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Different Orbitals for Different Spins in an Infinite Chain of Hydrogen Atoms
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The total energy of an infinite, linear chain of hydrogen atoms is computed by means of a different orbitals
for different spins" method, in which the correlation parameter is allowed to depend on the crystal momen-

tum k. The resulting antiferromagnetic configuration is found to be stable over the range of interatomic dis-

tances studied (1.0, ~).The equilibrium lattice parameter is found to be slightly less than 2.0 a.u. , and the
cohesive energy ~.05 a.u. An instability found earlier by Calais is removed.

I. INTRODUCTION

HE calculation of the total energy of a para-
magnetic crystal by means of ordinary band

theory is affected by a correlation error, which is
dramatically illustrated by the incorrect asymptotic
behavior of the total energy of the separated atoms.
This is because the lack of correlation between electrons
of different spins forces ionic states of high energy to
appear among the dissociation products. To remedy
this particular deficiency of the ordinary band model it
has been proposed that electrons of different spins
occupy different orbitals, leading to a spatial separation
of the spin-up and spin-down charge densities on to two
equivalent sublattices A and B.' This way of treating
the correlation problem is generally called "the split-
band" or "different orbitals for different spins (DODS)"
model. Splitting the orbitals not only leads to the cor-
rect asymptotic behavior of the total energy, but also
effects the magnetic and conductivity properties of the
crystal, Speci6cally the split-band model results in an
antiferrornagnetic state, with an energy gap appearing
at the top of the Fermi level. In the present work,
however, we concentrate on the model as a means of
obtaining more accurate values for the total energy.
For heuristic purposes we will consider an infinite linear
chain consisting of equidistant hydrogen atoms, a case
which is of sufFicient complexity to give hints about the
treatment of real crystals. The infinite chain of hydrogen
atoms has earlier been investigated by Tredgold' and
Calais, ' who both assumed that the "degree of splitting"
is the same for all the Bloch states

~
k). We will here

re6ne this picture by letting the degree of splitting be
dependent on the crystal momentum k. In the present
case this extra flexibility of the wave function will lead
to quantitative improvements over the earlier treat-

ments. Our main concern, however, will be to stress the
qualitative differences which arise.

In Sec. II the split-band model is described briefly in
terms of pairing. A "gap equation" of rather general
nature results and the solutions to this equation deter-
mine the degree of splitting versus momentum k. In
Sec. III the numerical results are presented and com-
pared with earlier calculations. Section IV contains a
short discussion. Throughout the paper atomic units
are used.

II. MODEL

I.et us assume that the Bloch functions of the para-
magnetic state are given by

1
(r) — Q e~t Rgx (r)

Qxg 0

%1, is a normalization constant, R, determines the
lattice points, and &, , is a 1s function of spin a. centered
at lattice point g. Each atom contributes one electron,
i.e., the band of the paramagnetic state is half-filled,
and the Fermi wave number kF equals n j2u, where a is
the lattice constant. In order to achieve the spatial
separation of the spin-up and spin-down electron
densities, pt(r) and pg(r), the unoccupied Bloch func-
tions can be used as indicated schematically in Fig. 1:
Construct new one-particle orbitals by the pairing of an
occupied state p& with an unoccupied state pi, +.Q,.
The vector Q is chosen as Q = 2k Fkj ~

k ~, which—means

)l C(k)

*Present address: The City College of the City University of
New York, New York, N. Y.' J. C. Slater, Phys. Rev. 82, 538 (1951); P.-O. Lowdin, ibid.
97, 1509 (1955);J.Appl. Phys. 33, 251 (1962).See also C. Herring,
in Magnetism, edited by G. T. Rado and H. Suhl (Academic Press
Inc. , New York, 1966), Vol. IV, p. 309, for further references.' R. H. Tredgold, Proc. Phys. Soc. (London) 67A, 1018 (1954).

3 J.-L. Calais, Arkiv Fysik 28, 511 (1965).
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= k

%/a

FIG. 1. Schematic picture of the pairing of occupied states
(filled circles) with unoccupied states (open circles).
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it equals the first reciprocal lattice vectors of the sub-
1;ittice 2 (or 8). Therefore the density p, associated
with the new, paired orbitals has the translational
symmetry of the sublattice. In terms of a canonical
transformation, the pairing of the Bloch states reads

If the Green's function is G, (xx') Lx= (r, t) stancls for
space r and time tj, its relation to p, is'

p. (r) = i—lim G.(xx') = iG—,(x x+0) .
r'-+r

f.'~f+0

A k, t'= u(k)ak i'+e(k)a»~a r',
Hk t'= —e(k)ak i'+u(k)ak+g tt,

(I ki (k p)

~1k t'= e(k)ak, i'+u(k)ak„q it,
Bk, it= —u(k)ak it+e(k)a»~a it.

(2a)

(2b)

From Eqs. (4) and (5) we thus conceive that the ex-

pansion of G, in the basis {yk) should have the form

G, (xx') = Q LGf,.(k; tt') pk(r) q k*(r')
IkI &kg

+G, .(k; tt') yk+Q(r) q k+Q'(r')

+F.+(k; t t') yk (r) q »+ Q"(r')
The operator a~,~ creates a particle in the Bloch state
pk, (r), the operator Ak, is a particle in an orbital
mainly localized on the sublattice 3, let us say, and the
operator Bl..." is a particle in an orbital on the comple-
mentary sublattice B. For the ground state of the
system, we now have in mind the Hartree-Fock type of
approximation

IkI&kF
(3)

pi = Q (u (k) pkpk +v (k) pk+Q9 kyQ
I &I &&z

+u(k)e(k)(ykq »~Q +c.c.)j,
I-u~(k) &» &» +" (k) 0'k+Q Pk+Q'

I &I &I z
—u (k) ip (k) (yk pk+ Q*+c.c.)7.

(4)

4 See, e.g., A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshin-
ski, Methods of Quantum Field Theory in Statistica/ Physics

(I 0)= the va, cuum state). The difference in signs in the
definition of Ak it and 8» tt in Eq. (2) ensures that the
densities pt and p& associated with Eq. (3) are located
mainly on diferent sublattices, i.e., electrons of oppo-
site spins are given the possibility of avoiding each other
in accordance with their repulsive interaction and in the
limit of separated atoms, ionic states do not have to
appear. The operators A z &~ and Bk p~ not present in the
state (3) represent virtual excitations from the ground
state.

The "mixing parameters" u(k) and v(k) in Eq. (2),
which satisfy the normalization condition u'(k)+w'(k)
= 1, determine the degree of splitting of the one-particle
orbitals. Tredgold's' and Calais's' approximation men-
tioned in the Introduction iniplies the choice u(k)=X
and i(k)= (1—X')'", where the parameter P, is to be
determined from the minimization of the total energy.
Because we allow I to depend upon k, for our purposes
it seems profitable to use a formulation by means of
Green's functions, ' which we will outline briefly below
(see, e.g., Ref. 5 for details). To get a hint about the
type of Green's functions to be used, it is instructive
take a look at the expression for the densities pg and pg
corresponding to the Hartree-Fock state (3):

[The notations in Eq. (6) are those of Ref. 5. The sym-
bols F and F+ are chosen in analogy with the Gorkov
factorization4 for superconductors. Ii and F+ may
therefore be referred to as "anomalous propagators, "
characteristic for the paired state. ) By comparing
Eq. (6) with Eq. (4) we further have that F,+= F,+-
for the present system. To determine the propagators
Gf,„G,,„F,and Ii +, it is now convenient to use the
equation of motion, which, in the Hartree-Fock
approximation we are considering Lcf. Eq. (3)j, has the
form'

XLG."(x"x"+0)G.(xx')

G."(xx—"+0)G.(x"x')8...,j=b(x. x') (—7).
In Eq. (7) h(r) is the one-particle Hamiltonian (the
kinetic energy operator plus the field from the protons)
and the symbol (+0) denotes the time limits to be taken
as indicated in Eq. (5) and in Ref. 6. By inserting the
expansion (6) into the equation of motion (7) and
taking the Fourier expansion with respect to time the
following system of equations for the propagators is
obtained:

Lee —e(k+Q) jG.„(bi)—-', 5(ka)F, (k(e) = I,
Lee —e(k)]F.(kai) ——',g(ka)G, ,(kce) =0,
L~ —e(k)]Gr,.(ks)) —-', A(ka)F.+(kco) = I,
I e~ —e(k+ Q)$F.+(Iue) —-,'6 (ka )Gf,.(kcu) =0.

» Eqs. (8) the "gap function" A(ko) is defined as

dE
-'D(ko) =i P —(k, k'+QIk', k+Q)

I
~'I &» 2x

X{F,(k'e)+F,+(k'e)) e'" r~+0, (9)

(Prentice-Hall, Inc. , Englewood-CliGs, N. J., 1963).We are using
the definition of the Green's function found in this book.' K.-F. Berggren and B. Johansson, Intern. J. Quant. Chem. 2,
483 (1967).' L. P. KadanoG and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc. , New York, 1962).
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where (k, k'+Q
I
k', k+Q) are the exchange matrix

elements of the interaction 1/rts with respect to the
basis (1). We notice that A(ko)= —A(k —rr) because

F (+) (kid) ——F t+) (k«e)

The quantities e(k) and «(k+Q) in Eqs. (8) are taken

as the orbital energies of the paramagnetic Hartree-
Fock state. 7 The solution to the system of equations

(8) is

Gr, ,(k,nt) = tr" (k)g+(k,cd)+us(k)g (k,rd),

G...(k,rd) = Is(k)g~(k, nk)+as(k)g (k,at),
10

Ft (k«e) =Ft+(k,«e) = N(k)n(k) {g+(k,rd) —g (k,at) },
Ft (k,at) =Ft+(k,rd) = —Ft(k, rd)(I kI &kx).

The functions g+(k, rs) and g (k,«e) are defined as

g+(k,nt) =[ «e Es—(k)+ib) ',
g (k,a&) = [rd E—t (k) iii—j', -

where 8 ~+0.The poles Et,&(k) of the propagators (10)
determine the orbital energies (the band struc«re)
associated with the split-band model. The explicit
expression for Et,s(k) is, from Eqs. (8),

Et, (k) = —,'[«(k)+ «(k+Q) g

~ s {[«(k) —«(k+Q) j'+~'(k) }'"
(IkI &&~) (12)

where A(k)=D(k$)= —A(k$). By inserting the propa-
gators (10) into Eq. (5) and performing the integration
over rd, one recovers the density p, of Eq. (4). We can
therefore identify the N(k)'s and n(k)'s appearing in the
explicit forms (10) for propagators with the mixing
parameters in Eqs. (4) and (2). From the system of
Eqs. (8) one has explicitly, for N(k) and e(k),

«(k+Q) —«(k)
I'(k) =- 1+

2 (t (k) —.(k+0) j'+k'(k)p')
(13)

1 «(k+Q) —«(k)
n'(k)=- 1—

2 &[ (k) —(k+Q)I'+k'(k)&'"}

With F (k«e) and F (kn&) inserted into the definition
(9) of g(k«r), we finally obtain the equation for the gap
[h(k) = h(kf) = —&(kl) j,

(k, k'+QIk', k+Q)
~(k) =2 P '

a(k').
[k'((k {[«(k) —«(k'+Q) 1'+6'(k'))'

(14)

Equation (14) has always the trivial solution A(k)=t)
corresponding to the paramagnetic Hartree-Fock state.
Nontrivial solutions signal that the split-band model is

energetically favorable.
For the total energy of the crystal quite a convenient

expression may be found. 5 The Galitskii-Migdal
formula' gives the energy corresponding to the Hartree-
Fock state (3) as

8= g [I'(k) (k Ii't
I k)

+"(k) (k+Q I
& Ik+Q)+&t(k)1 (15)

h is the one-particle operator of Eq. (7). [In what
follows we also assume that the proton-proton inter-
action term is included in the two first terms of Eq.
(15).]Thus, once u(k), s(k), and Et(k) are computed,
the total energy is easily obtained by means of expres-
sion (15).By letting A(k) —+ 0 the Hartree-Fock energy
of the paramagnetic state is recovered.

States involving pairing all tend to be mathematically
similar. This means that the formalism outlined above
has strong similarities with the description of super-
conductors4 and the excitonic state of matter. ' The
general character of the solutions to the gap equation
(14) may therefore be of a somewhat broader interest.

m mUMEazmr. COMpUTm. roNS

The key quantities in the preceding section are the
orbital energies «(k) for

I
k

I
& 2k' and the gap function

A(k). Their calculation involves all the interaction
matrix elements (kk'Ikk'), (kk'Ik'k), and (k, k'+Q

I k, k'+Q), which usually represent a considerable
computational obstacle. The 1s function overlaps
appreciably at moderate internuclear separations, which
means that neighbors up to high order must be included
and that a great number of three- and four-center
integrals must be evaluated. It is possible to progress
with hydrogenic is functions, as was done by Calais, '
but the computation of all the polycenter integrals
becomes complex, relying on the expansion of an atomic
function at a certain center around the other centers.
%e have therefore chosen another computational
method. As shown by Reeves, ' a hydrogenic 1s function
can be expanded in a limited set of Gaussian functions
exp( —rr;r') to a good degree of accuracy. All the neces-
sary integrals of Gaussian functions can be evaluated
from closed formulas, "which are easy to program. For
our computations, we have therefore used Reeves's

r Strictly speaking, the « ik) are the matrix elements ik
~
Ho

~
& l,

where Ho is a Hartree-Fock Hamiltonian, in v hich the interaction
term is

dx", „ I Gf, ,"(x"x"+0)+G, , (x"x"10)
~I I tr —r"

j —LGg, ,"(xx"+0}+G..."(xx"+0))8„"PI.
P is a permutation operator with interchanges x with x"and a with
~". Since we are interested in qualitative aspects rather that
quantitative, it is sufhcient to set the e(k) s equal to the eigen-

values of the paramagnetic state. In the two limiting cases of
narrow and broad bands this approximation can be shown to be
completely warranted.

8 See, e.g. , D. A. Kirzhnits, I&'ield Theoretical Methods in Many-
Body Systems (Pergamon Press, Inc. , New York, 1967), and Ref. 5.

9 D. Jerome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462
(1967), and references therein."C. M. Reeves, J. Chem. Phys. 39, 1 (1963).

"See, e.g. , I. Shavitt, in Methods in Conspltational Physics,
edited by B. Alder, S. Fernbach, and M. Rotenberg (Academic
Press Inc. , New York, 1963), Vol. II, p. 1.
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Fzc. 2. Comparison of the hy-
drogenic 1s function {solid line)
with its expansion in Gaussian
functions t Eq. {16)in textj, 01"

605

0.0
I

1.0 2.0 3.0 5.0

expansion"

e "/Qn 0.1084e '"""'+0.2164e~ """'
+0.1575e 4 "92"'. (16)

For the energy of an isolated hydrogen atom the ex-
pansion (16) gives the energy —0.497, i.e., 99.4%%ue of the
correct value, an accuracy which is definitely suScient
for our purposes. In Fig. 2 the expansion (16) is com-
pared with the hydrogenic function. The over-all agree-
ment is good, but for large values of r the expansion (16)
falls o6' too fast. Because of the effect of the diferent
basis on the many multicenter integrals in our calcu-
lation, however, we will consider only qualitative differ-
ences in comparing our numerical results with other
calculations using a hydrogenic basis (Refs. 3, 12, and
13).In the calculations neighbors up to about twentieth
order have been included.

The integral equation (14) for the gap function A(k)
was solved by an iteration procedure. The integration
was performed by Simpson's rule, and 17 points in the
interval (O. ,kF) were found sufficient. After about five
cycles in the iteration procedure convergence was ob-
tained. In Fig. 3 the solutions D(k) for different values
of the lattice parameter a are displayed. For large
internuclear separations h(k) approaches a finite con-
stant value, which can be understood in the following
way. As the lattice parameter c approaches 00 the band
width decreases, i.e., the quantity Le(k) —e(k+Q)j'
in Eq. (14) can be omitted. In the same limit,
(k, k'+Q~k', k+Q) ~ (gg~gg)/1V, where ~g) stands for
the atomic function (16) on center g, and iV is the
number of lattice sites. We therefore have for large
values of a the relation

Figure 3 shows that for a=10.0 the asymptotic form
(17) is practically fulfilled.

Because of the separation of p, (r) onto the two sub-
lattices A and 8, the periodicity of the system is
doubled. This means that the Brillouin zone associated
with the split-band model extends out to ~k~ =k~. In
Fig. 4 the effects of the pairing on the band structure is
shown for two different situations. The dotted line is the
paramagnetic dispersion e(k), which for ~k~ )kF has
been Qipped back onto the 6rst Brillouin zone of the
sublattices. As expected, the doubled periodicity of the

Qe2.0

0.I,.o
0 5.0
0-10.0

A(k) (00 I 00)=0.6252. (17)
The hydrogenic function e '/gw gives h(k) = a=0 625.

0-——0.
0 kF

r k
kp

"J.W. Moskowitz, J. Chem. Phys. 38, 677 (1963}."W. T, Kwo, Phys. Rev. 171, 484 (1968}.
FIG. 3. Gap function b, (h} for different values

of the lattice parameter a.
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a=3.o {a.u.)

.4

a =10.o {a.u.)

k

f(k}

term is small and negative, and decreases slowly with
decreasing a. For a = 1.0 we therefore only evaluated the
first part of Eq. (15) for the paramagnetic state in a
rigorous way, and the last part giving only a minor
contribution was taken from extrapolation. All the
quantities involved behave smoothly with a, and we
therefore feel that this procedure is safe.j For large
values of a the energy corresponding to k-dependent
mixing approaches the correct asymptotic value, which
in the case of the expansion (16) is —0.497. The energy
of the paramagnetic state approaches in the same limit
a.n energy/atom

h/Ã= (0
~
h

~
0)+-,'(00

~
00)= —0.3408. (19)

-.2

E)

The matrix elements are over atomic functions A
hydrogenic 1s function gives 6/1V= —~~~~ = —0.34375.'4

The minimum of our energy curve for the split-band

-.4
G/N (TT.u. )

j PRESENT WQRKj

{CALAIS

Fzo. 4. Effect of pairing on the band structure for two different
lattice constants u. The dashed curve is the paramagnetic dis-
persion e(k), which for (k~ &k~ has been Ripped back onto the
6rst Brillouin zone of the sublattices. The solid line is the dis-
persion EI,&(k) obtained by the split-band model. The Fermi
energy ~p is chosen as the reference energy,

system causes a gap in the single particle excitation
spectrum at the zone boundaries. The magnitude of
this gap is A(kR). By the pairing the system thus
becomes insulating (as well as antiferromagnetic).
Figure 4 shows further that for smaller internuclear
separations the pairing has a small efI'ect on the electron
dispersion for values of ~k~ away from kR. For ~k~

closer to kp the pairing has a profound e6ect; the new

dispersion deviates strongly from the paramagnetic
dispersion, and the curvature is completely changed.
For large values of a the whole part of the spectrum is
changed in a significant way. The bands flatten out to
almost discrete levels, and in the limit a ~ ~ we get
Lsee Eq. (17)]

E~ ~(k) = Ws(00I 00)=W0.3126, (18)

I

-O.s& ——
I

I

-0.6.

a(a.u)

where e(k &) is the reference energy. For a = 10.0 relation
(18) is almost realized.

In Fig. 5 the total energy/atom of the split-band
model and the ordinary band model are shown as a
function of the lattice parameter a. Our energy curves
are based on the results for a= 1.0—10.0 in steps of 1.0
a.u. In the same figure are also shown the results on H„
by Calais, ' the H6 ring by Moskowitz, "and the H» ring

by Kwo."Lit should be mentioned that our calculations
for a=1.0 involve certain simplifications. One notices
during the calculations that the sum of the two first
quantities in the energy expression (15) are almost
identical for the paramagnetic and the antiferro-
magnetic states, and that for a approaching zero this
sum becomes by far the dominant quantity. The last

FIG. 5. Total energies/atom (8/N) for: (I) The paramagnetic
state of H„(present calculation), (II) the antiferromagnetic state
of H„(present calculation), (III) the paramagnetic state of H„
(Calais, Ref. 3}, (IV) the antiferromagnetic state of H (Calais,
Ref. 3), (V) the H6 ring (Moskowitz, Ref. 12), (VI} the H12 ring
(Kwo, Ref. 13}.The heavy dots are calculated points, and dashed
lines are extrapolations. The energy of the paramagnetic state for
a= ~ is indicated in the upper right corner by two bars—the
upper for the result of the present work, the lower for that of
Ref. 3.

"We would like to attribute the over-all difference between
Calais's (Ref. 3) and our energy curve for the paramagnetic state
to the different basis functions used, and the different ways of
computing the polycenter integrals. For these integrals Calais
relies on the type of expansions mentioned in the Introduction.
The fact that the Gaussian approximation (16) is somewhat more
contracted than the hydrogenic function is probably in our favor.
Moskowitz's calculations (see Ref. 12) on the Hf3 ring show that
a contraction (by scaling) occurs.
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Pe
p kF

FIG. 6. Mixing parameter u(k) for diherent
values of the lattice parameter a.

By the explicit calculations of the preceding section,
we have shown that the formalism outlined in Sec. II
leads to a computationally manageable scheme. The
computer time needed for the calculations of the enor-
mous amount of polycenter integrals and the quantities
e(k) is, however, considerable. This is the reason why
we did not carry through a complete self-consistent
procedure including also e(k). We feel that the results
of such an extended self-consistent calculation for the
present unrealistic system would not stand in proper
relation to the cost of the computations. As mentioned
earlier, the neglect of self-consistency plays a minor
role when the bands are very broad or narrow. Figure 6

' E. signer and H. B. Huntington, J. Chem. Phys. 3, 764
(1935). Wigner and Huntington obtain 0.025 for the cohesive
energy. Corrections to signer and Huntington's calculations
made by Lars Hedin (private communication) give a cohesive
energy~0. 04-0.05.

model occurs at a value of a slightly less than a=2.0,
i.e., about the same value as for H6" and JIj2."The
cohesive energy is therefore 0.05.» per atom. It is

interesting that this value of the cohesive energy is close
to the value obtained for the three-dimensional hydro-

gen crystal by means of the Wigner-Seitz method. '

In Fig. 6 the mixing parameter u(k) is displayed for
diferent values of the lattice parameter. In the limit of
large internuclear separation, i.e., narrow bands,
u(k) ~ 1/U2, which means that the states mix with

equal weights all over the zone. Figure 6 shows that for
a=10.0 this situation is almost attained. For small

values of a the mixing takes place practically only in a
region close to

~
k~ =kp. The band is now so broad that

one-particle levels in the upper part of the band can
contribute only very insigni6cantly to the ground-state
energy.

IV. DISCUSSION

shows that for broad bands the pairing is effective only
close to the Fermi surface. To a good accuracy the mean
field determining e(k) depends therefore only on un-

paired electrons and e(k) can be chosen as the orbital
energies of the paramagnetic state. For very narrow
bands we have that the interaction matrix elements
become independent of the crystal momenta. Together
with the relation u'(k)+ v'(k) = 1 this gives a mean field
independent of the pairing.

Our energy curve for the k-dependent mixing should
be compared with Calais's' results for constant mixing.
Calais's calculations indicate a magnetic phase transition
for a slightly larger than 2.0. This phase transition is
removed (or at least moved to values of a &1.0) by our
approach. We can understand the appearance of Calais's
instability from Fig. 6. By using a constant mixing all
the states in the zone mix with the same weight. For
small values of a states in the upper part of the band are
therefore forced into the ground-state wave function
with much too large a weight and thereby causing the
instability. The same behavior upon constant mixing
has been found for an antiferromagnetic linear chain
described by the Hubbard Hamiltonian. "

In Fig. 5 were also shown the energy curves for the
H6 ring" and the H» ring, "both computed by means of
diferent orbitals for diferent spins with constant mixing
X and unscaled hydrogenic 1s functions as basis. Taken
together, Moskowitz's II6, Kwo's H~2, and Calais's H„
demonstrate that the cohesive energy decreases as the
number of atoms increases. One may speculate why our
energy curve falls below the curves of these systems:

(a) The trend in B6, and Hi2, and Calais's H„ indi-
cate that k-dependent mixing becomes indispensable
as the number of atoms goes to infinity.

(b) The basis functions are diA'erent.

(c) Self-consistency with respect to e(k) should be
included.
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