
lations were then pcrfornsed using Cooper's theory for
the frozen-lattice model. 4ood qualit. ative agreement
between theory and experiment resulted. Quantitative
agreement is obtained if the values F25= —18 E'/atom
and D~=1.7 E/ato'm are chosen for the twofold
anisotropy" and magneto-elastic constants.

i4 This value appears to be in satisfactory agreement with the
neutron diffraction results of H. Bjerrum Miler, J. C. Gylden
Houmann, and A. R. Mackintosh LPhys. Rev. Letters 19, 312
(1967)j, for F25.

In conclusion, we believe that this paper reconciles
the earlier discrepancy between experiment and theory
for ferromagnetic resonance in Tb at high microwave
frequencies.
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Rigorous Boson Fori~ulation for Calculating Ti~e-Dependent
Theriacal Properties of Localized Spin Systems*
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Wte outline a method for rigorously calculating the time-dependent as well as the static thermal properties
of localized spin systems from those of an ordinary many-boson system. Our method retains the advantages
of both the Holstein-Primakoff and the Dyson-Maleev transformations without having their main dis-
advantages. The spin operators and the boson Hamiltonian are all finite series in the boson creation and
annihilation operators. Our boson Hamiltonian is Hermitian. This method establishes a rigorous cor-
respondence between the thermal properties of the spin-& isotropic Heisenberg model and those of a hard-
core boson system with only two-body interactions.

1. INTRODUCTION

HE methods available for the calculation of the
thermodynamic properties of spin systems do not,

as yet, seem to be as advanced as the methods" already
developed for treating the thermodynamic properties
of many-body systems of bosons or fermions. The
reason for this is that the spin-operator commutation
rules are more complicated than the boson or fermion
commutation rules. In two famous papers in 1956,3

Dyson used the idea of establishing a correspondence
between a given spin system and a boson system, which
then could be used to calculate thermodynamic proper-
ties of spin systems if the corresponding properties of
the boson system could be calculated. He then pro-
ceeded to use this correspondence to calculate some of
the static (nontime-dependent) properties of the Heisen-
berg ferromagnet.

Dyson's work was later extended in an eBort to cal-
culate the spin Green's functions which would, of
course, give one a means of calculating the time-depen-

* Research sponsored by the U. S. Atomic Energy Commission
under contract with Union Carbide Corporation.

f Visiting scientist from Kernforschungsanlage Julich, Germany.
'A. A. Abrikosov, L. P. Gor'kov, and I. K. Dzyaloshinskii,

Methods of centum Field Theory in Statistical I'hysics (Prentice-
Hall Inc. , Englewood Clips, N. J., 1963).

~ L. KadanoB and G. Baym, Quantum Statistic, al Mechanics (K.
A. Benjamin Inc. , ¹wYork, 1962).

~ F. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1230 (1956).

dent as well as the static thermodynamic properties of
spin systems. '

This approach, however, is only one of several that
have been attempted. The usual starting point with
these theories is to establish a transformation from the
spin operators to a set of boson operators, the two most
often used being the Dyson —Maleev' and the Holstein-
Primako87 transformations. The Dyson —Maleev trans-
formation leads to a "boson system" described by a
non-Hermitian "Hamiltonian. " The Holstein —Primak-
off transformation leads to a boson system with a
Hermitian Hamiltonian which is an infinite series in the
boson operators. The objections to using these transfor-
mations are obvious.

The object of this paper is to present a theory
whereby the time-dependent as well as the static proper-
ties of a spin system could, in principle, be calculated by
means of the application of ordinary many-body boson
theory to a system of bosons described by a finite-series
Hermitian Hamiltonian. The procedure we have in
mind is the following: In order to calculate a given ther-
modynamic property of the spin system one must, in
general, calculate some kind of time-dependent correl. a-

4 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 95 (1962).' R. Silberglitt and A. B. Harris, Phys. Rev. 174, 640 (1968).
'S. V. Maleev, Zh. Eksperim. i Teor. Fiz. 33, 1010 (1957)

t English transl. :Soviet Phys. —JKTP 6, 776 (1958)g.'T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1941).
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t ion function. Such functions usually are not. calculatef~

directly. It is more convenient to rely on some indirect
method such as that provided by the Green's function
theory. "If we can show how one can rigorously cal-
culate a given spin Green's function from some corre-
sponding boson Green's function; then in this way, we
(:an calculate any thermodynamic property of the spin
system. The l"nown techniques of boson niany-body
theory can be used to calculate the relevant boson
Green's function.

This paper will concern itself primarily with es-
tablishing a rigorous correspondence between the spin
and ordinary boson Green's functions. In Secs. 1 and 2

we present the properties of the spin and boson opera-
tors, respectively. Section 3 is concerned with establish-
ing a rigorous correspondence between a given spin-
correlation function and an ordinary boson correlation
function, and gives the method for the construction of
the relevant boson system. The correspondence between
the spin and boson Green s functions is given in Sec. 4.
Section 5 is concerned with the spin image operators
which are necessary for the relevant boson calculation,
and Sec. 6 deals with a specific example, the spin-~
Heisenberg ferrogmagnet.

2. SPIN SYSTEMS AND THEIR PROPERTIES

The model we wish to consider is a finite crystal
lattice with peridoic boundary conditions. The total
number of lattice points is E. The set of lattice vectors
is then defined to be n1, n2, -. ,n~.

At each lattice point there is a spin of magnitude 5
represented by the operator S;, or simply S;. The gen-
eralization to more complicated spin structures, such as
ferrirnagnets, is straightforward. The Cartesian com-
ponents of this operator satisfy the commutation rules:

(S,*,S,'v] =iS,'8;,',
where 8, ,,' is the Kronecker 8 function.

The spin ladder operators S,+, are defined by

@md»f-ts f~f th~ spin ladder operators. 1'hat js,

S,*= Q a„(S)(S;+)"(S, )",
v=1

arr(S) = —S, az(S) =1/2S, (6)

a„(S)= Q tza„(S)a„„(S), 2&v&2S. (7)
v(2S+1 —v) r =z

IP&= I P, .",P~),

p;=0,1,2, ,25,

F(p,) =1(1—1/2S) . Ll —(p, —1)/2S].

The state IO) is definee by

S, IO)=0 for all j.

(9)

(10)

(11)

(12)

The set {I p)} is then the set {I pz pter&}, where p,
ranges over all of its possible values, and each distinct
ordered X tuple is taken only once. The number of
states in the set {I p)} is therefore (2S+1)~. The set
( I p) }also forms a basis for the Hilbert space of the spin
system. The orthonormality condition

(13)

can be derived by using Eqs. (3), (4), and (8).
The matrix elements of the operators S+, S, and S'

with respect to this set of states are

(p'IS+I p) = (2S)'"(1+1)»'Ll —(p /2S)]"'
X4z vz ~nr+z n, 4zr, nrr r (14)

(p'I S,—I p) = (2S)»z(p, )»zI 1—(p,—1)/2S]z'z

Xbn, , n,
' ttn, z, nr. bnzz nrz r (15)

(p'IS'I p) =(—s+p )s.. (16)

We can now define a complete and orthonormal set of
states {I p&}.Let

I P& = II ~-'r'(p, ) (2S)-'r'» (P, !) "'-(S')"'I0&, (8)

S,+=S,'w~S,',
and satisfy the commutation rules

I S,+,S,' ]=2S,*!l;,

LS,~,S,"]=MS,+6;,,',
and the identity

(S')' S*=S(S+1) S,+—S, . —

(2)

(3)

(4)

(5)

Equations (14)—(16) can be derived by using Eqs. (3),
(4), and (8).

In order to calculate the thermodynamic properties of
a spin system described by the Hamiltonian B, we
must in general calculate time-dependent correlation
functions. It is well known that these functions can be
analytically continued into a strip of the complex time
plane, ' giving

Frizz(t —t') =g (zzI A (t)B(t')e eaI zz)/P (zz
I
e ea

I rr),

(17)
The major di%culty in theoretically treating spin

systems is represent. ed by Eq. (3), which shows that the
commutator of 5+ and S is not a c number.

The operator 5,' can be expanded in a series of normal

t3= 1/kzzT, Q(t) =e'azQ(0)e 'az 0=A,B, (18)

where k~ is Boltzmann's const. and T is the tempera-
ture. The imaginary part of the time diGerence t—t' is
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restricted by
—P&lm (&—r')&0, (19)

and the set ( I
n) } represents any complete set of states.

Throughout this paper, the variable t is to be con-
sidered as complex unless otherwise stated.

Since any arbitrary operator in a spin system can be
expressed as a function of the operators 5+ and S' only,
and since the set ( I p) }is complete, we may expand (17)
in terms of sums of products of the matrix elements

(plS Ip'), (n=+, —,s). Then by the use of Eqs. (14)-
(16), we can in prinicple calculate the correlation func-
tion F~g.

or
(ulSplp)=0 for all j,

(plS le)=0 for all j,

(27)

so that

2 (pl'I p")(p"IS)"I
p')

where f is any arbitrary function for which f and f r

exist for all (p~, ,p~), then by the simple replacement
given by (26) the spin correlation function (17) can
be written in terms of the matrix elements (p'l8'I p)
only. That is, the result is independent of f.

If we now make the additional requirement that
either

3. BOSON OPERATORS ON A LATTICE
AND THEIR PROPERTIES

The model we consider here is the same as that used
in Sec. 2. However, instead. of considering the spin
operators, we will consider the pure boson creation and
destruction operators b; and b;~, which for our discrete
system satisfy the commutation rules

= 2 (plS,-IB)(BIS,,- I p) =(plS,-S,.- Ip) (29)

then the complicated expression we have for Fza(t) in
terms of the (p'IS I p) matrix elements will collapse
glvlIlg

~~a(& &') =2 (—pl&(&)B(&')e-'"Ip)IZ (pl ~'
l p)

L»»~' j=&~.s' (20) (30)

As before, we can define a complete and orthornormal where, for any spin operator 0, the image operator t}1s

set of states ( IB)},where obtained from

IB)= IB4 ",B~),
B;=0,1,2, . (any positive integer),

b, lo) =0 for all j.
(32)alp) = Ip) rig)-o.

Q(S.)=a(S.~ S ). (31)

( ) That is, we express the spin operator 0 in terms of S
and then replace S by S to obtain 0,

(22) It should be noted here that the sums in (30) are only
over the physical subspace. This restriction can be re-
moved by introducing a projection operator f' with the

(24) properties

( ])n
8;(0)=ps-'~t'~'= Q (b t)"b "

a-0 g!

In contrast to the set of states ( I p) },the set ( I B)} is
an infinite set. It is clear however, by comparing Fqs. Such an operator can be constructed in the following

(21) and (8) that there exists a subset of (IB)}which is
isomorphic to the set {I p)}.This set will be called the
physical subset, and it is clearly the set

(Ip)}=(lpga,

" p~)}p;=0,1, ",2s. (2S)

The vector space formed from the basis set ( I p) }will
be called the physical subspace. We also de6ne the un-
physical subset (Ie)} as the set which contains those
state vectors which belong to (IB)},but not to (lp)}.

and therefore

P;(0) IB)= IB) if Br=0,
=0 if 8/0, (34)

where p is the norlnal product operator. It can easily
be established from the definitions (33) and (21) that

4. SPIN CORRELATION PUNCTIONS
PROM BOSON STATISTICS P;(nc) I B)

=(1jtw!)(b )"P (0)b "IB)=IB) if B;=
(35)=0 if 8;/m.As was pointed out in the discussion following Eq.

(17), any spin correlation function can be expressed in Thus, the operatorterms of sums of products of the matrix elements
(p'IS I p), and therefore if we define a set of image
operators $p in the boson space by the equations

(36)Pg= g Pg(e)
a~0

(p'IS, lp)=(p'll; I p)f '(p') f(p), a=+,—,s, (26) will project out of the states (IB)}only those states for



J. F. COOKE AND H. H. HAHN 184

which B;& 2S. That is,

P;IB)=IB) if B;&2$,
=0 if Bg&25.

(37)

and therefore the normalized eigenstates of 8 can be
written in the form

Hence, a projection operator which will project out the
physical subset from the full set {I B)} is IW-) =2 A-IN),

P= II». (38) That is, the energy eigenstates of 8 can be c!assiaed as
physical or unphysical. Since, according to (41),

Then,
'Vp S

( —')=p( I&()B(') '"PI )/g( I
'"PI ) ( )lp)=o, ( I

)=
(45)

(39)

where
8=a+v(s), (40)

&o

g (y.t)2s+&$ Ps+1 (41)
(2S+1)! i

and where H is chosen to be the simplest operator which
satis6es the following conditions:

(a) H is Hermitian, (42a)

(b) (p'I&I p) =(p'I~I p) «»ny
I p), (p'I

(Nl&I p) =(pl@In) =o, (42b)

(c) 8=H+V(S) has a lower bound on its energy
eigenvalue spectrum. (42c)

From (42b), one obtains

[H,Pj=0, (43)

where {ln)} is any complete set of boson states. It
should be noted, that because of the condition (27) for
(28)j the position of P in (39) is not important.

The right. -hand side of (39) could be interpreted as a
correlation function calculated with respect to a boson
space with a metric operator E. However, since E is
not the identity operator in the full boson space, we
cannot directly apply the usual techniques of many-
body boson theory to calculate P».

In order to circumvent this problem, we will now con-
struct a boson system and then show how the thermo-
dynamic properties of this can be related to those of
the spin system.

The 6rst step is to choose a set of image spin operators
5 to work with. We can then construct the correspond-
ing image operators Q for any spin operator 0, as pointed
out above. The Hamiltonian for this boson system is,
however, not taken to be the image Hamiltonian H of
the spin Hamiltonian H. Instead, we de6ne the Hamil-
tonian 8 for the boson system by

the energy eigenvalues of all of the lg„) states will
diverge in the limit vp —+~.

The procedure for calculating any arbitrary F» is
now simple. We 6rst calculate the image correlation
function F», defined by

p„(t t') = (A—(t)B(t'))H

=p ( nAl(t)8(t')e esI n)/p (nl e ~sin), (46)

0(t) =e's'ne 's', 0=A,B,

where {I n) }represents any complete set of boson states
in the full boson space. Then from (27) or (28), (42),
and (45), it is straightforward to show that

lim P»(t —t') =p (plA(t)B(t')e —&sl p)/

where we have used Eq. (30) to establish the last part
of this equation. This result shows how Fz& can be ob-
tained from J'~p. We can use ordinary boson many-body
theory to calculate the correlation function F~~ for
finite vo and then take the limit eo —&~ in order to ob-
tain F». This limit corresponds to a boson system with
a hard-core interaction.

It should be pointed out here that the requirement
that H be Hermitian is necessary if one wants to be
able to use ordinary many-body theory to calculate F».

S. CALCULATION OF SPIN
GREEN'S FUNCTIONS

As mentioned before, in order to calculate the thermo-
dynamic properties of the spin system, one must, in
general, calculate some appropriate time-dependent
correlation function. In Sec. 4, it was shown how one
could calculate such correlation functions by perform-
ing a corresponding calculation in a properly con-
structed boson system and taking an appropriate limit.

To calculate the correlation function (A (t)B(t')) one
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6rst calculates the appropriate Green's function

G»(t t—') = i-(T[A(t)B(t') j)& 0&it,it'&P .(48)

The imaginary time-ordering operator T is chosen to be
the one for the time ordering of boson operators,

and the Hermitian property

S.+ (S,—)t

is preserved by the transformation S —+ 5 . If, on the
other hand,

(58)D,+&D„,
T(A(t)B(t') j=A(t)B(t') H it&it'

=B(t')A(t) d i«zt'

G»(t —t') = —i(A (t)B(t'))~
= —i(B(t )A (t))~

it&it', 0 & it, it'& P (50. ) (59)f(p) =const for all p.

(49) then (56) is not satisfied and the Hermitian property
(57) is not preserved. We will consider below the two
simplest expansions corresponding, respectively, to (55)
and (58).

If we want (56) to be satisfied by the image operators,
then from Eq. (26) we must have

The quantities on the right-hand side of Eq. (50) are
nothing more than time-dependent correlation func-
tions. Thus, we have immediately, from Eq. (4'/), the
result

Then

(p'IS'I p) =(p'IS'Ip) o=+ —s f«a»i
(u [ S, [ p) = (p [S, [I)=0 for all j.

where

G»(t t') = li-m G„,(t-t'),

G» (t t') = i—(TA—(t)8 (t')) lf

(51)

(52)

It is shown in Appendix A that the simplest set of
operators which will satisfy the conditions in Eq. (60) is

S~'= (2S)"'b~' 2 &.+(S)(b') "»",
This result allows us to rigorously calculate the spin

Green's functions by the known techniques of boson
many-body theory.

5. SPIN IMAGE OPERATORS where

(S.+)t

5'= —S+b.~b

(61)

The spin image operators S are defined by Eqs. (26)
and (27) Lor (28)j. These equations do not uniquely
de6ne a set of image operators, nor do they indicate a
unique form for the expansion in terms of the boson
operators.

We choose to expand the 8 in a series of normal
products of the boson operators, which from (26) must
be of the form

( 1)g+v ~ ll2

B„+(S)= Q — 1——
~=o p!(v—p)! 2S

(62)

v 0

B„(S)=H„+(S), v&2S,
(63)

It is noted here that any transformation wi11 do which
has the form

S+=(2 )S'~'b, ~ P B„(S)(b~)"b"

S;+= (2S)'I'b ~Q+.
S; =(2S)'~'0; b;,

5'=n
a~=+ D„N(S)(bg) "b,", n=+, —,s. S+=(2S)"'b,' 2 JI.+(S)(b )"b"

v=o
(64)

regardless of what 8, is for v&25. For example, as is

(53) shown in Appendix A, the Holstein —Primakoff trans-
formation is given by

If the D, are real and

The corresponding expansions in terms of the number and this transformation is just a more complicated set
operatorcanbedeterminedwith thehelpof theidentity of operators which satisfy the conditions (60). Thus,

the image operators in (61) are just a "truncated"
version of the Holstein —Primako8 operators written in

b~' "b~'= b~'b~ ~ —t ) normal product form.
1

The simplest set of operators which satisfy (58) can
be determined by choosing

then
D,+=D, , (55) I(p)=IIL~(p, )]*, *=5« -k, (65)

St+ = (Sr)', (56) where F(p,) is defined by Eq. (11). Then from (14),
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(15), and (26),

(p'I»+! p) - (2S)'"(p +1)"'(1—p j/2S)'"+

X~P1pgl ~Py+~ Pj ~PNp&N

(p'I »-I p) = (2S)"(p;)'/'(1 —p',—1)/2S)'/'-

X~PZpP] ' ' '~P& ~, Pp
' ' ~I', 'IjN s

p('I»'I p) =—(S+p)b.,.'

In order to obtain a suitable Hamiltonian 8 we must
first determine a suitable 8 which satisfies the condi-

tions (42). As a first guess we might try 8; where

from (31)
(66)

H =Ho+81+Ho,

8o=Eo+Z J.(»'» bp'bj—+p)+/'/» Z»'»

Then for x =$, the obvious choice is

go+= (2S)"'b t(1—b tb//2S),

Sn- ——(2S)'/'b, ,

SDp= S+—b tb

and for x

(67)

Ep ——const, (71)

Hp =P Jp(b&+p bj b'jbp+bj bj bjbj+p bj bjyp bj+ pbbs) p

JpP

81=—Q Jpb; b; b,+p b;+pb;+pb;.
Ap

Ho~ever, it is trivial to show by direct substitution that

Son+ = (2S)'/'b t

~en = (2S)"'(1 bptbp/2S)b—p,

Son'= —S+b b,

(68)

Clearly, the correspondences (67) and (68) satisfy
either (27) or (28). Notice that the image operators in

(67) are just the Dyson —Maleev operators and the
operators in (68) are the Hermitian conjugates of the
Dyson-Maleev operators.

Thus, (61) gives the simplest expressions for the image
operators which preserve the Hermitian property (57),
while (67) and (68) give an even simpler set of image
operators, which, however, do not preserve the Hermi-
tian property.

(p'181 p) = (p'18o+8o+81 I p)
= (p'I8o+&pl p) (72)

(pI8p+8olN) = (ojl8p+8, I p) =0,

and thus we can take

II=8p+8o =ITt (73)

8=8'p+Ho+ V (', ) . -

In terms of the space Fourier transforms of b;, b;t,
and J„defined by

since all of the requirements (42) are met. Then, from

(40),
(74)

APPLICATION' OF THEORY

As an example of how this theory is to be applied,
we now consider one of the simplest of all spin systems,
the spin-$ Heisenberg ferromagnet for cubic lattices.
The Hamiltonian for this system is

by= b.pic j
(Ã)'/' j

Jo=g J,e"p

P

8=8,+8„

(75)

(76)
where

&=CjkZSj' —ZZ J.(Sj+Sp+p +Sj'S+p) (69)
i S I 8o=Eo+Z Eoobotbo=8o,

S,+=b,t—b,tb;tb;,

5; =b; —b~tbJb;,

Sp = —4+be'bj.
(70)

where the first term represents the Zeeman energy due
to the external field h, and the second term represents
the exchange interaction between the spins. The J, are
the exchange constants, and the sum on p represents a
sum over all the neighbors of j.

We will set this problem up in two ways. The 6rst
will be in terms of the image operators (61), which pre-
serve the Hermitian property (57), and the second in
terms of the Dyson-Maleev operators which do not
preserve this property.

First we consider the operators SP and S,' given by
Eqs. (61) with S=-', :

1
VK(k, k')

2+ k, k~, x

Xbl/oK+o bl/oK —o bi/RK+o bl/2K —o 1 (78)

Eoo =g/1k+ J(0) J(k), —
VK(k,k') =vp+ J (-',E+k)+J (-', IC —k) +J (-',X+k')

(79)

+J(pE k') J(k+k') J(—k —k—') . (80)—

This Hamiltonian describes a system of bosons inter-
acting by means of the two-body interaction 8o.

We can now calculate any Green's function, and thus
any time-dependent correlation function, for the 5=-,'
Heisenberg ferromagnet, by first calculating the corre-
sponding Green's function with respect to this system
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of interacting bosons and then taking the hard-core
limit ep —+fx).

As an example, suppose we want to calculate the
spin Green's function

since

(p'la& I p) = (p'IB&l p), (pie& IN) =(ppIH&l p) =o,
(91)

G (1; 1') =—'(2'5' (1)5'(1')&

Then from Eqs. (51) and (52),

G,(1; 1') = hm L—i(TS (1)$"(1')sr],

(81)

(82)

Bn =Hn+ V(-', ) .

However, from (92), (71), and (74), we have

8z, —=8.

(92)

where 1 refers to (rbt~).
Substitution of the expansions (70) into (82) gives

the result

G, (1; 1') = lim Lr, (1; 1')—iF, (1,1', 1'+1'+)

—ir, (1,1; 1+,1')—r, (1,1,1', 1+,1'+,1'+)], (83)

where the e-body boson Green's functions F„are de-
6ned as

r„(1,2, .,pp; 1',2', ~,pp')

= (—i)"[Tb(1) b(pp)bt(1') ~ bt(pp')]0, (84)

and where 1+ simply means to evaluate (rbtq) at
(r&,t~+p), with p)0 and infinitesimal, and then let
e —& 0 after the time ordering has been performed.

However,

hm Lir, (1,1; 1+,1')+r, (1,1,1', 1+1'+1'+)]

= lim (—iLTbt(1)b(1)b(1)S+(1')]y) =0, (85)

Thus, for 5=-'„ the simplest Hamiltonians for the rele-

vant boson system for these two cases are identical.
In order to calculate G&(1; 1') given by (81), we now

form br in accordance with (52) in terms of the Dyson-
Maleev operators, giving immediately the result

G, (1; 1') = lim Lr, (1; 1')—iF,(1,1', 1'+1'+)], (94)

which is identical with the result (87), since the boson
Green's functions are calculated with respect to the
same Hamiltonian 8.

Equation (94) or (87) can be simplified even further
if we restrict I,& and t&' by

0&it, i' t&P,

where we have only excluded the end points of the in-
terval, that is, the points 0 and p. With it and it' re-
stricted by (95), it is easy to prove that the limit pp ~ pp

exists for both r& and rp appearing in (94). In fact, by
retracing the steps used to establish (47), it is straight-
forward to prove that

since 9 does not connect the physical and unphysical
subspaces) and

(86)

Thus, we have the rigorous result,

lim F,(1,1', 1'+,1'+) =0 0&it,it'&P

Gg(1; 1') = lim rg(1; 1'), 0&it,it'&P

(96)

(97)

Gq(1,1') = lim D.'~(1,1')—irp(1, 1', 1'+1'+)]. (87)

(p'I &o I p) = (p'l@n I p),
where from (31)

Bn =8p+8», '

&»=Z ~.(b'&7 b&&&+ p b~'br+'»+.»)—
Ap

(89)

and where 8'p is given in (71). Bn is clea, rly not
Hermitian.

We can now construct a suitable HL) by simply adding
to Bn the term necessary to make it Hermitian; that is,

Hn =F7n+Q Jpb;tb;+ pub, b, =Hnt, (90)

Secondly, in order to set the problem up in terms of the
Dyson —Maleev operators given by (67), we must ob-
tain a Hermitian operator Hn which satisfies (42b);
that is,

(88)

This function can then be analytically continued in the
usual manner to obtain G(1; 1') for real times. We
therefore have the result that the spin Green's function
G~(1; 1'), for S=~p can be calculated directly from the
ordinary one-particle boson Green's function r&(1; 1').

Thus, from either starting point we arrive at the result
that in order to calculate Gr(1; 1') we need only calcu-
late the one-body Green's functions for a system of
bosons described by the Hamiltonian 8, which con-
tains at most two-body interactions.

At T=O the result is trivial, since 6~ is then the
Green's function for a system of noninteracting bosons
described by the Hamiltonian 8p.

In order to extend the calculation to 6nite tempera, -
tures, one must use some method of calculation of I',
such as the T-matrix approximation, which will give
meaningful results for hard-core boson problems. It is
clear that simple approximations such as the Hartree-
Fock approximation cannot be used here because of the
hard-core limit.
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It has been shown for S=@ that within the framework
of the 2-matrix approximation this theory will repro-
duce all of the low-temperature results obtained by
Dyson. We obtain terms in the calculation of the space-
time Fourier transform of Cq(1; 1'), Gq(p, s), which for
finite vo give an exponentially small contribution from
the nonphysical states similar to that found by Dyson
in the partition function calculation. However, in
the limit vo~~, which must be taken, these terms
disappear.

Several authors have attempted to calculate the spin
Green's function by means of the Hamiltonian 8n. 's
These calculations are all based on the neglect of the
eBects of the nonphysical states. Calculations based on
8n are suspect for several reasons. In the erst place, as
Dyson points out, 8n has no lower bound on its energy
spectrum, and hence one is faced with a convergence
problem as regards the thermodynamic properties of the
system. Secondly, in order to prove that for the parti-
tion function the eBects of the nonphysical states were
exponentially small at low temperatures, Dyson had to
modify 8'n, making it in effect an in6nite series Hamil-
tonian in the boson operators. Finally, it is not clear to
us how one can apply the techniques of many-body
theory to a system described by a non-Hermitian
Hamiltonian unless the calculation is modi6ed by intro-
ducing a metric operator which in turn introduces fur-
ther complications. ' We have, in fact, been able to show'
that a calculation of the space-time transform G(p, s)
based on Bn and on the procedures outlined in Refs. 4
or 5 leads apparently to an expression for G~(p, s) which
is diferent in form from the result we get from this
theory.

In contrast to this, the theory presented above pro-
vides a rigorous connection between the spin-~ Heisen-
berg ferromagnet and a system of bosons interacting via
a Hermitian two-body interaction.

We should also point out that the Hamiltonian (74)
is very similar to the one Shaw obtained as an approxi-
rnation to a more complicated Hamiltonian which con-
tained e-body interactions of all orders. ' We have, how-
ever, shown that 8 can be used to obtain rigorous re-
sults for the spin- —', Heisenberg ferromagnet, a feature
which is lacking in Shaw's work.

8. SUMMARY AND CONCLUSIONS

We have outlined a way of calculating the thermo-
dynamic properties of spin systems by using boson
many-body theory. Each thermodynamic property of
the spin system is calculated by irst calculating a corre-
sponding property in an ordinary many-boson system
and then subjecting the result to a limiting procedure.

For any S, this limit amounts to a (2S+1)-body hard-
core limit which, by making the (2S+1)-body inter-
action energy diverge, prohibits any more than 2S
bosons from occupying the same lattice site; for 8= ~

we only need a hard-core boson system with two-body
for'ces.

We have found that we have some choice as to the
boson "image system. "There were two such "simplest"
choices: As long as we insisted on preserving the Her-
mitian property (i.e., on letting the Hermitian adjoint
of the boson image of each spin operator serve as the
image of that spin operator s Hermitian adjoint), the
simplest transformation turned out to be a "truncated"
version of the Holstein —Primako8 transformation. If we
do not require that the Hermitian property be pre-
served, the Dyson —Maleev transformation or its Her-
mitian conjugate gives even simpler spin image
operators.

For 5=&, both turned out to lead to the same
"simplest" boson Hamiltonian. The correspondence be-
tween a given Green's function for the spin system and
its image in the boson system depends on which set of
image operators is used. However, in the limit vo~~
both image Green's functions lead to the same result,
namely, the spin Green's function. We explicitly dem-

onstrated this in the calculation of G~(1; 1').
For higher spin, the situation is more complicated.

In the 6rst place, it is not d.ear to us how to obtain a
suitable 8which satisfies conditions (42) for theDyson-
Maleev transformation. In the case of the transforma-
tion given by (61) and (62), which we found was a
"truncated" Holstein —PrimakoG transformation written
in normal product form, we obtain a boson system with
n-body forces (e&2). If we introduce a low-density
two-body approximation, it is possible to obtain the
correct low-temperature behavior of the ferromagnet for
arbitrary spin (to all orders in 1/2S). This work will be
presented in a subsequent paper.

APPENDIX A

In this Appendix we want to show that the image
operators S+ given by (61) and (62) are the simplest set
which satisfy Eq. (60). Since S = (S+)t, we only need
to show S+ satisfies (60). The choice of S* is obvious
from Eq. (16).

Consider now the general expression given by (53).
Obviously in such an expression, all of the summands

(b~) "+'b" with v&2S do not contribute to (60), so it is

simplest to set them equal to zero.
Hence from (14), (53), and (60)

' J. F. Cooke and H. H. Hahn (to be published).
R. E. Mills and R. P. Kenan, Ann. Phys. (X. Y.) 37' 104

(1w6).
"W. M. Shaw, Ph. D. thesis, University of Washington (un-

published).

2S p. u2

(p'I 2 D.+(S)(f ') "+'I "l p) = (p~+1)" 1——
v=O 25

X8„,,„,' 5~,+i,„," 5„„~„, p, =0,1, ,2S. (A1)
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Since

=0 V&pbb

(»')"b "IP)= IP), &P
(Pb v) —l

(A2)

we have

(—1)"(—1)" p "'- v
E=Q 1—

p! 25 .-» (v —)b)!(P+1—v)!

(A10)

we get,

(P'I (»')""&;"
I P) = (Pb+1)"'I.pb'/(P' —v) 'j

X~3)1by1' ' '~P;+1,y)' ' '~Par, y~') &~Pg)
=0 v) p)). (A3)

and consider
v=@+5, h&0b

v (—1)"
&»= Z

-» (v —p)!(p+1 —v)!

(A11)

Thus, from (A1)

0 p. ! p. vm

Q D„+(5) —= 1 ——,p;=0. ..2S, (A4)
~-o (p;—v)! 2S

or

(—1)»+~
, )1&p (A12)

~-o 5!(p+1—p —6)!

(—1)» ~» ~p+1 —
pq

I(—1)'
(p+1—)b)! ~-0 k

DQ 1)

I 1—(v/2s) j'" ~1 D„+(s)
D„+(5)= 1&v&2S. (AS).=o (v-p)!'

(-1)»

(p+1 —p)!

(
ns

(A13)
e e!(tw —r1)!

( 1)»+1-»

%e suggest the unique solution

~ (—1)~"
D,+(5) = 2 L(1—() /25) jv'—=&.+(5) (A6)

»-'~!(v-u) l

It is straightforward to show by direct substitution
that (A6) satisfies (A4). It is simpler, however, to prove
this by induction. Clearly, from (A6), Do+(5) = 1. It is
now assumed that (A6) is valid for all v& p;, and we
want to prove that (A6) is correct for v=p,+1. For
simplicity, we will drop the j subscript.

In order to do this we only need to prove the identity

B) 1/2

Q H„+(5) = 1—
(8, v)! 2S— (A15)

is true for any integer, 8;, where H„+(5) is given by
(A6). Then, dearly,

v+1—» p+1 —)b (—1)"
+ g (—1)bb = . (A14)

(p+1—) )!
Substitution of (A14) into (A10) establishes (A7).

Notice that since-we did not use the fact that p& 25
in the proof of (A7), it is true that (A4),

From (A6)

(A7)
'(5) v (—) " ~ "'

(25)v2 p II +(5)p, .t),+bb
I fl) (25)v2(fl, +1)v2

-0 (p+1 —v)!»-0)b!(p+1 —)(b)! 25 1/2

X 1 @].' ' ')+j+1) ' ' ')BN» A16
2S

+ Z f(~ v&= Z Z f(u, v),
v=O gs 0 y=D v~p

(—1)"+" 11—(~/25) j'"
"-' »-') '(v —~) ' (p+1—v) '

Since for any function f(Ib, v)

That is,

(A8) Srrp+ (25)1/2 Q II +(5)(b.t) v+1/. w

1/2

= (2S)'t'b t(1— (A17)
2S.

(A9) is the Holstein —Primako8 transformation written jn
norm. al product form,


