolar interaction, average to zero for a spherically
symmetrical ion. The first term in Eq. (3) is the so-
called Fermi contact term, and is a measure of the
overlap of the electronic charge cloud and the nucleus.
If there are no unpaired s electrons, the Fermi contact
term is generally zero. Hence, one might erroneously
conclude that the hyper6ne interaction is zero for the
Mn'+ ion. The origin of the very large hyper6ne inter-
action that is found experimentally for Mn'+ is generally

C. G. Windsor and R. W. H. Stevenson, Proc. Phys. Soc.
(London) 87, 501 (1966).

Ill R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027
(&96&).

attributed~' to a polarization of the core s electrons via
the 3d electrons.

When L is zero, Eq. (3) can be rewritten in the form

Xhg ——A I S ) (4)

A' (S,)I(I+1)
HN 8

Fh 3kT
(6)

where F is the electronic gyromagnetic ratio. The
physical significance of the two hyperfine 6elds becomes
clear if we neglect for the moment all dynamic correla-
tion between nuclear and electronic spins. H~~ is
equivalent to an eGective anisotropy 6eld, since it is
always aligned with the direction of the static magneti-
zation. It simply gets added to the crystalline anisot-
ropy Geld in the expressions for the AFMR frequencies.
Hence, the hyperfine interaction raises the antif erro-
magnetic frequencies by approximately I'(2HzH~s)'~',
where H~ is the exchange field.

In the absence of dynamic correlation, the nuclei
would precess in the static field H&~ at a frequency
equal to pH&N which is approximately 686 MHz. By
comparison, the efI'ect of an externally applied field in
the range 0—20 000 Oe would have negligible effect on
the NM R frequencies beyond removing the degeneracy.

When the electron-nuclear correlation is included the
nuclear frequencies are lowered or "pulled" from their
unperturbed values. The frequency depression can be
in excess of 200 MHz below the "unpulled" hyper6ne
frequency pHNN .

The hyperfine interaction energy expressed by Eq. (4)
can be put in a more convenient form, as a function of
the electronic and nuclear sublattice magnetizations
M~, M~, and Xg, Np .

3Chf —a(N~ My+ Ng Ms),

where A is the hyperfine constant. This energy may be
considered to arise from an equivalent magnetic 6eld,
acting upon the nuclear moment, having an average
value HN~, given by

H~N = A (S)/yh,

being the nuclear gyromagnetic ratio. This field, in
the case of RbMnF3, has a value" of about 6.5X 20'
Oe at 4.2 'K. For Mn'+ ions, HN~ is negative, i.e., the
direction of the field is antiparallel to the net spin of the
ion. However, since the nuclear and electronic gyro-
magnetic ratios have opposite sign, the corresponding
moments are aligned. From the macroscopic viewpoint,
the magnetization comprises four distinct sublattices-
two electronic and two nuclear. The nudear pol ariza-
tion produces an equivalent 6eld H~g acting on the
electronic moments. The paramagnetic nature of the
nuclear polarization is reflected by a temperature de-
pendence which follows the Curie law. The average
value of H~ g is
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where e is a coupling coefFicient. The Harniltonian X
for the four-sublattice system can now be written down:

ex+an+ Zeema n+h f

= —-,'Wu(Mg My+My M2) —WggMg Mg

K
+Q (M, 'M;„'+JtII;„'M;,'+M;, 'M;, ')

&-i 2M

I:oo}t Ho

—(My+My) 'HD —(N~+N~) 'Ho

—a(¹Mg+N2 M,). (7)

It is important to note that direct nuclear-nuclear inter-
actions are excluded from this Hamiltonian. Each
nuclear moment interacts only with the electrons of the
same ion. Nevertheless, since the electronic spins are
coupled together through the exchange interaction, the
mechanism does permit an indirect nuclear-nuclear
coupling. This is the Suhl-Nakamura interaction, ""
in which virtual magnons are excited and absorbed by
two nuclei on the same sublattice. It is a consequence of
the Suhl-Nakamura interaction that a well-defined
nuclear spin-wave spectrum exists even though the
nuclear polarization is of the order of 1%. deGennes
et ul. ' have shown that the pullings of the nuclear
resonant frequencies at low temperatures are also due to
the Suhl-Nakamura interaction.

Finally, the equations of motion for the magnetization
vectors are

I}}oi

Fry. 1. Orientation of the electronic and nuclear sublattice
magnetizations in the (220) plane. Ho lies in the same (110)
plane.

performed by Platzker, "who also makes the approxi-
mation of zero temperature. In the following, the two-
dimensional solution will be derived for arbitrary tem-
peratures in the range 0& T& T~.

Figure 1 illustrates the magnetization vectors and the
applied 6eld in the (110)plane. Ho is applied in a direc-
tion making an angle |t with the [0017 axis. Under the
action of the field, Mj. and M2 rotate away from the
[1117axis, which is the easy direction of magnetization.
N~ and M2 also cant into the direction of the field, under
the infiuence of the Zeeman torque, each by a small angle
t which is given by

8M; (t)/Bt= —I'M, X (8ac/aM;),

BN; (t)/Bt = —yN;X (Nc/aN; ) .

(Sa)

(Sb)

III. STATIC INTERACTION %'ITH
APPLIED FIELD

In order to compute the numerical values of the
normal mode frequencies, it is necessary to know the
orientation of the magnetic sublattices as a function of
applied field. Their positions may be obtained from the
equation of motion, Eq. (Sa), by setting the frequency
to zero. In the steady state, the nuclear sublattices are
always parallel to their respective electronic sublattices
and exert no torque. Hence, Eq. (Sb) need not be
considered.

In the resonance analysis, we shall be primarily
interested in the resonance spectrum when the mag-
netizing field Hp is applied along any of the three
principal directions of the crystal —the (100), (110),
or (111)axes. For these particular con6gurations, the
6eld and the magnetization lie in I 110}planes, and the
static equilibrium problem can be solved using a two-
dimensional model. The solution for a zero temperature
approximation has been reported by Cole and Ince."'
The complete three-dimensional analysis has been

~~ P. G. de Gennes eI, al. , Phys. Rev. 129, 1105 {2963).

3f~
——M+-,'X f fH i(,

iV, = —3f+-,X„B,f,

(10a)

(lob)

where B'll is the resultant of Hp along the antiferro-
magnetic axis. Now consider the torques acting on
M~ which must sum to zero for static equilibrium.

The Zeeman torque= NI&)& Hp
= —[3f+~X)&P((7 sin(8 —|t —t).

The exchange torque= M&&8'»M2
= —

~
W, 2} (M+-,'X„H„)(M—-', x„H(,) sin2t.

2s A. Platzker, Ph.D. thesis proposal, M.I.T., 1968 (un-
published}.

29 T. Nagamiya et al. , Advan. Phys. 4, 2 (1955}.

2M sint= X,H, ,

M being the magnitude of Mi. or M~ in zero field, X&

is the perpendicular susceptibility, and II& is the result-
ant of Hp normal to the antiferromagnetic axis. The
latter is represented by the dashed line in Fig. 1, and
points at an angle tt with respect to the [0017 axis.

For temperatures T&0'K, the simple relationship
}M~

~

=
} M~

~
does not hold if Ho is applied at an arbi-

trary angle to the antiferromagnetic axis. To take
account of this, the parallel susceptibility ' Xl f is
introduced. Then



2t=Hp sin(8 —f)/i Wipe M. (13)

Equations (9) and (13) are consistent provided
x,=l/iW»i. Subtracting Eq. (12) from Eq. (11) and
substituting for t yields

Hp (1 XII/XJ) sin2(8 —f)= pHisH~ sin28(1—+3 cos28)

+ (Xii/Xi)P(HpP/Has) sin2(8 —f) sin'(8 —P), (14)

where Hs=
i Wipe M and H~ ——4iIt i/3M. The second

term on the right-hand side of Eq. (14) is small, and
can be discarded. Finally,

Hp' sin2(8 —f)= —$0.75HipHg/(1 —xri/Xi) j
Xsin28(1+3 cos28) . (15)

Possible solutions of Kq. (15) will now be examined for
the held directions of interest.

Case 1: Hp parallel to the [100) axis (/= 0)

There are two possible solutions:

0.75H J.Hg
(a) Hp'=— (1+3 cos28)

(1—x„/Xi)
or

(b) sin28= 0.

Solution (a) is valid for the field range

0&Hp&
-0.75H H -»2

1 —x„/x,

over which 8 varies between 54.7 and 90'. %hen Hp ls
greater than

-0.75HgHg 'i'

1—xi,/X,

Note that there is no term in the exchange torque
involving 8'ii.

The anisotropy torque = —8X,/88. Writing the
components of Mi as functions of 8 in Eq. (1) and
performing the differentiation, we find

8X,/88= p i
E

i L2 sin2 (8—t)+3 sin4(8 —t)j.
Adding the torques and equating the sum to zero,

t M+px[fHp cos(8—P—t) jHp sin(8 tP t)
—IW»ILM' —l(Xii'H') cos'« —

W
—t}j»n2t

—
p i

E i L2 sin2(8 —t)+3 sin4(8 —t)j=0. (11}

Similarly, for M2 the torque equation is

LM —pi X, iHp cos(8—P+t) jHp sin(8 P+—t)
—

i Wi p i
(MP —

p (XP i iHpP) cosP (8—P+ t)j sin2t
—JEST L2 sin2(8+t)+3 sin4(8+t}]=0. (12)

After making the approximations cost= 1—2P and
sint=t, Kqs. (11) and (12) are added to obtain

which is the spin-tlopping value H,i, solution (a) has
no real solutions and solution (b) holds. For Hp)H, t,
the minimum energy position of the magnetization
corresponds to 8= 90'. In the field range,

-0.75H H
(0.75HeHg)'i'(Hp(

1—X„/x,

both solutions are valid, since they both lead to real
characteristic frequencies. For Hp( (0 75HzH~)'",
solution (b) does not correspond to an energy minimum,
and (a) is unique.

Case Z: Hp Parallel to the L111jaxis (P= M7')

Again, there are two possible solutions:

8=54.7,
0.75H gHg 1+3cos2g

(b) Hp' ———
(1—X„/X,) sin2(8 —P)

Solution (a) applies when Hp is parallel to the anti-
ferromagnetic axis. This conhguration is always one of
relative minimum energy. The absolute energy mini-
mum corresponds to the range 125.3'& 8& 144.7'
which is solution (b).

Case 3: Hp parallel to the $110j axis (lt =W')

Equation (15) yields only one solution:

0.75H gHg
Hp tan28(1+3 cos28).

(1—x„/X,)

The equivalent range of 8 is

0 &8&54.7 .

This is a position of relative energy minimu~. The
direction of lowest energy, which is either L111j or
L111j, is not predicted by Eq. (15). Both of these are
easy axes, and the magnetization is Bopped for any
value of applied held.

IV. CHARACTERISTIC FREQUENCIES;
TWO-SUBLATTICE MODEL

It has been demonstrated by earlier experiments that,
in most respects, the AFMR frequencies for RbMnFg
are well predicted by the two-sublattice model. The
linearized equations of motion for the electronic sub-
lattices which can be derived from Eq. (8a) are

jpim /P =M, XWipm, +m, X (Hp+ WipM+nN;)+8T;
i, j=1, 2, iAj. (16)

Here, M;, M;, N; are the static electronic and nuclear
magnetization vectors, and m;, m; are time-varying
quantities. The tensor BT; contains the terms resulting
from the crystalline anisotropy.
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The above equations, expressed in matrix form,
become

t ooQ Hp

Ot2

A 11+Bll: Cip ' ai
~ ~ ~ ~ ~ ~ ~ ~ ~

C21:~22+~22 ~ +2

0,1 and e2 are column vectors, representing the rf
components of the electronic sublattice magnetizations
Mi and Mp, referred to the crystal axes ($,rt,f) along
L100j, L010j, and L001$, respectively. The matrices
A 11 and 322 contain the anisotropic components, while
8 and C matrices contain terms arising from the Zeeman,
exchange, and hyperfine interactions. The superscript
c indicates that the matrix components are referred to
the crystal coordinates. These matrices are given in
Ref. 19. Alternatively, they can be obtained from
Appendix 8 by striking out the rows and columns
corresponding to the RF components of the nuclear
magnetization.

If we assume that the magnetization lies in the (110)
plane, the number of equations contained in Kq. (17)
can be reduced by transforming e1 and e2 to new co-
ordinate systems, illustrated in Fig. 2. The appropriate
transformations are expressed by

= C«og

FIG. 2. Illustration of transformed coordinate axes.

with

(0+/I')'= 2Hs(Has+a»)+Hppk2 sinp(8 —p) —1j,
(0 /I') = 2Hx(HNs+a»)+Hpppsin'(8 —f)—1j,

a1'

.a2-

R(—t) T.' 0 ei
~ ~ ~ ~ ~ ~ ~ ~

0 'R(t) T. „ep.

and

aip ————,'Hz(1 ——,
' sin'8+p sin'8) =pH~g(8), (21)

api ———pH~$1 —(13/2) sin 8+6 sin48j=spH~f(8), (22)

A ii'+Bii' —jcoI: Cip' R(—2t)
' ai'

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~

Cpi".R(2t): A„"+Bpp" jpiI. ,ap. —
=0. (19)

The transformation T performs a twofold rotation.
The first is through 45' about the L001j direction, the
second is about the L110j axis through the angle 8.
In the new (x,y,s) coordinate system, the z direction is
parallel to the antiferromagnetic axis, and the x axis
lies in the (110) plane. The additional small rotation
R( t) about the—L110j axis transforms (x,y,s) into
(x',y', s') with the s' axis parallel to Mi. Similarly, the
additional rotation R(t) about the t'110j axis defines the
third coordinate system (x",y",s"), with z" parallel to
—M2. In the linearized theory, the rf components of
sublattices 1 and 2 along the s' and s" axes, respectively,
are zero, and the set of equations in Kq. (17) is reduced
from a set of six to a set of four. Hence,

l2

I
I

AFMR Ho PARALLEL TO[IOOj AXIS ~
/

4.2'K

IO
M

C5

8
K
lat

8
4J
ls:
Lp.

IO K

X
O
LLI

Equation (20) has only two independent roots. The
AFMR modes, with the field applied along the three
principal axes, are illustrated in Figs. 3—7. The theo-

The superscript indicates the coordinate system to
which the matrix components are referred.

The fourth-order characteristic equation is obtained
by equating the determinant of the coeKcient matrix
to zero. In the zero temperature approximation
( Mi( =

( Mp(, and for this case Cole and Ince" deduced
the following simple form for the characteristic equation:

(ppP —II+') ((o' —0 ') —4(FH p)'co' cos'(8 —1t) =0, (20)

.59 Oe
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Fn. 3. AFMR modes in RbMnF&. Resonant frequency versus
applied field. The theoretical curves were obtained from the four-
sublattice theory.
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retical curves shown were actually derived from the
four-sublattice model, but on the scale used in the
figures, the small dift'erences between the two theories
do not show up.

When Ho is applied in the [110]direction, the mag-
netization and the 6eld are not in the same (110) plane.
The frequencies are calculated by putting (8 f) =—90'
in Eq. (20), and in Eqs. (21) and (22), 8 is set equal to
54.7 .

Equation (20) is also valid for temperatures T)0'K
when M~ and M2 are flopped, since then the parallel
susceptibility does not appear in the expressions for the
resonant frequency. The resonant frequencies become

(Qi/I)'=(Q+/I') =Ho'+2HsHtvs+3HzH~f(8) (23)

and

(Q,/I')~= (Q /I')2= 2H JrH~s+3H~Hgg(8) . (24)

The second mode is almost field-independent in the
Qopped configuration. The mode having the frequency
Q& is excited by applying a signal in the plane contain-
ing the antiferromagnetic axis. The mode with fre-
quency 02 is driven by applying the signal parallel to
Hp. Hence, Q~ and Q~ are often referred to as the trans-
verse and longitudinal modes, respectively.

Teaney et a/. ' were the first to study the Bopped anti-
ferromagnetic resonance modes in RbMnF3. They
considered directions of Ho in the (100) plane as well as
the (110) plane. Calculation of the resonant frequencies
of the spin-Qop modes is greatly simplified by knowing
that the antiferromagnetic axis lies in the plane perpen-
dicular to Hp. Also, it points in the direction of lowest
anisotropy energy within this plane. For Ho in the (100)
plane, Teaney et 4."~ give the following expressions

for the AFMR frequencies:

(Q/I')'=Ho'+2H HN +3HsH~&(8rr, v Jr), (23)

(Q /I') =2H~HN~+3H~H~C(8Ir, pre) . (26)

The angles 8~ and q ~ are the usual spherical coordinate
angles of Ho, whereas in Eqs. (23) and (24) the angles
refer to the antiferromagnetic axis. When Ho is in the
(100) plane,

B(s/2, err) = —4 cos4y~/(7+cos4s ~)
and

C(s/2, y~) =2(3+cos4yH)/(7+cos4q rr). (28)

If Ho is in the (110) plane,

7r
- 13

B 8~,— = —1— cos'8~+6 cos'tII~
4 2

[001](8~([111]; (29)

(2—sin'8') (3 sin'8' —1)

(2+sin28~)

[111](8Ir&[110]; (30)
3 cos'8~ —1

C ~H,— = [001]&8~([111];
4 2 (2—cos'8~)

(1—3 cos 81r) (2 —cos 8~)

(3—cos'8~)

[111](8rr&[110]. (32)

The equations of motion for the nuclear magnetization
are

j(con;/p) =n;X(HO+nM~)+aN;Xm, , i=1, 2. (33)

I
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De Gennes et a/. ' have derived expressions for the
nuclear resonant frequencies of a two-sublattice
uniaxial antiferromagnet, with the magnetizing field
applied parallel to the easy axis. They make the assump-
tion that at the nudear frequencies, the electronic spins
respond adiabatically to the driving field, i.e., M; is
always parallel to (H0+Hz, .+an;). The resonant fre-
quencies at low temperatures are

2F'HgH~g '"
~/y=HnN 1—

QgQ2

r'HNgHNg-
&Ho 1+ (34)

QgQ2

For a canted antiferromagnet, the nuclear frequencies
are given by

(
21'H gHN g 'I'

=HNN &—
7 Qg2

(35)

Equation (35) predicts that one of the nuclear fre-
quencies is independent of the applied field. This mode
has not been detected experimentally in any material.
The field tuneable Qopped nuclear mode has been
observed in several antiferromagnets, including
RbMnF&. 's Equation (35) fits the measured data to
within experimental error. It is not surprising that
neither of the above equations yields the correct nuclear
frequencies for RbMnFg when the magnetization is not
Qopped. The method of computing the NMR fre-
quencies in small applied fields (H&H, I), as well as for
the spin-Qow region vriH be discussed in Sec. V.

j(a&m,/I') =M;X (Wum, +an;)+m;
X (Ho+WimM, +aN;)+&T;,

i, j=i, 2 i&j.
(36)

This differs from Eq. (16) by the addition of the rf
nuclear magnetization. The equations of motion for
the nuclear spins are still given by Eq. (33). Note that
the crystalline anisotropy term does not enter into the
nuclear equations and that there are no n;Xn, terms.
Written in the matrix form of Eq. (17), the rf magneti-
zation vectors become

a;=

me)
m;,
m' r
n~

.ng

(37)

V. CHARACTERISTIC FREQUENCIES;
FOUR-SUBLATTICE MODEL

The equations of motion for the electron and nuclear
spins will now be solved simultaneously, taking into
account the dynamic electron-nuclear correlation. As
an adjunct to the theory, the temperature dependence
of the relevant crystal parameters, based upon the
molecular field approximation, has been included.
Hence, the analysis also permits comparison with
experimental results over a wide temperature range.
The variation of the crystal parameters with tempera-
ture is discussed in Appendix A. The linearized equa-
tions of motion for the electronic spins are
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The submatrices A11', 811', and C12' are given in Appendix A. A22', 822', and C21' are obtained from A 11', 811',
and C»' by interchanging subscripts.

Transformations from the crystal coordinate axes to the (x',y', z') and (x",y",s") systems of Fig. 2 are effected

by the transformation matrices 2' and R(t)

(cos8)/v2
—1/v2

7= (sin8)/V2
0
0
0

(cos8)/V2
1/v2

(sin8)/V2
0
0
0

—sin8
0

cos8
0
0
0

0
0
0

(cos8)/V2
—1/V2

(sin8)/W2

0
0
0

(cos8)/W2
1/&2

(sin8)/K2

0
0
0

—sin8
0

cos 0

(38)

R(f) =

cost
0

sint
0
0
0

0

0
0
0
0

—sint
0

cost
0
0
0

0
0
0

cost
0

sint

0
0
0

—sint
0

cost

(39)

The resonance matrix of Eq. (17) is reduced from 12X12 to SXS after the transformation by eliminating the s
components of the rf magnetization, which are zero to first order. The component matrices become

where

0
—b12'

~11 0
.ynX1

~12

0
—yo, X1

0

0
rO.M1

0
—b34'

—FO.M1
0

~34

0

(40)

b~p'= F[Hp cos(8 —f t)+W~pM—p cos2t+nlV~ j
bp4' ——pLHp cos(8 —f—t)+aMg).

0

(R( 2 ) ~ WnMi cos2&

0
0

—e»m, 0 0'
0 0 0
0 0 0
0 0 0.

(41)

with

0 g(8) 0 0'
-f(8) 0 0 0

A11 —2rHA 0 0 0 0
0 0 0 0.

f(8)= —(1—(13/2) sinP8+6 sin 8),
g(8) = —(1—~~ sinp8+pp sin 8).

The characteristic frequencies are the solutions of the equation

ol

A 11'+&11'—j~l:
~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~

C g"Rp(2t)

Cgp'R( —2f)

A pp" +8p p" jcpI—=0

1.e.,
ILN —j~ljl =0,

S41
0

Qg1

0
0

+12 o N14—jo) 123 0
%32 —jCO g34
0 F43 —jco

F52 0 0
0 0 0
0 0 0
D 0 0

0
Q25

0
0
jG0

Qeg

0
Nss

u16 0 0
0 0 0
0 0 0
0 0 0

use 0 ass—jcd Qey 0
Qyy —jm N78

0 Q~ —jo)

=0. (43)
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The entries in the u matrix are written out in Appendix B.In order to simplify the determinant of Kq. (43), it is

6rst rearranged.

jM
0
0
0

0
jan)

0
0

N14

0
0

—j(d
0

0

0
0
0

jM
0
0
0

Ng1

N61

141

0
—jr'

0
0

0
0

—jM
0

0

0
0
0

—jcv
=0 (44)

This equation is now equivalent to the equation

=0,

which can be put in the form

i
/co'I+DgD2 Ji =0.

At this point, further factorization is not possible if
Hp(H f and the determinant must be multiplied out.
The resulting characteristic equation is a fourth-order
polynomial in co~. In general, none of the coefIicients is
zero, and the characteristic equation has to be solved

by numerical methods.

Spin-Flop Frequencies

If the magnetization is flopped, considerable further
simpli6cation occurs as a consequence of the two con-
ditions

~
Mq~ =

~
M21 and cos(e —f) =0. It then follows

that
~ 11 ~22

(Q20/r)'=3a, a,g(e) . (49)

Equation (47) was first derived by Turov and Kuleev. »
The resonant frequencies will be calculated with the

approximation

determinantal equation (Eq. (46)] has been made. The
utility of Eq. (46) is that the nonzero entries in the
matrix are arranged in a checkerboard manner, and
therefore can be factorized by inspection. It should be
emphasized that this method of reduction does not work
if Hp&H, g.

A pair of biquadratic equations is obtained. Each one
contains one electronic and one nuclear resonant fre-
quency. After insigni6cant terms have been discarded,
these equations are

(o4—aP(Q '+2Q~s'+(o~')+Q;0'a&~'=0 i =1 2 (47)

where D~~'= 2F'HEH~ g. The terms 01p', Q2p' represent
the AFMR frequencies, with the coupling coefFicient o.

set to zero, i.e.,

(Qio/I')2 =Ho'+3Hz&~ f(0), (48)

say,
~11 ~2 (Q;p +2QNE +~N ) Qi04&K ~ (50)

and

i.e.,
Cg~' R(2t) = —C2&" R(—3)=C,

2+8—j(vI: C

: —(2+8+j &uI)

=0. (45)

Instead of proceeding to the form Eq. (44), we pre-
and post-multiply Eq. (45) by the matrix

Since (Q;0/co&) can be less than unity in very low
anisotropy antiferromagnets (e.g., CsMnF&) we require
Eq. (50) to imply that Q~s'))Q, ~N, i.e., there is strong
electron-nuclear correlation. The roots of Eq. (47) are

&o'= , (Q;0'+2QmE-'+cue') & ', P(Q p'+2Q~-~'+(op/)~
—4Q;0'rag]'~2. (51)

Hence,

1 I: I
~ ~ ~ ~ ~ ~ ~

v2 I and

co'=QP=Q;p'+2Q~gP+cos', i=1, 2 (52)

each identity submatrix being of rank 4. This step
results in the equation

Q*o'~x' (2Q~++(a pP)
(dq 2 ~ =CON 1—2

Q;0'+2Q~ g'+cog 0;2
(53)

~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~

I (1/i )(~+&+—C)

: ( 1/i~) (~+& -C)-
=0

and hence,

~
[~21+(a+a+C)(a+.a C)ji =0. (46)—

In this manner, a reduction from an 8&(8 to a 4X4

At this point, a comparison between the two- and four-
sublattice theories can be made. Equation (52) differs
from Eqs. (23) and (24) by the term co+'. Hence, com-
pared to the two-sublattice theory, the four-sublattice

'0 E. A. Turov and V. G. Kuleev, Zh. Eksperim. i Teor. Fiz,
49, 248 (1965) t English transl. : Soviet Phys. —JETP 22, 1/6
|',1966)j.
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FIG. 9. NMR modes in RbMnFg at T=10'K. Mn'~ resonant
frequency versus applied field. The theoretical curves were derived
born the four~Qat&~ A

FH:. 8. i%MR modes in RbMnF3 at T =4.2'K. Mn" resonant
frequency versus applied field. The solid lines represent the four-
sublattice theory. The dashed lines were derived from Eq. (35),
due to de Gennes et al. {Ref.27).

approach raises the AFMR frequencies by approxi-
mately s&z'/2Q, , which is about 50 MHz in the low-

temperature approximation. This shift is less than the
linewidth ( 250 MHz) and would not be detectable.
Comparing Eq. (35) with Eq. (53), it is seen that the
nuclear frequencies calculated from the four-sublattice
model are lower. The shift is roughly equal to
~sea;(ca~/0;)', or a maximum of about 4 MHz, which is

larger than the linewidth. Freiser ef al."report the half-
linewidth for the flopped nuclear mode to be 0.28 MHz.

700 ——
NMR. Ho PARALLEL To [IOO„AXIS

VI. EXPERIMENTS

The experimental arrangement for studying coupled
AFMR-NMR in RbMnF~ was designed to permit
measurements to be made over a very wide frequency
range, and at temperatures within the bounds
4.2'K& T&T&. The AFMR data covered a frequency
span of 1—12.5 GHz, while NMR measurements ex-

tended over the range 250-687 MHz. The two fre-

quency bands were covered using three cavities, two
waveguide and one coaxial type. The rectangular wave-

guide versions, which were used between the frequency
limits 3.6 and 12.5 GHz, operated in the TE~o„modes.
Both cavities could be tuned with shorting plungers
external to the Dewar vessel. The coupling probe was
also located outside the Dewar, at room temperature,
so that the coupling could be optimized for maximum
sensitivity at each frequency.

The cavities were constructed from stainless steel,
except for a copper end section which contained the
sample. The latter was mounted on the end wall of the
waveguide, using double-sided adhesive tape. RbMnF3
is a soft material, and other adhesives commonly used
for mounting specimens, such as cryogenic varnish,
would fracture the crystal on cooling. In order to remove
the sample, the tape was dissolved off with ethy1
acetate, which caused no apparent damage to the
sample.

The sample orientation with respect to the steady
field could be changed by rotating the entire waveguide
assembly and Dewar vessel. This avoided the need for
gears within the Dewar. Unfortunately, since the angle
between the rf field and the steady field changed with
the rotation, the rf coupling to the sample also varied.

The rf signal reflected from the cavity was detected
and amplified using a high-gain differential amplifier
with a dc o6set. When the signal source was operated
in a stabilized cw mode, the sample resonance was
located using magnetic field sweep and a pen recorder
display. Alternatively, the source could be frequency-
modulated, and the output from the differential ampli-
fier displayed on an oscilloscope. These detection
schemes provided adequate sensitivity for investigating
NMR as well as AFMR. In the NMR work, magnetic
field modulation with phase sensitive detection was
tried. In order to eliminate the skin depth problem,
the modulating coil was placed inside the rf cavity.
The maximum modulation amplitude that was available
was less than 1 Oe, and the sensitivity achieved was
no better than with dc detection. For measurement of
the applied field for resonance, a rotating coil Quxmeter,
calibrated to an accuracy of 0.1 Oe, was used.

The coaxial cavity was employed at low microwave
frequencies and in the NMR frequency band. It was
externally tuneable, employed loop coupling, and
operated in the TEM mode.

The sample temperature was varied by a servo-
controlled heater coil, which was wound onto the cavity
end section. In the temperature range 4.2-40'K, a
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FIG. 10. NMR modes in RbMnF3. Mn" resonant frequency
versus applied Geld. The theoretical curves were derived from the
four-sublattice theory.

FIG. 11. NMR modes in RbMnF3. Mn" resonant frequency
versus applied field. The theoretical curves were derived from the
four-sublattice theory.

germanium resistance thermometer was used as the
sensing element. At higher temperatures, a platinum
resistance thermometer proved to be more sensitive.
The temperature of the sensor could be stabilized to
better than &0.1 K. The sensor was embedded in the
cavity wall and was located about @ in. from the sample.
Any uncertainty in the sample temperature would be
due chiefly to (1) the temperature gradient across the
sample adhesive, and (2) the sample size.

Experimental data for the AFMR modes are shown
in Figs. 3—'7. The solid lines are the theoretical results
obtained from the four-sublattice model. Several
diferent samples were used in the experimental work,
in order to check that the resonance characteristics were
consistent. %ith the magnetizing held applied in the
L111) or L110) direction, only those resonances corre-
sponding to the direction of the magnetization having
the lowest energy were detected. The AFMR modes
were examined at temperatures up to 70'K. Since there
w'ere no provisions for pumping on the liquid helium,
measurements were not extended below 4.2'K.

The NMR measurements are illustrated in Figs.
8—12. Data were taken over the temperature range
4.2—30'K. The solid lines represent frequencies obtained
from the four-sublattice coupled mode theory. The
dashed line in Fig. 8. represents the NMR frequencies
calculated from the de Gennes pulling formula. "Above
spin-Qop, the frequencies obtained from the two
theories are almost indistinguishable.

RbMnF3 samples were cut from single crystals grown
by the Czochralski method. " The sample shape was
cubic, of side 5 mm, two faces being (100) planes and
the remainder (110) planes. This size was suitable for
both AFMR and NMR experiments. The data shown
in Figs. 3—12 were all taken with one specimen. Sample
shape was considered unimportant, since demagnetizing
and cavity wall sects were insignihcant.

3' P. 0. Henk et al. , Department of Electrical Engineering and
Center for Materials Science and Engineering, M.I.T. Technical
Memo No. 3., 1966 (unpublished).

VII. DISCUSSION OF RESULTS

First of all, comparison will be made between theory
and experiment for low temperatures, say 10'K or
less, where the parallel susceptibility can be ignored.
At the AFMR frequencies, the agreement is very good.
In order to get the best possible fit between the theo-
retical curves and the experimental points, accurate
values of HN~, H~, and H~ are crucial. The value of
H~~ was taken from the work of Freiser et al."H~ and
Hg were found by measuring the held for spin-Aop
resonance for two difkrent crystal orientations. From
Eq. (52) the HsH& product is

2+S+A =80[100] +0[110] ~ (54)

i
I I

NMR. He PARALLEL TO [IIO] AXIS

660
AI'x:
X

D
g 620-

I-

R
O

tr 580

540
0

t

2000

-- THEORY, HA *4.59 Oe
Hg *8.I6 x I050e

I t 1 I

4000 6000
APPLIED FIELD (Oe)

8000

FIG. 12. NMR modes in RbMnF3. Mn'~ resonant frequency
versus applied Geld. The theoretical curves were derived from the
four-sublattice theory.

Substituting for HzH& in Eqs. (52), and neglecting
~N, yields H& and Hz separately. A further check is
provided by the zero-held frequency. The anisotropy
held was found to be 4.59 Oe at 4.2'K. The value of
Hz adopted, 8.16X10' Oe, is signihcantly lower than
the value reported by Teaney et el.' The new measure-
ment should have less uncertainty, since at X-band



I NCE 184

O

CL
lX
O
CA
Q3

NMR FREQUENCY = 520 MHz

I

I 000
I

2000 3000 4 000
APPLIED FIELD (Oe )

(a)

5000

0
I-
CL

C)
tf)
CCI

LLI

I-

AFMR FREQUENCY = Il.5 GHz

L I

0 I000 2000 3000
APPLIED F IELD (Oe )

(b)

FEG. 13. (a) NMR in RbMnF&. Cavity absorption versus
applied field at 520 MHz; (b) AFMR in RbMnF3. Cavity absorp-
tion versus applied field at 12.5 GHz.

I

4000 5000

frequencies, the 6eld for resonance is much smaller
than at the frequency of 23 GHz, used by Teaney et ul.

Two additional parameters required for computing
the nuclear frequencies are the internal nuclear 6eld
Hz& and the hyperfine frequency. H» was assumed"
to be 6.54X 10' Oe; cox (=686.2 MHz) was taken from
previous NMR measurements. " The latter value is
consistent with that obtained from double-resonance
experiments. " The 6t between the theoretical and
experimental NMR modes is not quite as good as for
AFMR. The discrepancy is ~orst near zero 6eld. The
6t could probably be improved by parameter adjust-
ment. There is also a pronounced deviation when the
field is applied in the [111]direction, only part of
which can be attributed to crystal misalignment.

Both nuclear modes are detectable if Hp is in the
[111]or [100]directions. For the [100]configuration
(Fig. 8) the spectrum is particularly interesting. The
modes could be followed over more than an octave
range of frequency, from 250 to about 660 MHz. The
upper frequency limit was set by the available bias field
(=7000 Oe). At the lower frequencies, the fields for
resonance of the two modes are close together. At 250
MHz, the modes merged into a single broad resonance.

The NMR linewidth of the Bopped mode is about
100 Oe, as illustrated by Fig. 13(a). The AFMR line-

»%. J. Ince, J. AppL Phys. 40, 1595 (1969).

width, for this particular sample, is comparable. Figure
13(b) shows the relative cavity absorption versus
applied field at the AFMR frequency of 11.5 GHz.
Below spin-flop, the line shape is affected by the change
in sublattice orientation with applied 6eld.

In addition to the low 6eld and flopped resonance
lines predicted by the theory, Fig. 13(a) shows a third
small peak. It is located at a 6eld strength of about
3700 Oe close to the flopped resonance line. A similar
satellite line is apparent at the AFMR frequency, and
may be attributed to domain eGects. When Ho is
parallel to the [001] axis, the magnetizat. ion may be
flopped along either the [110]or [110]axes, which are
equivalent in free energy. A small misalignment of the
crystal will remove the degeneracy.

A comparison of the two- and four-sublattice theories
has shown that they lead to almost the same values for
the AFMR frequencies, the differences being entirely
negligible. In the case of the 6eld tuneable NMR mode,
the de Gennes pulling formula predicts a resonant fre-
quency that is slightly higher ( 4 MHz) than the
value derived from the four-sublattice model. Un-
fortunately, the shift is probably too small to be de-
tected, being smaller than the experimental errors
introduced by crystal misalignment and uncertainties
in crystal parameter values. However, the four-sub-
lattice analysis has permitted solution of the NMR
modes below spin-flop, where the de Gennes formula
[Eq. (35)], is clearly inapplicable. The agreement
between theory and experiment in this range of applied
held is considered good.

The AFMR modes were investigated at roughly 10'
temperature intervals in the range 4.2—70'K. A sampling
of the results is shown in Figs. 3—7. With the magnetiz-
ing applied in the [110]or [111]directions, the varia-
tion of frequency with temperature is well predicted by
the theory, if the temperature dependence of the crystal
parameters (as discussed in Appendix A) is included.

With the field parallel to the [100] axis, the agree-
ment is less convincing, particularly at temperatures
in excess of 40'K. According to theory, as the tem-
perature is raised, the intersection of the two Hopped
AFMR modes occurs at a gradually decreasing value of
applied 6eld. Eventually, the crossover 6eld coincides
with the spin-flop 6eld. The two resonant frequencies
are given by the expressions

(0i/1') (iooP =Ho'+2HzHnrz ', HzH~, ——

(&o/&) (loo] 2HSHNE+3HEHA.

(55)

(56)

It follows that Qi=Qo when Hoo= (9/2)H@H~. Hence,
the crossover and spin-Hop coincide if

H, r' ——1.5H~Hg/(1 —X„/I,) =-,oHirHg,

which is satisfied when x~~/X, =—,'. Applying formula
(A4), it is estimated that this condition should be met
at about 50'K. At higher temperatures there will be
no intersection, as illustrated by the mode plot for
60 K in Fig. 5.
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According to Sec. III, when the applied field is
parallel to the $100] axis, the flopped configuration is
still a position of minimum energy for field strengths
down to ( ', HNH-~)1" Oe. Hence, in the field range
(2H@Hg)'~'(H2(H, f, one expects the mode pattern
to be more complicated, because there are two possible
directions for the magnetization in the (110) plane.
Another factor to be considered is crystal misalignment,
which causes a mixing of the two flopped AFMR modes
and a splitting in the crossover region. Even a sniall
misalignment of say 1' which has only a small effect at
4.2'K, produces a pronounced splitting at higher
temperatures.

Experimentally, the low-field resonances were very
weak at temperatures greater than 50'K. Consider,
for example, the experimental data shown in Fig. 5,
corresponding to 60'K. The resonances at fields less
than 1200 Oe were just detectable. The rising mode
branch in the low-field region became progressively
weaker, and could not be followed at fields greater than
about 800 Oe. It is not clear where the two segments of
the upper mode branch finally connect.

The NMR modes were investigated at temperatures
up to 30'K. As in the case of the AFMR modes, the
agreement between theory and experiment was excellent
if the field was applied in the L110]or $111]directions,
but was poorer for the L100] resonances.
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&gN'22N'S(S+1)
TN (Wll —Wil),

6k
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T2 (Wll+W12) .

6k

x„(15/7)(TN T2)B'2(2(a)—

X, r T (15/7) T2B'2(2(a)—
(A4)

APPENDIX A: TEMPERATURE DEPENDENCE
OF CRYSTAL PARAMETERS

In order to compute the normal mode frequencies as
a function of temperature, M~ and M2 are assumed to
obey the S=—', Brillouin function. The parallel suscep-
tibility is then given by the formula'~

1Vg N'I2N'S'B2, 2'(a)
x„(T)= (A1)

k T—-', (A12gN221N2S2) (Wll+ W„)B„2'(a)

with

a = (gNI2NS/kT) (W11M2+W12M„.) .
X is the number of ions per unit volume and Wi~ and

Wi2 are the exchange constants. It is more convenient
to express Xi& in normalized form. This is done by
making use of the following standard expressions for

"A. H. Morrish, The Physica/ Princip/es of tIIagnetism (Wiley-
Interscience, Inc. , Ne~v York, 1965), p. 451.

T~- and Tg are taken to be 82.6 and —160'K,
respectively. ""M~ and M2 can be written as

M1,2 =&(M&'2x~ ~H~ ~)
=&M2B2~2(a)

XL1~ (&ir/Xl) (Hi&/2HN)]

where HN =B2~2(a)HN(T =0). It has been tacitly
assumed that lV&2 is temperature-insensitive.

The nuclear hyperfine fields can also be related to the
Srillouin function, since

HNN aM1, 2 HNN(T 0) (M1,2/MO) &

and from Eq. (5)

HNN = (A2/I'Il) Ll (I+1)/3k T]SB2~2(a)
= (9.43/T)B»2(a) .

The small temperature dependence of the hyperfine
interaction constant is ignored here.

The crystalline anisotropy constant, normalized to
its zero-degree value may be written as a function of
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the II~H~ product:

J'/Eo-HxxHa/(HxxH~) o.
61

/GO

62

+xx+Bxx +xp nx

~21 A 22+~22- -aj'2-
(B1)

The latter can be obtained from antiferromagnetic
resonance Lsee Eq. (54)].Figure 14 shows the measured
dependence of E/Kix(=Jx. /Zp) versus temperature,
taken at the AFMR frequency of 11.505 6Hz. The
solid line shows the calculated variation, based on the
%olf single ion theory. "'4

APPENDIX B: DETAILS OF
RESONANCE ANALYSIS

In the crystal axis system of coordins, tes (),lX,f')
the equations of motion for the four-sublattice model

8$$$

tSg
@jg

nial

Sjf

(B2)

The coeKcient matrix is partitioned into 6X6 sub-
matrices. A11' is the anisotropy array referred to the
crystal axis system.

The column vectors e1, e2 represent the rf components
of the magnetization.

0 (3MxrMx '—Mxr')
—(3M xr Mxxx —M xrx) 0
(3Mx,Mxx' —Mx„') —(3MxtMx„' —Mxx')

0 0
0 0
0 0

—(3Mx~xr' —M x„')
(3MxxMxr' —M xto)

0
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

The submatrix 811' contains Zeeman, exchange, and hyperine interaction terms:

0
—b12'
—b13'

0
gnat xf—ynEg„

b12'

0
—b23'

—yO, X1)
0

yaX1(

b13

b23'

0
yeE1„—ynE1)

0

0
FnM1)

—r~M„
0

y(Hor+nM—xr)

y (H p,+nMx„)

—FnM1g
0

roM1)
y (Hpr+nM xr)

0
—y (Ho p+nM x))

FnM1„
—FaM1(

0
y(H p„+n—Mx,)

y (Hpp+nM xx)

0

where
bxp'=F (Hot+ WxxMpr+nNxr),

F (Hop+ WxxMPp+n~~ xp) yl

b„=F(H„+W„M„+N„).

In Eq. (B3), I is the transformed 8X8 coefficient
matrix, whose nonzero entries are as follows:

uxp=F/Hp cos(8 —f—t)+WxpMp cos2t

+~x+spH~g(8)],
C12' contains exchange terms:

0
W12M1)—S'12M1,

12 —
0
0
0

—TV12M1)
0

8'12M 1)
0
0
0

lV12M1,
—8'12M 1)

0
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

The submatrices A22', 822', and C21' can be derived
from A»', 8»', and C»', by interchanging suffixes
1 and 2.

After applying the transformations of Eq. (18), i.e.,

ax ——R(—t) Tnx,

a=R(t)Tnx,

the characteristic equation is obtained from the
condition

N14= —N23 = —FOM1,
u, = —FW„M„
Npx= —FLHo cos(8 P t)+WxpM—p c—os2t

+~x+pH~ f(8)],
+25 =FlV12M1 cos2t,
N32 = —u41 = —ynX1,
Npi= sill=r(Hp cos(8 lp —t)+nMx]
N52 F~ 12M2 p

Iio FLHp cos(8 —lt'+t)+WxpMx cos2t

+nNp —PpHgg(8)],

N58 = —N67 = —FaM2,
u1=FW1M cos2t,
Bop= —FrxHp cos(8 P+t)+WxpMx cos2t

+nNp —pPHg f(8)],
[u jolI] =0. —

"W. P. Wolf, Phys. Rev. 108, 1152 (2957).

(B3)
F76 ———Ns, ———qadi„
Nxp ———Npx="y[Hp cos(8 —lp+t)+nMp].


