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An improved version of Hubbard's treatment of correlation in a nondegenerate narrow band is obtained
by the use of a new Green's-function decoupling scheme. The resulting one-electron Green's function has two
poles on the real axis corresponding to a splitting of the electron bands due to the strong correlations between
electrons on the same site. This is the same result that Hubbard obtained, but in our case the poles are shifted
and their positions agree with the results of Harris and Lange, who used a moment technique. The theory is
applied to a simple cubic lattice with nearest-neighbor interaction, and the lattice is found to be ferromag-
netic in the strongly correlated limit for a su%ciently large number of electrons per atom. An examination of
the low-density limit shows that the two-pole approximation does not reduce to Kanamori s T-matrix result,
a failing which it shares with Hubbard's theory. A method is outlined for improving the theory so as to give
the correct low-density result. In addition, the possibility of obtaining a minimum principle for the theory
is explored.

I. INTRODUCTION

~

~E consider here the problem of correlation in a
narrow band with the second-quantized Hamil-

tonian between Wannier states:

H = U P n;t tt;1++ t;,c,,tc;..

This model, often called the Hubbard' Hamiltonian,
contains in its simplest form the competition between
the Coulomb interaction U between electrons on the
same site, tending toward magnetic alignment, and the
hopping term t;;, which tends to destroy the single-site
correlations. The correlation problem was considered
by Hubbard, ' Kanamori, and Gutzwiller' in 1963; we
follow most closely the work of Hubbard. In Hubbard
I a Green's-function decoupling scheme was used,
which most carefully treated the correlations on a
single site and which resulted in a one-particle Green's
function with two poles on the real axis. Hubbard's
result for the case of t;,&&U gave no ferromagnetism
for a simply shaped density of states. Harris and Lange, '
by looking at the moments of individual peaks in the
spectral function, found that there should be an addi-
tional energy shift, which makes the ferromagnetic
state more likely to stablize. This result was in line
with the work of Nagaoka, ' who showed that for certain
nearest-neighbors models and for U~ ~ the almost
half-filled band was ferromagnetic. There were also
spin-wave calculations by Roth' and by Edwards'
which suported Nagaoka's conclusion.

Jn this paper, we apply to the problem a decoupling

' J. Hubbard, Proc. Roy. Soc. (London) A276, 238 {1963);281,
401 (1964). %e shall refer to these as Hubbard I and III.' J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 276 (1963).

3 M. C. Gutzwiller, Phys. Rev. Letters 10, 5 (1963);Phys. Rev.
137, A1726 (1965).

'A. B. Harris and R. V. Lange, Phys. Rev. 15?, 295 (1967).' Y. Xagaoka, Phys. Rev. 14?, 392 (1966).'L. M. Roth, Phys. Chem. Solids 28, 1549 (1967); J. Apl)].l'hys. 39, 474 (1968).' D. M. Edwards, Proc. Roy. Soc. (London) A300, 373 (1963);J. Appl. Phys. 39, 481 (1968).

scheme which improves upon Hubbard's procedure. A
preliminary account of this work has appeared. ' The
scheme is essentially identical to that proposed by
Linderberg and Ohrn', they showed that it gives the
correct result for the two-site problem. There is also a
strong relationship to the work of Rowe."We obtain a
result which has, as in Hubbard's calculations, two
poles in the one-particle Green's function and which has
the positions and moments of the poles given by ex-
pressions which, in the strongly correlated limit,
reduce to those of Harris and Lange, 4 and of Esterling
and Lange. "Hubbard and Linderberg' also obtained
these expressions. %e reduce the results to a form in
which all expressions can be evaluated self-consistently;
then we apply the theory to the simple cubic nearest-
neighbor case in the strongly correlated limit.

A defect of the two-pole approximation is found: it
does not reduce to the correct low-density result ob-
tained by Kanamori. ' We show that an approximation
analogous to the "resonance broadening" correction
obtained in Hubbard IIP corrects the deficiency and
so leads to an improved theory. In the second paper of
this series, we shall apply the improved version to the
case of one reversed spin in a fully aligned band.

In Sec. VII we discuss the possibility of obtaining a
minimum principle related to our method. This would
be a stronger statement than the stationary principle
a1ready obtained. '

II. PRELIMINARIES

We adopt the formalism of retarded and advanced
Green's functions, ' following, in the main, Zubarev. "

L. M. Roth, Phys. Rev. Letters 20, 1431 (1968). Note that,
Eqs. (11) and (17) are in error. For the correct expressions see
Eqs. (21) and (59) in this article.

9 J.Linderberg and Y. Ohrn, Chem. Phys. Letters 1, 295 (1967).'0 D. Rowe, Rev. Mod. Phys. 40, 153 (1968)."D. M. Esterling and R. V. Lange, Rev. Mod. Phys. 40, 796
(&968}."J.Hubbard and J. Linderberg, liarwell Progress keport Xo.
A ERE-PR/TP 15 (1968)."D. N. Zuharev. Usp. Fiz. Nault ?1, 116 (1960) IEnglish
Transl. : Soviet Phys. Usp. 3, 320 (1960)j.
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Since we shall be interested in the Fourier transform
of the time-dependent Green's function, it is convenient
to define this directly as

Green's functions. Hubbard approximates the last
term in Eq. (6) by replacing the —0 quantities by their
average values, whereupon the last two terms in
parentheses cancel and we have

Cn; .c;.,H)=U„-.C;,+(n; .) P t,,c;.

where the contour encircles the real axis but excludes
co, which has a small positive (negative) imaginary part
for the retarded (advanced) Green's function. This
definition is equivalent to the usual one except for a
factor 1/2n, which we omit. The equation of motion
is readily obtained from Eq. (2):

-«A; »&=(CA,Bj,&+«CA,Hj; »&
The thermal average (BA) is obtained now from the
relation"

1
(BA) =F ((A; B))= f(co)((A,B» (4, (4)

27rj

Cka p cjk Ric.

and the Green's function is given by

((c'.,c".'»=G".&"' =
F(a)) —cg

Thus the equation-of-motion sequence for G and I'
terminates. Hubbard assumes that (n;-,)=n, is inde-
pendent of i. Then the results can be recast in terms of
Bloch functions, for which the operators are

where f(co) is the Fermi function and the contour
encircles the real axis. We use a notation due to
Hamann '4

l,et us now outline Hubbard's truncation procedure'
for the Green's-function equations of motion. We need
the commutators

F '(ca) =
1 sg s0'

+ (Hubba. rd).
co co —U

Here ek is the band energy,

—pcjk R,t. (10)

Cc;.,Hj= Un; .c;.+Q t;:,c,
„j

Cn, c;.,H j=Un; .c;.+P t;, (n; .c,,

+C(. Cj ecjs Cj e C~—ocja) ~ (6)

Through Eq. (3&, the first of these equations relates
G;,.=((c;.; t)C) to F;;,=«n;f.c;.; C,.t)&, and the
second relates I' to itself plus some more complicated

HARRI-LAIC,
ROTH

and we assume that Ir'00 is zero so that the center of
gravity of the band is the zero of energy. In the limit
in which U is very large and when we look in the
vicinity of co=0, we neglect the second term of F ' and
find that the pole of G is at (1—

n&e', so that the
presence of the —0- spins electively narrows the r
spin band, but does not change the center of gravity
of the band.

As mentioned in the Introduction, Harris and I.ange4
showed that the center of gravity of the band should
in fact be shifted, " and the author found this to be
true for the special case of a fully aligned band. '
Figure 1 shows how this shift can be encouraging for the
occurrence of ferromagnetism for the fully aligned case.

at lllNARDI III. DECOUPLING PROCEDURE

FIG. 1. For the fully aligned partly filled band, the Hubbard I
result gives a down-spin band, presumed empty, which has its
center of gravity at the center of the band; for the band shape
shown, it is below the Permi level, so the state is obviously not
stable. The band shift found by Harris and Lange (Ref. 4) and
the author (Ref. 6) can push the down-spin band up above the
Fermi level, thus making it possible for the ferromagnetic state
to be stable.

14 D. Hamann, Phys. Rev. 158, 5''0 (1967).

Ke now review and present in more detail the ap-
plication of our decoupling scheme' ""to this model.
Basically, in any equation of motion" or Green's-
function'" decoupling scheme, we seek a set of (here)
fermion annihilation operators for which the equation-
of-motion sequence Ce.g. , Eqs. (5) and (6)j terminates

"R.A. Tahir-Kheli and H. S. Jarrett, Phys. Letters 27A, 485
(1968), pointed out that this shift can be obtained approximately
for U —+ ~ by neglecting the last term in the parentheses of
Eq. (6), arguing that it involves double occupancy on one site,
and truncating the second term, which gives the part of the shift
corresponding to the first term of our Eq. (21)."H. Suhl and N. R. %erthamer, Phys. Rev. 122, 359 (1961}."P.Q. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).



ELECTRON CORRELATION IN NARROW BANDS. I

in some approximation. Thus we seek a relationship
of the from

(i t)LA„,Hj=p It„A.„,,

or, if we define the energy and normalization matrices as

E,„„=&LLA „,IIj,A„f/+),
&-= (EA-,A-tj+&,

(13)

(14)

where we have changed the notation slightly from the
Ref. 8 to distinguish the indices from those of Wannier
states. Rather than replace various operators on the
left-hand side of this equation by their expectation
v'ilues in order to terminate the sequence, we use the
following prescription. We anticommute both sides of
Eq. (11) with A„f,where A~ is a member of the set,
and take either the expectation value in the ground
state or the thermal average of both sides. Thus we
write

(LQA„,II),A„'j)=P IC„,„&(A„,A„'j), (12)

remark here that Rowe" averages his equivalent of E
with its Herniitian conjugate. In the present example,
J-' is, in fact, Hermitian, so there is no problem. We

also remark that Linderberg and Ohrn' choose their

A matrix to be diagonal.
Now, to apply the result to our case, we first note

that due to translational invariance E, E, and E will

certainly be diagonal in k, so we need not put kk'

indices in. We are assuming only spatiaHy uniform&

solutions at this point; thus we will not discuss anti-

ferromagnetic states. If we choose for the A„the Sloch
states ck, our "matrices" are iX1 for each spin, E
is just 1, and

E'= (K«.,K can j+)
= ea+zz .U (Hartree Fock), (17)

where zz, = (zz, ,) is the average number of —o' sptns

on a site. This is simply the Hartree-Fock result.

If we now use the Hubbard choice of operators, we

have A». ——«. IEq. (8)1 and

we have, in matrix notation,

(15)

1
Asa, =da. =—P e'

~V '
(18)

0= det(E„„.V '—ozzie„)
= detLzV z"(It'„'"E„„,cY~ '"

z1 )Itz
—' ')—

=det LzV„"zE„„.V '"—ozb j, (16)

i.e., it is the same as that of a Hermitian matrix; thus
the eigenvalues of E are real. An additional reason to
require E to be Hermitian is that E~ is what would be
used in truncating equations of motion for A ~. In
Eq. (26) below, Ez would appear if we had begun with
the alternative Green's function equation of motion
in which the last term of Eq. (3) is replaced by
«A, [Il,IIj&)

However, if the matrix elements are not in an exact
eigenstate of H, the Hermiticity of J"' is not guaranteed'"
and each case must be investigated on its merits. We

"As an example, consider the exact {3„}set {~n, )(0~ },~here
lO) is the ZV-particle ground state and ~n) is an ()t —t) particie
excited state. Then we know that the E matrix is {&0—~„)b„.
However, if the expectation value is not in an eigenstate, E„
need not be diagonal and, therefore E = (~0—e„)E„neednot
be Hermitian.

Thus, provided that we can evaluate the matrices E„
and iV„,and provided E„is nonsingular, we can
determine the matrix E„andcan then decouple the
equations of motion with the desired set of operators.

Since the eigenvalues of E correspond to the singu-
larities in a Green's function, it is essential that they
be real. It can be shown that E is Hermitian if the
brackets are the expectation value in a true eigenstate
of the system. iY is readily shown to be Hermitian,
and we further require that.V be positive definite. Then
the characteristic equation for E, if we transform the
matrices so as to diagonalize V, is

(2o)

where

zz (1—zz.)lVs, ———p to„(cs.c;,(1 zzs —.—zz, .))—
+p tp, e's "

((&z,.znzt) ozzie')—
j&D

+(c,.'c; .cs,tcs.&
—(c,.'c, .'cp .cs.&} . (21)

Ke now wish to construct the Green's functions. If
we substitute Eq. (11) into Eq. (3), in general we have

~«A. 8)&= &LA -,Iij+&+2 E-«A-;Il» (22)

or, inverting,

&(A 8&)=2 G-&LA-, &j+&, (23)

where
G= (oz+ze —It) '= V(zV(oz+ze) E$ '. (24)—

fn particular, if 21=.4 j' with A a member of the set,
we can define a Green's-function matrix G such that

(&A„;A„[))=G„..

We now have 2)&2 matrices for each spin for both

&k~ and X~ . We calculate the double commutators in

Eqs. (14) and (15); these are given by

ea+ Uzz, (U+ ez,)zz,

(U+ es)zz, Un, ,+eazz, '+0, (1 n.) 1—4'a

(19)
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Then, froni Eqs. (23) and (24), we hs, ve

G =E[N ((a+ ie) E]—-'iV .

and then introduce four 8 functions:

l. /2 Q e Rc Ri@. . c. I (3 &)

We can use Eqs. (19) and (20) to obtain the matrices G
and G for our case:

B,=N—'"Q e ""'e i+;,c,.", (34)

1 -or —U —8'k,
D. n, (ei, —Wi, .) GO

—6k-
(27)

V—I/2 ~ —ik Rs8,=&V
— ~ e c;+, c;+, .c;

„

84—IV ~ e cs+ja ci+j—rr ci—rr ~
y/2 ~ —sk. R;

(35)

(36)

D,= (ie —ei,)(ie—U —Wg .)—Ue .(ei, —Wi), (28)

G, =D.—'
cd —U(1 —n, ) —Wi, , n .(id —Wi, .)

ri .[cu ek—(1—ii .)—ii ./H' .]
(29)

n .((o lVk —.)
with G~~ giving the one-part. icle Careen's function. Also,
Hubbard's I'k is given by G».

It is interesting to point out that, in Hubbard III
the improved Green's function [Eqs. (58) and (59)]
has the same functional form as our Gll, but with 8'k,
replaced by 0,. We shall return to Hubbard III later,
noting here that W and 0, are quite difFerent quantities.

To complete the definition of the Green's functions
in our scheme, we must now evaluate the averages in
Eqs. (19) and (20), namely, n. and W&.. We can readily
obtain n, from the one-particle Green's function by the
use of Eq. (4):

1
n, = Pr„—Gii. (k) .

X k

1
(n,.no.)=—p (Bici,.) .

E k
(37)

For any of the 8's we, can write

1 1—2 (B ci.)= Z & ~».([«» ]+)S k

For s=1 we have

+—P r„G...([d...B,],). (38)

[ci...Bi]+=ri. e" ~(co."c;—.), (39)

[di,„B&]+= (Ip .n,.) e'" "i—(co.~n; .c,.) (40.)

Introducing the notation

These should have labels k, 0, j, which we suppress. 8j

and B~ are needed (see below) to evaluate (ri;,no, )—n, '
and 83 and 84 for the remaining terms in the expression

in Eq. (21). Firstly, we have

Similarly, in evaluating the first term of Eq. (21) for
N~(1 n, )Wi,„—we find that it can be expressed in terms
of Ggg and Gg2.

—p $0;(c;,tco, (1—2ND, ))
j/0

ri;. = (cp, 'c,.) = PF„—G»,e""~,
k

1
mje = (cOe sj—acj~) = P 5'uG12se

g

(41)

(42)

1 where we assume the brackets to be real, and unchanged
=—Z &i [S~Gii.(lt) —2&~Gn. (lr)] (31) when the indices 0 and j are interchanged, and furtherE k defining

(BA„)=s„gG„„([A„,B]) (32)

where, on the left-hand side, we assume the angular
brackets to be real and we assume inversion symmetry
so that n0 and n; can be interchanged.

However, in evaluating the second part of Eq. (21),
we encounter averages of the form A „tA„tAA„where
A„,etc. , are members of our set. The first two terms in
the square brackets are density and spin-correlation
functions on two sites and the third is a "double-hop"
correlation function. Rather than assuming that the
averages factor, we shall make use of Green's functions
whose right-hand members are of the form 3 tA t.4„.
We write

1
a,.=—Q ~50 iei"ai, (43)

we have

pppGeikRi
X k

(44)

(n, ,n )=n0n, a,,n, ,+p—,(no,n;, ) p, ,m;~, —(45)

[ci...B2]+=n .,

[di,„Bp]=(np.n, .),
(46)

(47)

where we write n0. =n„etc.VVe see that we now need
to evaluate a correlation function for opposite spins,
for which we use B2 in Eq. (38) with Eqs. (43)—(44)
and
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to obtain
1

(n& np ) =—P (Bock )=n n +P (np, n;, ) .

Letting 0 —+ —0. in this equation, substituting into Eq.
(45), and solving for (n;.np, ), we have

where n and P are given by Eqs. (52) and (53), and n
and m by Eqs. (41) and (42). This, together with n,
from Eq. (41) or (32), determines the parameters in
the Green's function LEq. (29)].

IV. STRONGLY CORRELATED LIMIT

nj trnorr

n. n. +p~ n p, m, In the limit U)&t;, , the one-particle Green's function
(49) Gk. =G».(k) becomes

I-et us now evaluate 0, and P. We can solve for 6 in terms
of G to give

1—n.
(a —ok(1 —n .) n—.Wk,

Gll (Gll G12)/(1 n —)

Ggp (Glp/n, G—|~) /(1 n—.),
so that we have

n;.= (n;.—m;.)/(1 —n .),
P,,= (m;./n .—n;.)/(1 —n, ) .

We can use these results to write Eq. (49) as

(50)

(51)

(52)

(53)

+ . (58)
po —U —pkn .—W„.(1—n .)

Assuming that nq+ng & 1, only the band of energies
corresponding to the lower pole is occupied. In fact,
the U —+ ~ limit corresponds to the replacement of
the interaction by an exclusion of double occupancy
of the sites. Evaluating the contour integral in Eq. (4),
we have for n;,

n jtrnotr ny
n, ,n,.+P;.m, .

,p
(54)

1
n&~

— p f(pka)cik Ri(1 n )

where el, is the position of the lower pole:Now for the spin-correlation term, from entirely
similar considerations, except that we need only B~ for
this case, we have ok'= ok(1 —n, )+n,IV„, (60)

As discussed in the Ref. 8, the band has become both
narrowed and shifted by the interaction. Equation (59)
for j=0 gives n, . We also have nz; =0 since G~~ in-
volves onl the u er ole thus

n;.n; .+P,.~;
(55)(c,.'c; .cp .'co.)= (5,'&o )=—

Similarly, using 84, we have
pp p

n,.n, .+P,.(n, , m; .)—

(cjoy

cj aco acorn)—= — ~ (56) n, (1 n.)W—k,
~
~~= —p t@n,.

In the last two correlation functions the left-hand side
is unchanged if we let o—+—0.. Therefore the right-hand
side should give equivalent results for the two spins.
This symmetry is not evident, and this points up an
ambiguity in our method of evaluating the four operator
averages (A $A $A+o), namely, that the division into
the A and B of Eq. (32) is not unique. In the limits
V~ ~ and U ~ 0, the two spin directions do give
equivalent results. For intermediate values it would
seem best to average them. The problem of the non-
uniqueness of the four operator averages needs further
st.udy. Summarizing, we substitute Eqs. (30) and
(54)—(56) into Eq. (21) to obtain

n,)W„=—p t„(n;,—2m;.)—p c*" a to,
j+0

n|.(1— )+ng. n.nin. (1—n.)IVk. = tzng. pk— —
(62)

{ng(1 n.)+n—,.n, .)
(1—n.—n, .)

The two terms in the curly brackets are the density an
spin-correlation functions. The double-hop correlation
function vanishes in this limit both exactly and in our
approximation LEq. (56)j. The spin-correlation func-
tion in this limit is, as stated above, symmetrical be-
tween the two spin directions.

The result is simplified if we consider a nearest-
neighbor model with to;=t for the z neighbors. Then
we need only one value of n, , which we call n&, in
addition to n .

ntsnj r+p jgmj s njonj a+Pjamj —a—
X +

1 —P.P . 1+P.

ntanj a+Pja ('n j—w —ml ~)

n.=—P f(pk )(1—n .), (63)

(64)
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The Fermi surface for each band has just the shape of
the unperturbed Fermi surface for each band, and so
is related to the unperturbed Fermi energy Z.. Let

04

03

0.2

O.i

0.9

0.8

0.7

1
Y~= Q 6k=

N «, ~k&Z.

p(e)(to,

P(e) «dk,

(65)

(66)
04

0.6

0.5

0.4

0.2

where p(k) is the density of states for the noninteracting
band and e~ is the band-edge energy. Then we have

(67)

Reversing o- and then solving the two equations for n„
we find

m, =N. (1 N—)/(1 iV.N, ) .

From Kqs. (64), (66), and (68), we can also write n„:
ng, Y,(1 X,—)—/tz—(1 cV,X,)—. (69)

Combining the last two equations, for n t V we have

O.l

-0$
Ol 02 03 04 05 06 0.7 QB 09 IO

n

Fn. 2. Magnetization (nt —ng) and total energy per site versus
the number of electrons per site, for a simple cubic lattice with
nearest-neighbor interaction and U ~ ~. We have included the
energy of the paramagnetic state. The units of energy are such
that the band width is 6.

The present result gives a more restricted region for the
stability of the saturated ferromagnetic state.

The energy in the figure is obtained from the relation"

Y (1—N, )

1—X

&r =Z ~-z(~+ ~k)Gk.
k, o

=Z z(«'+~k) f(~k )(1 e,—). (72)

X 1— + . (70)
(tz)' 1—N.N . 1—N .

We see that, given the unperturbed Fermi levels to-
gether with a knowledge of the density of states, we can
evaluate Ã and F and so determine the parameters n
and t/t/'. We can then solve for the perturbed Fermi levels

(71)

In order for the solution to be self-consistent, the
perturbed Fermi levels must match for the two spins.
For the paramagnetic state (Zq=zg) this is auto-
matically the case. To seek magnetic solutions, we fix

Zt and vary Z& until the perturbed Fermi levels match.
The density of states for the simple cubic nearest-

neighbor case is known from the work of Wolfram and
Calloway. " A plot of p(e) appears in an article of
Penn's. 'o We have carried out the above self-consistent
procedure for this case. The result is given in Ref. 8,
and we reproduce the figure here as Fig. 2. We see that
there is no ferromagnetic state for small n, but that for
n&0.36 the paramagnetic state becomes unstable. At
n=0.63, the ferromagnetism becomes saturated. It is
interesting to compare our results with the spin-wave
result for this case in the strongly correlated limit,
which showed that the saturated ferromagnetic state
becomes unstable toward the formation of long-wave-
length spin waves when n approaches 0.5 from above.

' T. Wolfram and J. galloway, Phys. Rev. 130, 2207 (1963).
~ D. R. Penn, Phys. Rev. 142, 350 (1966).

We calculate it for both paramagnetic and ferromagnetic
phases. We remark that if we calculated the energy for
the fully aligned ferromagnetic state, it would be ap-
proximately the result of reflecting the dashed curve
about n =0.5. It is interesting to note that this lies only
slightly above the paramagnetic state energy.

In Fig. 3 we plot the calculated Fermi level and the
limits of the up- and down-spin bands. Ke notice that
the down-spin band becomes very narrow as n —+ 1.
I.et us point out, however, that the inclusion of a level
width will drastically change this result. In the next
article in this series, we shall see that the broadening of
the down-spin band becomes very severe in this region.

0-

M OF BAND
-3 I I I I

00 0( 02 Q3 04 05 06 07 08 Q9
n

FzG. 3. Upper and lower limits of the resultant bands for the
case of Fig. 2, plotted versus the number of electrons per site.
The Fermi level is also shown. Note that the down-spin hand is
considerably narrowed.

"This result is the retarded Green's-function analog of Kq.
(3.69) in Ref. 17.
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V. LOW-DENSITY LIMIT

ln the liiuit of low densities, Kanamori- has shown
that the correlation problem can be solved exactly
and that the Coulomb interaction is replaced by a T
matrix exactly describing the scattering of two elec-
trons. Let us examine our theory in this limit. It is
convenient to express the one-particle Green's function
in the form

Theory

Hubbard I'
Hubbard II'
Roth
Kanamorib

eb

eb+2N jpk (ek —eb) '
2Eb

»jZk (ek —eb) '

scnn

0319
I cp Ia

1.319I cpI'

TABLE I. Self-energy Z„in the low-density limit for U ~ ~
evaluated for the simple cubic nearest-neighbor (scnn) case. eb

is the band-edge energy and 2
I pp I

is the bandwidth.

where
hark» jc» e» Z»(k&c») j

CO
—lVk,

(73) & Reference 1.
b Reference 2.
e P. D, Loly and S. Doniach, Phys. Rev. 144, 319 (1966).

Z, (k,cp) =tt, U
cp —U(1 —tt .) —Wa . (74)

is the self-energy. We wish to evaluate Z to erst order
in n, so that we need Wk to zero order in n. In Eq.
(57) the lowest-order term on the right-hand side is the
part of the first term involving n,„andall other terms
are of higher order in the density. Assuming that the
occupied region of the zone is near k=o, we see from
Eq. (42) that for low density n, , „tcosthat

~k qtr =Ck& tr Cq trCk' q+kcy (79)

with k'Qq. Commuting the latter through H, we have

Lck'—» cq—»ck&—q+c»»+]

only three-fermion operator which is not "orthogonal"
to cI, in the sense of having a zero matrix element of
the normalization matrix Eq. (14). We then include in
our set (A „),At cs, and

Wa, —Q tp, = —es,
j

(75) =
y 6q+ 6k' —q+k 6k'gCk' —o Cq trCk —q+ktr

Z. (kcp) -tt,
1+U/2~ e,

~

(76)

We can compare this with the Kanamori result, which
is exact in the low-density limit:

Z. (kcp) =n, U 1+U P
2 (eq pc&)—

(77)

We see that the results are not equal. Our "two-pole
approximation" is in fact, equivalent to replacing eq

by its average value in Eq. (77).
The results for U~ oo are compared in Table I for

the simple cubic lattice with nearest-neighbor inter-
action, and we have included some of Hubbard's
work. It appears that our theory gives a worse result
in this limit than Hubbard's first approximation and
shares this distinction with Hubbard's improved
theories.

We now wish to show how our theory can be improved
so as to give the correct result in the low-density limit.
Let us erst use our method to obtain the exact low-
density limit. We rewrite Eq. (5) in terms of Bloch-
state operators:

U
(cka&Hj=ecccka+ 2 ccc'—a cq—»ck' —q+k»+ k~, q(k'Qq)

U
+—P Na .ca.. (78)

Ig'

Here we have separated out the k'= q term, which is the

where eb, is the band-edge energy. Also in Z we have
co eb, so that

U V
+ Q ck&—» cq—»ck' —q'+k»+ +k»ck»

X c'~1' X
+(terms of form ctctccc). (80)

The terms written out explicitly will give the low-
density limit; the remaining terms are of higher order
in the density and we shall neglect them. We can now
calculate anticommutors and so evaluate the matrices
E and lY, going only to 6rst order in the density, i.e.,
ignoring all averages of the form (ctctcc). We note that
here, as in the previous result, both Eand S are diagonal
in k; thus we can suppress the k indices. We have

k'q, k"q'» (rck&—»)~k'c&''~pq'

K1.= ~k+Un .,

El, k'q» Ek'q, I» (U/X) (tt»&—») &

+k'q, k "q' ~k'k" ~k' —cr

Xt (eq+ea q+a
—ea)8aa+U/Nj, (82)

and we notice that k' should be restricted to occupied
states. The one-electron Green's function is the 11
matrix element of the matrix Green's function of Eq.
(26); in order to evaluate it we must take the inverse of

1Vpp E. The result is Eq—. (73), with the self-energy
now given by

1
Z.=—P (~„..)UE k'

U 1 —1

X 1+—Q . (83)E q 6q+ E'k' —q+k Ikey M
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In this case our method is essentially equivalent to the
Suhl-Werthamer" and Martin-Schwinger'7 decoupling
procedures.

Now, if we set k and k' equal to zero and ~ equal to
eq. this reduces to Eq. (77). In our three-fermion oper-
ator, we have an excited electron and hole, with wave
vectors q and k', respectively. We see that in the low-

density limit we can neglect the energy variation of the
hole, but not of the electron, as the latter goes over all
unoccupied states. On the other hand, in the two-pole
approximation, we sum the three-fermion operator in

Eq. (79) over both electron and hole states (q' and k'),
which results in the neglect of the energy variation of
the electron. This suggests that a better approximation
would be to sum Eq. (79) only over the hole states k'.

Thus we use (:k and

~ (:k'—a (g—o('k' —q+ke ~

To obtain the new E and Ã we simply sum Eqs. (81)
and (82) over k', giving

~Vga~+ = Pl &Bqg~ )

I':g,.——(L& (cV)»'„
1 U

Eqq'e Q '»k' —a (cq+ Ek' —q+k cg')Bqq'+» z& —(80)
k' X

with the remaining quantities unchanged. The result
for Z in this case is

k'

Thus we see that the denominator is averaged over hole
states. If we take k' 0, a& eq, we again obtain Eq. (77).

We can now envision using the set cj„A,(k) for a
more general density. The advantage it has over the
use of all three fermion operators is that A~ depends on
only one wave vector rather than two. Let us examine
what the 3,operators are in terms of Wannier operators.
We can readily see that

A (k) = nc~+—rV "'P e'~ "~"+'~ 'c; .tc, .c;. (87).

The first term is for orthogonalization and the second
term has the hole tied to the same site as the initial
electron, while the excited electron can wander. This is
in contrast to the two-pole approximation, in which
both electron and hole are tied to the site of the initial
electron.

In order to give a reasonable result when both ~s and
V are large, we should add to A another set

8,= —c,td, cg+1V '"Q c'& R~'+*"'R' ct»,.c, .c;.. (88)

would be more desirable. We suggest here a direction
along which we could move to obtain such a minimum
principle, although we have not succeeded in proving
anything conclusive.

Let us first recall that if the two-body interaction is
multiplied by a dimensionless coupling constant X, we
ha, ve

—XH =P cg.'Pc...Hj
(9.

(89)

d—X(OIHI 0) =P (Ol c~,~l c&„Hjl0)
dA. ka

= —2 I(»l".IO)l'L&--' ' —~0 j. (9o)

Let us also recall that EP '—Eo'~ is just the negative
of the chemical potential p, so that

Let us take the expectation value of this equation in
the iV-particle ground state and apply Feynman's
theorem":

A~ and 8, represent some of the terms retained by
Hubbard in his "resonance-broadening" corrections.
However, the results we expect are b& no means
equivalent, as evidenced by Table I.

We shall apply the improved theory to the ca,se of a
single down spin in an otherwise fully aligned ba, nd in
the next paper in this series.

VI. POSSIBILITY OF A MINIMUM PMNCIPLE

As we discussed in the Ref. 8, our decoupling scheme
is related to a stationary principle for the eigenvalues
of E. As we also pointed out, a minimum principle

d—~(OIHIO) =„,V
dX

+Q I (»Ic»IO)l'(E, "-'—E &-&) (91)

Clearly. , in the second summation, all the terms are
negative. The quantity A&V is just a constant, and we
can modify H by replacing it by H —pE =H'.

Now, as pointed out in Ref. 8, in the exact solution
to our problem, the A are of the form l»)(OI, with I»)

~ See, e.g. , C. Kittel, Quantum Theory of Solids (John Wiley R
Sons, Inc. , New York, 1963), p. 107.
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a. (iV—1)-particle excited state. Thus the sum is

(7—X(OiH —pSio)
dA,

result, for if we let x= fj, sf, +0, we have the followin~«

e()uality:

x —— — = x — — — — 95

with K„—U negative, E„diagonal, and E a unit
matrix.

Ke can now introduce a particular variation of the
3„,namely, omitting some of them. The sum clearly
increases, and, integrating over X, the result is an in-

crease in the total energy. Thus we see that, for certain
variations of the set A from the exact results, the energy
increases. A possible generalization of this equation is

This should also equal the following expre. sion in terms
of the one-particle Green's function:

If one of the set 3
„

is c~ and the rest are "orthogonal, "
we have exactly Eq. (94).

Again, consider a particular type of variation. Let us
suppose that .7 is a unit matrix and that A is diagonal,
but that the A„arenot the exact set. Then, if we add
another 4, such that iV is also a unit matrix (of one
more dimension) and suppose that E=E remains
diagonal, the expression in the right side of Eq. (93)
decreases.

The catch here is that, in genera1, E will no longer be
diagonal, so we must prove something more com-
plicated, something which has thus far eluded this
author. It must also be remembered that we are

approximating the averages self-consistently rather
than in the exact ground state. There are still some
problems in showing that increasing the set will lower
the right-hand side of Eq. (93). We conjecture that
such a resul. t can be proved, which would then, upon
integration, yield a minimum principle for the energy.

We should remark that, in the low-density limit,
our result for the self-energy is higher than the exact

Here the average is over the Srillouin zone. The left-
hand side is positive, so this shows that (1/x)) 1/(x),
which is true for averages of any positive quantity.
Thus Eq. (76) is greater than Eq. (77). This is in

contrast to the result of Hubbard I given in Table I,
which is below the exact result.

VII. DISCUSSION

We have presented here an improved version of
Hubbard's' two-pole approximation in a narrow non-
degenerate band. We find that, contrary to Hubbard's
result, a relatively simple band shape gives a ferro-
magnetic state in the strongly correlated limit for a
sufficiently large concentration of carriers. The im-
proved theory includes a band shift which is most im-
portant in the case of a nearly-half-filled band. We
expect that further improvements will restrict further
the region of ferromagnetism.

We have found that the two-pole approximation gives
an incorrect result in the low-density limit, ' and we
indicate how the theory can be improved on this score.
The same problem arises with some of Hubbard's
improvements and with the results of Harris and Lange4
and Ksterling and Lange, " which are essentially
equivalent to ours in the strongly correlated limit. In
the work of Esterling and Lange, the claim is made that
their result is exact in the strongly correlated l.irnit.
In view of the failure of the result at low densities, we
must disagree with their claim.

While we have been approaching this problem from
Hubbard's viewpoint, the improvements called for in
the low-density limit suggest another way of looking
at it. The T-matrix approach is useful for short-range
interactions in the low-density limit, but in many
systems the density is by no means low. Hence our aim
is to use our methods to extend the T-matrix results to
a Gnite density for the Hubbard Hamiltonian, which is
a lattice gas with short-range interactions.
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