
ORBITAL AND SP I N MAGNETI ZATION

iron-nickel alloys. We have obtained results similar to
theirs for the concentration dependence of the spin
magnetic moment. For the bcc phase, M, for both
Fe-Co and Fe-Xi may be expressed as a quadratic func-
tion of Z, where the ratios of the coeScients for the
two alloys is constant at approximately 1.85 (see
caption of Fig. 2). The values of M, for the fcc region
are linear in Z with slope —1.01 per electron added, in
reasonable agreement with the values reported by
Meyer and Asch' (—1.05). The intercept 3f,=0 occurs
at Z= 28.55.

The results for the spin magnetization in the bcc
region previously reported by Crangle and Hallam'
are difIIcult to interpret. Their value seems too high,
since, if we assume the magnetic moments are dis-
tributed among the atoms in the same manner before
and after alloying (and consider that each atom acts
individually), their results would require 3.2&0.1 mag-
netic electrons to be carried by the nickel atom to be

consistent with the initial value of the slope. Our result
reduces this number to (1.1&0.1)ps per atom.

RELATIONSHIP TO THEORETICAL
CALCULATIONS

Using a band model, Mott' has calculated the total
number of "holes" in iron to be 2.9 per atom, on the
basis of a value of 2.1p~ for unbalanced spin with an
orbital contribution of 0.12@~. Our value of Mo of
0.092pg changes Mott's results to 2.93 holes. This
change will be significant when and if the uncertainty in
the value of the polarization of the d bands is reduced.

Pote added in proof A. .J. P. Meyer has pointed out
in a private communication to the authors that the
values of M, and Mo from Meyer and Asch' were
obtained using M& values for O'K, whereas the Mo and
3f, reported here were obtained using values of M&

for 300'K.
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The time-dependent molecular-6eld {TDMF}approach to magnetic resonance is described and illustrated
with six examples. For the simplest models, the random-phase approximation of TDMF is equivalent to
Tyablikov spin waves. However, whereas Green s function and spin-wave techniques are forced into same-
site decorrelation approximations when confronted with complicated single-ion dynamics, TDMF is general
enough to include any single-ion terms without difhculty. Ions appear as coupled oscillators whose allowed
transitions are pulled in forming collective modes. The procedure, being quite general, is readily automated
and is thus convenient in actual calculations for physical problems.

I. INTRODUCTION

t 'HERE is an enormous body of literature con-
cerning excitations from ordered magnetic con-

figurations. ' Much of it aims at the di%cult many-body
aspects, restricting attention to simple Hamiltonians. '
When the temperature is not zero, many methods are
for static properties only. ~ For the dynamics of Hamil-
tonians containing single-ion terms, that is, complicated
Hamiltonians, at finite temperatures there are few

~ Part of this work was done at Osaka University, Toyonaka,
Japan, under the auspices of the U. S.-Japan Cooperative Science
Program, and part was done at Yale University with partial sup-
port from the National Science Foundation.

See F. Keffer, in Handbuch der Physik, edited by H. P. J. mijn
{Springer-Verlag, New York, 1966), Vol. XVII/2, p. 28 O'. ; S.
Foner, in Magnetisre, edited by G. Rado and H. Suhl (Academic
Press Inc. , New York, 1963), Vol. I, p. 383 8, for many
references.

~ For example, R. A. Tahir-Kheli, Phys. Rev. 159, 439 (1967).' For example, B. Srieb, H. B. Callen, and G. Horwitz, Phys.
Rev. 130, 1798 (1963); also review by M. Fisher, Rept. Progr.
Vhys. XXX/II, 615 (1967).

available techniques. 4' The best of these may be called
the "time-dependent molecular-Geld" (TDMF) de-
coupling scheme. This paper is a description of that
technique.

The TDMF has been used for treating rare-earth ions
in the iron garnet, ' but apparently its generality has not
been widely appreciated. v The method can, within the
same approximation, treat Hamiltonians consisting of
exchange' plus one-ion terms of arborary comp/exity

~ B.R. Cooper, R. J. F. Elliot, S. J. Nettel, and H. Suhl, Phys.
Rev. 127, 57 {1962).' Y. Ebina, Phys. Rev. 153, 561 (1967); T. Murao and T.
Matsubara (unpublished report).' F. Hartmann-Boutron, Compt. Rend. 256, 4412 (1963);
Physik Kondensierten Materie 2, 80 (1964);J.F. Dillon and L. R.
%alker, Phys. Rev. 124, 1401 (1961};J. H. Van Vleck and R.
Prbach, Phys. Rev. Letters 11, 65 (1963); R. Alben, Phys. Rev.
167, 249 (1968).' Recent applications by the author are R. Alben, J. Phys. Soc.
Japan 26, 261 (1969);J. Appl. Phys. 40, 1112 {1969).

The present work considers the common case of bilinear ex-
change. More complicated couplings may be handled by TDMF
although at a considerable loss of eKciency.
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The decoupling is of the RPA9 (random-phase ap-
proximation) type and is fully as good as linear spin-
wave theory in treating exchange. Both spin-wave-like
and single-ion-like normal modes appear. Importantly,
TDMF is easy to apply and in the many cases where
single-ion effects are large, it should prove of con-
siderable value.

In Sec. II, we begin discussing the theory itself, first
in the restricted class of problems to which it has been
traditionally applied. Then we assume a particular
point of view and arrive at a formulation suited for
applications to complicated Hamiltonians. In Sec. III,
we give examples focusing on difFerent implications of
the theory and illustrating its results. Lastly, in Sec. IV,
we present comments not covered by the examples and
then conclude.

II. THEORY

This section contains four subdivisions: (A) gives the
semiclassical theory of magnetic resonance and eluci-
dates the role of TDMF's in sublattice equations of
motion. (8) shows how the same theory looks in the
language of single-ion susceptibilities. These first two
subsections describe concepts which have been used for
many years; TDMF is not a new approach.

(C) and (D) describe the TDMF method for a more
complicated quantum mechanical system. No new con-
cepts are introducted, just matters of formulation. (C)
considers briefly the equation of motion of formalism,
awkward for complicated Hamiltonians. (D) contains a
single-ion susceptibility formulation which is readily
amenable for applications.

A. Time-Dependent Molecular Fields
in Classical Theory

Although many of us are more familiar with static,
gneiss molecular fields, TDMF's are a concept much
used in magnetism. "Just as the Weiss Geld consists of
an efFective magnetic field proportional to a static
magnetization, " a TDMF is an efFective field similarly
related to a changing magnetization.

Consider the following equation of motion for a
sublattice magnetization:

M, =~M, X(H+P ~;~M,), (1)

where H is an external field, X;; is an exchange coupling
parameter between the i and j sublattices, M; is the
magnetization of the ith sublattic- a number in this

9 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953);F. Englert,
Phys. Rev. Letters 5, 102 (1960).For a discussion of the relation of
RPA and time-dependent self-consistant 6elds (such as TDMF)
see H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).' Some examples are F. Eever and C. Kit tel, Phys. Rev. 85, 329
(1952); M. Tinkham, ibid. 124, 311 (1961); R. K. Wangsness,

ibid. 119, 1496 (1960)."J.S. Smart, Effective Field Theones of Magnetism {%.B.
Saunders Co., Philadelphia, 1966).

classical theory. The quantity );;M; is then the molecu-
lar Geld (MF) due to jwhich acts on i S.ince equations
such as Eq. (1) are easily solved only for small dis-

turbances, it is expedient to make a distinction between
the static- and time-dependent parts of );,M;. The
static parts are just the Weiss fields in the "quiet"
configuration. The dynamic parts are associated with
the modes of oscillation. The equations may be solved
exactly for small disturbances; we write bm; for small
deviations in 3I, and consider a harmonic mode

M;=M;+8m, (/),

8m;(/) =bm, e *'"'.
(2)

Substituting Eq. (2) in Eq. (1) and eliminating second-
order 8 quantities, give the secular equations whose
solutions give eigenfrequencies and modes.

For physical applications, it is more realistic in Kq.
(1) to let i and j run over lattice sites; the exchange
interaction is really short range. This new problem is
also easily solved for small disturbances —let m(;) and
n&,~ be the mth and nth sites, respectively, on the ith and
jth sublattices. Substitute in Eq. (1)

3. Single-Ion Susceptibilities for Classical Theory

Equation (1) may be solved by another method; that
of sublattice or single-ion linear susceptibilities. An
example should sufhce.

First, take a magnetic moment, magnitude 350, in a
static magnetic Geld kHO. Ets linear response (&e) to a
transverse Geld Ph(f cosa' —j since)] may be written

where

and

8m+=X+(co)h+e '"',

8m+ =bm'+9m&,

(4)

&+(co)=Mo/(H0 —co/y); (5)

X+(&a) is a linear susceptibility. Next consider the
"anisotropy field" model of a two-sublattice uniaxial
antiferromagnet. ' Let the static external magnetic field
be zero, but allow for a transverse exciting external field.
Each sublattice may be treated like the magnetic mo-

"A. B. Harris, Phys. Rev. 132, 2398 (1963).
"The frequencies and modes arrived at in the linear boson

formalism are identical to the semiclassical results. One may,
however, discuss a nonclassical spin contraction due to zero-point
motion when using the boson approach. See Ref. 14.

hm„(;)—— g bm, (k (u)e*' "'-" "&*»

gE; ~

where E, is the number of sites on i, k runs over the
Brillouin zone, and R &;) is the lattice vector to nt,~. The
eigensolutions are the spin-wave bands. A mell-known
example of this sort of calculation is Harris's work on
spin waves in yttrium iron garnet (YIG)."Linearized
boson equations of motion are also essentially the
same. "
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ment in Kq. (4) where now FIo is the sum of exchange
;i,nd anisotropy fields; k is now a sum of external field
;~,nd TDMF's. Letting bm„+ refer to up and bm, f+ to
down sublattices, we have

Mp
8m„+= (It'e ' ' —Xbma+),

&1Mp+Hg o&/y—

Mp
(h'e ' ' —&ibm„+),

l1Mo+H~+to/V

(6)

where & is the exchange constant (intersublattice only
and positive antiferromagnetic), H~ is the anisotropy
field, and Mo is the sublattice magnetization (positive).
h' is the external exciting field alone. The solution for
bm's as function of h' is

M o(Hg+o&/y)
6m„+=A'e '"'—

FIg(2& Mo+Hg) —(to/y)'

M p(Hg o&/y)—
5mg+=h'e '"'

H~ (2k%p+Hg) —(to/y) '

If we define 8m+=8m„++bmoc+,
moment, we have

mto and st&,i are used as in Eq. (3), H& is the anisotropy

field, J is an intra- and K an intersublattice exchang(:

held. Note that 1 is the up sublattice and J and A. are

positive (negative) for ferro- (antiferro-) magnetic

coupling.
Leaving out perturbing fields, we have the following

secular equations for the disturbances bs (;)+:

bsmit& =X (to)( p Jmnbsn(1& +g E mbSn(2n1 j l
n(1) n(2)

(10)
bsm(2& =X (to)( Q Jmnbsn(2& +Q EmnbSn(1& j .

~(2) n(1)

The X' are single-ion susceptibilities Lace Eq. (5)]. If
we denote the expectation value of the spins on 1, (81)
by 5, we have

X'(to) =
SJ(0) SE(0)+—Ha o&/y—

X (to) =
SJ(0) SE(0)+H—~+o&/y

where J(0) and E(0) are defined below (Eq. (13)] as
k=0 Fourier transforms of the "mn" quantities.

Now make the usual spin-wave substitution:

bm+="(o&)h, 'e '"'

(8)
1

bs + Q bS +(k)etk Rm(t&

g
(12)

and similarly for the down spins. We define J(k) and

E(k) asThe quantity "(„)is a net susceptibility of the system to
external fields alone. It is not the same as the single-ion
susceptibilities in Eq. (6); its poles are at different fre-
quencies. It is, which is actually measurable. This is in
direct analogy to the coupling together of mechanical or
electrical oscillators.

The result )Eq. (8)] is the well-known one for this
problem. Usually, it is gotten by the equation-of-
motion formalism, fully equivalent to this susceptibility
approach. To relate Kq. (8) t,o the question of normal
modes, recall that a normal mode is a self-sustaining
motion when no forcing term is present. As It' —+ 0, only
modes such that to/7= &)H~(2Ufo+H~)]"2 can have
finite bm.

The extension to include k-dependent spin waves is
direct and worth noting. For an example, consider the
two-sublattice uniaxial antiferromagnet described by
the following Hamiltonian:

J(k) —P J et2 (Rn—Rm&

(13)
E(k) —P E et2 (Rn Rm&

With some rearrangement, Eq. (10) becomes the

following:

bsi+(k) —J(k) +
Xt(to)X'(to) X'(to) X2(to)

+J'(k) E'(k) —=0. (14)

The solution for the eigenfrequencies is

to/y =&([SJ(0)—SE(0)—H~
—SJ(k)]'—S'E'(k) j't', (15)

gP( Z EmnSm(1& ' Sn(2&
( m(l), rh(2)) in agreement with the usual 7=0'K spin-wave result. '

For T/0, we may consider 5 and possibly H& as
temperature-dependent and arrive at the Tyablikov
result. "

+ g JmnSm11& ' Sn(1&
(m(1), n(1))

+
(m(2), n(2))

+ 2 HASm(1& P HASm(2& j q

(m(1)) ( m, (2))

'4 1.. R. %alker, in Magnet~sm, edited by G. Rado and H. Suhl
(Academic Press Inc. , New York, 1963), Vol. 1, p. 327.

(1&) "S.V. Tyablikov, Methodsin the Qnantnnt Theory of Mat;netisni
(Plenum Press, Inc. , New York, 1967), p. 250.
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K=D Q(S,*)'+J Q S; S, , (16)

where the suni (i,j) is over neighboring pairs. J is the
exchange and D the crystal-field constants. The equa-
tion of motion for the operator 5;+ is

S;+= iTS;+,X'$ =iD/S, 'S;++S~+S j
+J Q LS,*S,+—5,*5,+j. (17a,)

j,neighbor

The classical limit Las in Eq. (1)) is achieved by replac-
ing all operators by their expectation values. A better
approximation is to take the expectation value of Eq.
(17a) and ignorequantities like ((0;—(0;))(0;—(0,)))
where ( ) means expects, tion value, 0; is some single-
site operator, and i and j refer to diferent sites. This
decorelation approximation may be called an RPA on
diferent sites, or a time-dependent Hartee approxima-
tion. It is the only approximation involved in TDMF.

Equation (17a) now becomes

&8;+)=iD(S,+S,*+S,*S;+)

j,neighbor

This is not equivalent to the classical Eq. (1) since it
states that the development depends on more than
specification of all (S,); it depends on products of two
operators as well. The next step then is to write equa-
tions for the double products. These involve triple
products, always in operators referring to just one ion.
The hierarchy of equations developed in this way is not
endless; it is cut ofF when the single ion's level structure
will support no higher products independent of those
which came before. "The differential equations are then
of sufhciently high order so that Fourier components
related to all level splittings may be present in the
solutions. The ultimate solution, proceeding via spin-
wave spacial Fourier transforms for each (0;), may seem
di%cult since equations of order number of transitions
times number of sublattices must be solved. Still there
are many situations for which a numerical solution is
possible. Conceptually at least, there is no need to make
further approximations such as decorrelation on the
same site. '~

"This is the advantage of decoupling nn sites. Equations for
products of the I'ourier transformed operators SI, are not so
obviously limited.

"Decorrelation on the same site is usually done, however, in
Green's-function work with single-ion terms t e.g., M. Tanaka and
K. Tomita, Progr. Theoret. Phys. (Kyoto) 29, 538 (1963);29, 651
(1963)j. A possible justi6cation lies in the assumption regarding
relaxation fH. Mori and K. Kawasaki, ibid. 27, 529 (1962); K,
Kawasaki and H. Mori, ibid. 28, 690 (1962)j. It seems best to

C. Equation o-f Motion Quantum Mechanical
Hamiltonian

A simple Hamiltonian which displays the difference
between the classical and quantum treatments is

There is a considerable lack of ccononiy in the equ;i, -

t,ion of motion method. First, we solve for a host of

expectation values of products of operators. But, since
the exchange has been assumed bilinear, the only
quantities we really need are first order in the spin —it
is only these which are needed when spins interact.
Second, we deal with equations, some of which art.
ultimately related to weak transitions, not. relevant 1o
»measurable eHects. These points will beconie clear as wc
present. the more economical formulation in Sub. I l. I).
The. difference in the following fornsalisn& is th;it it deals
with equations for the density matrix rather than the
operators and allows use to be made of compact single-
ion susceptibilities.

JC=Q(O; —h,"M; coscvt)+ P S,"1;;S;. (18)

0, is a single-ion operator of i which contains crystal
fields and interactions with static external fields, M; is
the magnetic moment and S; the spin operators of i, h; is
the value of a small oscillating magnetic field at the site
i, and the last term involving the sum over pairs (i,j) is
the exchange interaction in tensor form. '

Equation (18) may be rewritten with no loss of
generality:

,'tt.'=P LO; —h; M; cosgt+S,"P 3,,"(S,)]

—z&S) & &SJ)

+ P (S;—(S;)) J;,"(S,—(S;)). (19)

One way of expressing the static (Weiss) molecular-
Geld approximation is to say that the last term in (19)
may be neglected providing a suitable set of numbers
are chosen for (S;).As the notation anticipates, the most
common choice is the self-consistent thermal expecta-
tion value. For TDMF, we take I as in Eq. (2)]

(S ) =(S )+Ss(t), (20)

where (S,) is the static Weiss value and 8s(t) is assumed
small; that is, we assume a small response to small field
h. Then we rewrite BC a,gain, leaving out the last term

avoid such approximations when single-ion terms are large and, as
we see here, same-site decorrelation can be avoided.

"The magnetic moment operator M; is I.;+2S; or a suitable
projection of it. The power of TDMF is displayed when 0, con-
tains crystal-Geld terms like S,' or S~4S„4;these are hand lef1 iust as
easily as "anisotropy field" terms XI„.S',.

D. Quantum Problem with Susceptilities

To present this point of view in a coherent fashion,
we start again from the beginning. The problem is that
of bilinear exchange coupling and arbitrary single-ion
terms:
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(and the constant) as is appropriate for our RPA:

K=+ PC„„;,'+h„"M.; cos~t+S; g J;,hs, (t)], (21)

where

S b+Mb,
x.a(~) = Z 2(t.—t o)

o, b F. —F.b+A~+i~
(22)

where 5 b+ and Mb, a,re matrix elements between
states a and b, F and Fb are eigenstate energies, and
p, is the Boltzman factor exp( —PE,)/tr exp( —tt3C,t,~;,').
The eigenstates and energies are those of X„&,,t,„',the
crystal and %eiss-molecular-field Hamiltonian.

'9 See, for example, D. ter Haar, in I hfctfcation, Relaxation, and
Resonance in Magnetic Systenis, edited by D. ter Haar (Plenum
Press, Inc. , New York, 1961), p. 109. Other forms for y Le.g. , see
14. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948)j involve
relaxation mechanisms and might be used in special cases where
something about the relaxation is known.

Ke have thus succeeded in dividing 3C into a large stat. ic
part (containing crystal field, Weiss molecular field, and
static external field), and a small time-varying part.
More importantly, X is a sum of a single-ion Hamil-
tonians, coupled dynamically through the self-con-
sistency requirements on the numerical expectation
values, but nonetheless operating on distinct single-ion
subspaces. This "kinematically" decoupled problem
may be solved for small excitations in terms of the
various frequency-dependent susceptibilities of the
single ions, determined completely by BC,t, t, „

It might
be noted that in order to get X,t„t,, we must solve the
static self-consistent molecular-field problem. This is
quite easy to do numerically to great accuracy.

For the general case where spin and magnetic moment
a.re not simply related (as when orbital angula, r mo-
mentum is present), four kinds of susceptibilities are
required. Their relation is illustrated for a two-ion
system in Fig. 1.

The external field h' is generated by a, coil; it acts on
the spins via X,I„eliciting a response 6s. Associated
with the response is an exchange field (a TDMF) acting
on spins via X„.For a given h' and 5s, we find bs t as in

Eq. (6)] and ultimately express 5s in terms of h' alone
gas in Eq. (7)].Now the external and exchange fields
also elicit responses of the moment bm, this time via,
X & and X „respectively. It is the moment which reacts
with the coil yielding the final measurement of
-".a"= ra~/h~.

In the absence of relaxation, the X's may be calculated
from the energies and eigenstates of the static Hamil-
tonian by the Kramers-Heisenberg dispersion formula. ."
For example, the susceptibility of a (+) spin to a (+)
magnetic field is given by

~CO I L

C

~~r 8
~mh r ~ +ff1h

sh sh

ss
~S

1'iG. 1. Single-ion susceptibilities and the collective response.
Interactions in an exchange coupled 2-spin system are shown.
Solid lines are effective exchange fields (TDMF's), dashes are
magnetic fields. Four kinds of single-ion sysceptibilities (g) are
involved in giving the response of spin (5) and magnetic moment
(m) to exchange and magnetic fields. The coupled response equa-
tions (cv-Fourier transformed and taking some liberty with units)
are Bsf ——g»Jbs2+ysJ, h, bs2 ——X„Jbs1+x,gi. These are solved for
bs1 and bs2 as linear responses to h alone. The relations for bs are
substituted in the following: Bns1=y,Jbsg+y p, Bsn2=x~,Jbsl
+y J,h, to get bm1+bnz2 as a linear response to h. The collective
susceptibility, the ratio of Bm&+8m& to h, is quite different from
the underlying y's.

The solution for the moment response looks like

6m;=x„,'&h;e '"'+—x,(co)g J;; bs;,

where hs; can be expressed in terms of 8s(h), the Fourier
transform derived from an equation like Eq. (14) with
forcing terms proportional to hk, the Fourier--trans-
forrned external field, on the right-hand side. Since all
quantities on the right-hand side of Eq. (23) are then
expressed in terms of h;, all the bm; and their transforms
bns& are similarly expressible for any given frequency
(cu) and wave vector (k) of the perturbing field. The
poles of g, (co) =bmj, (&u)/hq give the positions, and the
residues the strengths of the moments of normal modes.
Since the denominators in the X's Lsee Eq. (22)] in-
volve, in general, many frequency difI'erences, there are
many normal mode solutions, especially at high tem-
peratures where transitions among excited states may
contribute. However, the modes are never the same as
the underlying single-ion transitions, although the
weaker and more separated of them do appear sub-
stantially unaltered. Modes bearing little resemblance
to any single-ion transition also occur. The total
susceptibility z(co) contains all information about
magnetic normal modes as well as all magnetic dipole
effects in resonance, optical absorption, and neutron
diffraction.

%here there is a twofold axis, it is possible to identify
transverse or m-active modes and longitudinal or 0-
active modes. %hen there is no symmetry, all modes
mix. Even in this "worst" case, sets of simultaneous
equations of order no higher than three times the
number of sublattices must be solved for each k and cv.

Many values of co must be examined to Gnd the poles, so
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I'IG. 2. Transverse magnetic susceptibility (real part) for uni-
form Geld at various frequencies in the Coo model at 125'K. Dots
are computed points at 30-cm ' intervals, and the curves represent
a finer plot in regions near the poles. The residue at each pole is
given in cm '/mole to the nearest hundredth. The value of y(0)
for this model agrees with static measurements —other predictions
here are unchecked. The model Hamiltonian spans the lowest I
triplet and S quartet and has an IP anisotropy term plus spin-
orbit coupling PM. Tachiki, J. Phys. Soc. Japan 19, 454 (1964}j.

the computation may be considerable, but in most cases
this situation is preferable to dealing with one much
larger system of equations as in the equation-of-motion
formalism (Sec. II C).

In the "best" case, where symmetry permits a divi-
sion of modes into left and right transverse and longi-
tudinal, TDMF proceeds very rapidly —even when
there are many allowed transitions.

Figure 2 shows the transverse susceptibility, (a&),

k=0 of a model representing the lowest 12 states of
Co'+ in Coo at 125'K. There are several weak poles
which do not show clearly on this scale, but it is to be
remembered that exceedingly weak transitions will not
be observed in any case. Thus, a certain economy is
achieved in that, if desired, only large transitions in a
specified range of co need be investigated. Important
poles, and their residues as determined from a fine scale
plot are indicated on the figure.

III. EXAMPLES

Aspects of TDMF are illustrated in the following six
examples. The version of TDMF is one where relaxation
is left out; the susceptibilities are computed from the
Kramers-Heisenberg formula. The widths of the lines in
illustrations are simply chosen so that the relative
intensities (proportional to area) can be well displayed.

ac=a H,'".S,+ Q S; &.;;.S, , (24)

A. Equal-Syaced n-Level System

The first example shows the relation of TDMF
to linear spin-wave theory. Consider the following
Hamiltonian:

B. " is some numerical effective field acting on the ith
ion, ii. niight be representing anisotropy and perhaps hc
lemperature-dependenl. -'" (For other symbols see Eq.
(jg).) The static molecular-field configuration need not
be collinear; external fields are included in I,'".For any
given ion, it is clear that the energy levels of BC,t,,t,, are
equally spaced.

The equal-spaced system has the special property
that the equations of motion for the transverse com-
ponents of S; involve no higher-order products on the
same site, so the equation of motion or TDMF for-
malisms are equally convenient. The results are equiva-
lent. There is just one single-ion frequency associated
with allowed transitions on each sublattice; the coupled
system also has as many modes as sublattices.

Now, theories which produce linear equations are
equivalent to forming models like Eq. (24). Thus,
linearized spin-wave theory which applies RPA-type
decoupling on the same site, as well as the more so-
phisticated approach of Kanamori and Tachiki, 2' are
nothing more than ways of reducing a complicated
system to an equally spaced one. The number of normal
modes in the equally spaced system is quite limited.

x= —PD[Si,']'+J P S;.S, , (25)

where i runs on the up and j on the down sublat tice, and
J is the (intersublattice) exchange, taken here as 30
cm—', k runs over all sites; D is taken as 10 cm '. Ke
examine uniform modes in a transverse perturbing field.
There are no longitudinal modes since m, is a good
quantum number.

E
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0 40
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x 20—
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50 55

FIG. 3. Single-ion transition energies for three-level model as a
function of temperature. The height of c level is a direct measure
of the exchange field.

~ Physical reasoning requires temperature-dependent coe%-
cients when anisotropy is represented by an eRective field. 1'or
realistic forms of crystal-Geld terms (to be considered later) the
basic temperature dependence follows naturally."J.Kanamori and M. lachiki, J. Phys. Soc. Japan 17, 1384
(&W2).

B. Three-Level System

This example illustrates the relation of the TDMF to
the underlying single-ion transitions. Consider a two-
sublattice antiferromagnet of spin one described by the
Hamiltonian
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Near the (molecular-Geld) Neel point, the static ex-

change field drops and the &i states coalesce. Even in
the paramagnetic regime, however, the j=0 state re-
mains separated and in both the single-ion and TDMF
pictures a single nonzero mode of considerable intensity
remains.

C. Orthorhombic Four-Level System

15OK 97
t&&
& ~

J&

20 K, .90

25'K, .75

30'K, 48
I

I I, ! I

IO 20 30
Energy (crn )

40

Fxo. 4. Absorptions in three-level model at seven temperatures.
Single-ion transitions are given by dotted rectangles, actual pre-
dictions for the coupled system by continuous lines. The tempera-
ture and corresponding value of (8)(T)/(8)(0), the normalized
z-spin expectation value, are given on the left. Linewidth is not
included in this calculation —the shapes in the Ggure are chosen to
conveniently display intensity (proportional to area). The in-
tensity for the T=O'K line corresponds to 1300 cm '/mole cm'.

~ C. Zener, Phys. Rev. 96, 1335 (1954); H. B. Callen and E.
Callen, J. Phys. Chem. Solids 27, 1271 (1966).

Figure 3 shows the energy levels as a function of
temperature. There are two allowed single-ion transi-
tions, a-b and b-c. If the neighbors of a given ion are
clamped in their gneiss field positions, these two "single-
ion" lines would be observed with characteristic single-
ion intensities. In TBMF, the effect of precessing
neighbors pulls the two modes and alters the intensities.
a bbecome -the antiferromagnetic resonance (AFMR)
line with intensity considerably less than the pure
magnetic dipole intensity which characterizes the single-
ion line. b-c is not present at T=0. For high tempera-
tures, b-c is shifted only slightly, since it is weak.
TDMF solutions for seven temperatures are shown in
Fig. 4, along with the invisible underlying "single-ion"
transitions.

The effect of temperature is twofold. The level struc-
ture changes as the exchange field decreases. Also, upper
states populate lowering terms in the (single-ion) &'s
associated with ground-state transitions and raising
excited state contributions. The result is usually a net
decrease in the effective anisotropy, ' the strongest
modes tend to fall in frequency. The drop accords with
the usual approximation" when exchange dominates.
However, if a high-temperature line appears near the
main mode, they repel and the strong mode may
actually rise with temperature. This may be interpreted
in terms of a stiffening above a resonance.

where k runs over both sublattices, i and ~' over the up
and j and j' over the down sublattice neighbors. J&, the
interexchange, is 40 cm ', Js (intra) is 20 cm ', E is 10
cm ' andais15cm '.

TilO K

I ~ I.43

T~ 20'K

S ~ I.39

7 130'K

S 0 I.23

R A'

T ~35'K

t. R
0 IO 20 30 40 50 60 70 80 90 IOO IIO l20

Energy (cml)

FIG. 5. Absorptions in the four-level orthorhomic model. ~-
active transitions are shown by the solid line, cr transitions by the
dashed lines. The circles given on the T=O and 35'K plots show
the location of the underlying single-ion transitions and the lines to
which they are most closely associated. V?idth is chosen for
convenience. The intensity of the T=O'K cr-active line is
3300 cm~/mole cme.

'~ a-active modes are quite awkward to represent in linear spin-
wave theory.

The next example is richer in detail. The significant
features demonstrated are (i) the lines associated with
excited state transitions can be very strong while the
spin is still close to its T=O' value; (ii) o.-active modes
exist and can be quite strong"; (iii) TDMI' modes occur
only in the frequency region where there are single-ion
transitions, but they do not necessarily reflect them
closely.

The Hamiltonian for this orthorhombic four-level
model with two antiferromagnetic sublattices is

K=+ P DSr,*'+E(S—s*' SP')]+ Q—JrS,"S;
(si p)

+ Q JzS,' S;+ Q JsS,' S;, (20)
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FIG. 6. Absorptions for the five-level model for FeF2. As before,
o»y area and line position are of significance for the predictions
(solid curves). The intensity shown for the T=O'K predicted line
is 220 cm~, the same as that given by spin-wave theory. A rough
summary of the data of Ohlmann and Tinkham is shown for three
temperatures. No close comparison is intended, the only point
being that the predicted multiple lines could be hidden in the
broadened experimental results.

suggested by Ohlmann and Tinkham, and I.ines to
represent Fe'+ ions in FeF2."

The system is axially symmetric; there are no cr

modes. At T/O'K, there are four allowed ~ modes,

doubly degenerate in zero field. The predictions are

given in Fig. 6. On this figure, the experimental results

at three temperatures are included. The points to be
made are as follows: (i) The exact fit at T=O'K is be-

cause here there is only one contributing transition.
With only one transition TDMF is equivalent to linear

equation-of-motion results. Since the parameters were

chosen to fit the AFMR as derived from the spin-wave

linear equations, 2' the agreement is inevitable. (ii) For
T&0'K, the experimental results show marked broad-

ening; there is a possibility of unresolved multiple lines

predicted by TDMF. No claim to close agreement is

made. (iii) The TDMF and static molecular-field theory
share the same high-temperature limitations. For ex-

ample, in Fig. 6 predictions are included for 80'K, a
temperature below the self-consistent molecular-field

Neel point for the model, but higher than TN for FeF2.
Significance can be extracted from results in this region

only with great care. One way out is to set the exchange

such that agreement for the Xeel point is achieved—
this is rejected. Molecular-field theory is least accurate
in the critical region; it is pointless to choose wrong
parameters to force the theory near T~. Exchange is

Because of the twofold axis about s, we may dis-
tinguish eliptical, nondegenerate x modes and 0. modes.
The 0. modes arise because S, couples nondegenerate
states. The predicted lines are given in Fig. 5 for five
temperatures. As before, intensities are proportional to
area, the width chosen, so that all lines have the same
shape. The incident light is assumed circular for the x
modes and linear for the 0. Only half of the possible
0 modes are visible at zero external field; the out-of-
phase oscillations have no moment. For nonzero tem-
peratures we see two of four 0., and six of eight m lines.
The omitted ~ lines are too weak to be displayed. The
molecular-field Weel point for this model is 45'K. . Xote
that the position of the six doubly degenerate single-ion
transitions and their relation to cooperative modes is
indicated for T=O and 35'K.

80—

70—

60—

50

P 40
0

L)U

20—

IO—

D. Five-Level FeF2 Model; Spin-Wave Dispersion 0
1 I

3+
8g hl 8N 2&

K=+ DPS).'j2+J g S; S;. — (27)

D is 6.5 cm ' and Ji, an intersublattice exchange, is
30.8 cm '. The form and parametrization of (27) is

The next example is the Ave-level (5=2) system
specified by

Weve Vector

FIG. 7. Energy dispersion for g direction in FeF2, model at 30'K.
Each of the four lines has some k dependence. Note how the line
which starts at 48 cm ' crosses those above it. l is a characteristic
dimension for the FeF2 structure. 7r/2t is half way to the first zone
face.

~ R. C. Ohlmann and M. 'I inkham, Phys. Rev. 123, 425 (1961};
M. E. Lines, zNd. 156, 543 (1967).
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best set fruni inore reliable measurements. " Another
way is to plot versus T/T~ or against (5). There is no
rigorous justification for scaling. A third possibilit~ is to
sacrifice the self-consistency requirement on (S) and
insert experimental values. The disparity between actual
and molecular-field sublattice moments is in any case
small to a large fraction for T~ for systems with large
;Inisotropy. 2' The ultimate temperature range of use-
fI.Ilness of TDMF is not clear at this time.

An example of the dispersion for spin-wave-like
excitations is presented in Fig. 7. Here, are given the
energies as a function of k vector along (1,0,0) for the
FeF2 model at 40 K. There are four bands. The
strongest line is usually most sensitive to changes in k.
Here, it crosses the two slower changing modes above
it."

E. Three-Level System with External Field

This model is same as Eq. (25) (Ex. 2) except that a
magnetic field, along i,'8 is added. Results are sum-
marized in Fig. 8. The energies are plotted versus H' for
the lines at 20'K. Numbers above each line give the

60 -'

5uglattice P

of Field

Frequency
(cm-I)

17.25
22.30

Tang

0.54
0.72

Motion of sublattices
x' y

—2.76 singlet

singlet

coRot
1.80 coscot

Sublattice I

1.'iG. 9. The normal modes for the three-level model at 20'K in
250 kOe transverse field. The motion is conveniently represented
as an eliptical precession in a plane for each sublattice. g specifies
the angle that the normal to each plane makes with the z axis.
Values of tang and the in-plane sublattice motion are listed below
for the modes at 250 kOe.

55 —0
i2
IO

26.19
30.72

0.26
0.40

co~t
2.04 cosset

—2.23 singlet

sin~t

S6.48
56.48+

0.09
0.24

comt —1.67 sin&et

1.76 costs@ — singlet

30—

20—

l28
Note that if the motion preserved the length of the spin vector

to first order in small quantities, then the plane of precession would
be perpendicular to the static spin direction. In that case, tang
would be 0.41 ~

l5—

IO—

I I I I

0 50 IOO l50 200
Transverse H Field {kOe )

I

250

F&G. 8. Absorption energies as a function of transverse magnetic
field in the three-level model at 20'K. The ordinate is in cm '. For
zero field there are two x-active lines. These split and change in
energy approximately as the square of the field FI . Also, at high
field, a third transition becomes allowed. The angle of canting of
the spin axis from z is 4.3' at 50 kOe, 24.3' at 250 kOe. The
relative intensities to right circularly polarized light is given above
each line for zero field and for 250 kOe.

"For the particular case FeF2, it has been suggested (M. E.
Lines, above) that better agreement for the molecular-field theory
TN could be obtained from a better choice of parameters, including
next-nearest-neighbor exchange. In any event, the point is that
molecular-field values for T~ are not expected to be as accurate
measures of J's as T=0'K dynamic experiments, for example.
~. "See M. E. Lines, Phys. Rev. 156, 534 {1967)."Ke plot to only half the zone edge as there is a douhle
periodicity in this example. The reason is a symmetry discussed by
K. Kawasaki, Phys. Rev. 142, 164 (1966).

'8 Any Geld direction could be used. z would be easiestt but x is
more interesting.

intensities to x-polarized light for 0 field and 250 kOe
for each mode. In Fig. 9, we present a description of the
spin precession involved in each of the six modes in
250-kOe applied field. Note that the precession does not
preserve the length of the spin expectation value, even
to first order.

%e might note that the TDMF procedure when
external fields are present is unaltered from before. The
field is included in 3.',t,t,„and reflects in the self-
consistent (S)'s as well as the level structure and the
X's. Dependence of effective anisotropy on sublattice
angle, canting of sublattices with field, unquenching
of orbital angular momentum, etc. , are included
automatically.

IV. COMMENTS

A strength of TDMF in applications is its generality.
The modifications between treating different systems
are very slight; it is easy to automate the procedure. In
our work, the model Hamiltonian and relevant spin and
moment operators are entered as numerical matrices
and the sublattice configuration and couplings are
specified. The rest of the procedure is invarient from
system to system.
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Both a strcng«th and weakness is that fact that
'I't&MF is a "first-prioriples" theory, i.c., it starts fi*&)ni

a Hamiltonian. If the Hamiltonian can be parametrized,
such a theory is clearly good, but it usually takes many
data before an unequivocal parametrization is possible.
When there are not many data, phenomenological con-

cepts, such as "anisotropy fields, "may provide as good
a description as warranted; complicated theories add
nothing. Even so, since TDMF is a physical approxima-
tion, the relation of underly ing parameters to results is
almost always transparent. Where the Hamiltonian is of
simple form, it is hard to see why any less complete a
description should be settled for.

Before concluding it should be mentioned that the
TDMF procedure bears some relation to what has been
called an excitation wave approach. That approach,
which is also applicable to complicated Hamiltonians in
an RPA, has been developed and used by Trammel, '-'

Van Vleck,"and others" in discussing rare-earth ions.
The method consists of identifying the excitations from
the molecular-field ground state of a given ion with the
first excitations of a set of harmonic oscillators. It is of
interest that in the limit of zero temperature, the results
of this method for both normal mode frequencies and
moments, are identical to those of TDMF for a large
class of problems. That this is so follows by considering
the equations of motion of each boson operator and
noting that an operator of one ion couples only to the
combinations of boson operators from other ions which
constitute the transcribed spin operators. " The ex-

~ G. T. Trammell, J. Appl. Phys. 31, 3625 (1960).
30 R. M. Bozorth and J. H. Van Vleck, Phys. Rev. 118, 1493

(1960).
3' B. Grover, Phys. Rev. 140, A1944 (1965);B.R. Cooper, ibid.

163, 444 (1967}.
3' The reader will recall that in the excitation wave approach,

a set of Bose operators are written to represent the excitations
from the ground state to excited states of the single ion. Then,
substitutions are made for the various operators according to the
prescription

S ~ a t(e
[ S [ g) +a(g (

S
( e)+a.'a.[(e [ S [ e&

—(g I
S

I g&3,

where e refers to excited states and g is the ground state. Somewhat
symbolically and assuming a bit of symmetry, the equation of

tension of the excitation wave method to high tenipera-
ture has apparently not been done.

One reason to prefer TDMF is that. it is applicable,
formally at least, at all temperatures including the
paramagnetic region. " Another advantage is that it
involves only spins and magnetizations and thus far
fewer and more physical unknowns, especially when the
number of allowed excitations is large.

In conclusion, we have described the TDMF method
of doing magnetic excitations. It includes various effects
related to detailed ion dynamics as well as conventional
spin waves. Its advantages are most obvious in cases
where anisotropy is large compared with exchange, and
where orbital angular momentum is important.
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motion for a typical destruction operator might be

Area, '= (I (g gEe) 'a+J(e—(~Sg~gg)S2,

where a, relates to ion No. 1, and S2 is the spin of ion No. 2 before
it is decomposed by the prescription above. Ejg and E&e are
ground- and excited-state energies, respectively. Now multiply
each a, by (g ~ S~ e) and sum on excited states. Reconstituting S,,
we get

Sz=J P ((ei [Sz[gz)('/(E, g E,e As&)S2, — —

which is then just like Eq. (23) for g evaluated 7=0'K and with
no external exciting field.

~ TDMF accounts for spin-wave interactions by changing the
average level propulations. This is clearly a crude approximation,
cruder in fact, than the principle of the usual spin-wave RPA.
Results for states with large fluctuations (high temperature) are
thus of limited accuracy. On the other hand, errors are limited to
the magnitude of exchange effects so single-ion-like lines, domi-
nated by crystal-Geld effects, are all right in any state, paramag-
netic as well as ordered. (Of course, for them the completely
decoupled single-ion theory should be satisfactory. ) A general
statement as to how well and for which lines the TDMF RPA
captures the average effect of thermal spin waves awaits compari-
son with experiment,




