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Sputtering of a target by energetic ions or recoil atoms is assumed to result from cascades of atomic colli-
sions. The sputtering yield is calculated under the assumption of random slowing down in an infinite medium.
An integrodifferential equation for the yield is developed from the general Boltzmann transport equation.
Input quantities are the cross sections for ion-target and target-target collisions, and atomic binding energies.
Solutions of the integral equation are given that are asymptotically exact in the limit of high ion energy as
compared to atomic binding energies. Two main stages of the collision cascade have to be distinguished:
first, the slowing down of the primary ion and all recoiling atoms that have comparable energies—these
particles determine the spatial extent of the cascade; second, the creation and slowing down of low-energy
recoils that constitute the major part of all atoms set in motion. The separation between the two stages is
essentially complete in the limit of high ion energy, as far as the calculation of the sputtering yield is con-
cerned. High-energy collisions are characterized by Thomas-Fermi-type cross sections, while a Born-Mayer-
type cross section is applied in the low-energy region. Electronic stopping is included when necessary. The
separation of the cascade into two distinct stages has the consequence that two characteristic depths are
important for the qualitative understanding of the sputtering process. First, the scattering events that even-
tually lead to sputtering take place within a certain layer near the surface, the thickness of which depends on
ion mass and energy and on ion-target geometry. In the elastic collision region, this thickness is a sizable
fraction of the ion range. Second, the majority of sputtered particles originate from a very thin surface layer
(~5 A), because small energies dominate. The general sputtering-yield formula is applied to specific situa-
tions that are of interest for comparison with experiment. These include backsputtering of thick targets by
ion beams at perpendicular and oblique incidence and ion energies above ~100 eV, transmission sputtering
of thin foils, sputtering by recoil atoms from a-active atoms distributed homogeneously or inhomogeneously
in a thick target, sputtering of fissionable specimens by fission fragments, and sputtering of specimens that
are irradiated in the core of a reactor or bombarded with a neutron beam. There is good agreement with
experimental results on polycrystalline targets within the estimated accuracy of the data and the input
parameters entering the theory. There is no need for adjustable parameters in the usual sense, but specific
experimental setups are discussed that allow independent checks or accurate determination of some input
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quantities.

1. INTRODUCTION

N recent years, a large number of experimental
results on sputtering by energetic particle bombard-
ment has been accumulated. Most experiments dealt
with measurements of the sputtering yield versus
energy for many ion-target combinations, but a
significant amount of work also has been done in
investigating the angular and energy distribution of
sputtered particles, or their average energy. In many
experimental setups the angle of incidence could be
varied, and among other parameters of interest were
target temperature and ion dose. Sputtering experi-
ments have been done on amorphous targets, poly-
crystals of various degrees of texture, and single
crystals. Also the geometry of the experiments has
differed widely. Although bombardment of plane target
surfaces and observation of ‘‘backward sputtering” has
been most frequent in recent years, other possibilities
were quite common: sputtering of wires and balls,
transmission sputtering of thin foils, sputtering by
recoil atoms from sources embedded in thick targets,
and, recently, sputtering by fast neutrons. Although
considerable discrepancies still exist in the experimental
* Work was performed under the auspices of the U. S. Atomic

Energy Commission.
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results produced by various groups, some standards
have developed concerning the basic requirements for
reproducible and reliable experiments. This develop-
ment is clearly reflected in recent reviews of Behrisch,!
Kaminsky,? Carter and Colligon,® and Pleshivtsev.
Theoretical efforts have been increasingly successful
in the last fifteen years in understanding the main
features of sputtering in terms of a series of quasi-
elastic collision processes induced by the bombarding
ion. Usually the first collision does not lead to backward
sputtering directly; at least for perpendicular incidence
a hit target atom always has a velocity component in
the direction away from the target surface (Fig. 1).
Thus, sputtering is a typical multiple collision process
involving a cascade of moving target atoms. This
cascade may extend over a considerable region inside
the target, but for sputtering, only the intersection
with one or more of the target surfaces is of interest.
While the concept of a collision cascade governing
the sputtering process is a common feature in all recent

sputtering theories, there are considerable differences

1 R. Behrisch, Ergeb. Exactk. Naturw. 35, 295 (1964).

2 M. Kaminsky, Atomic and Ionic Impact Phenomena on Metal
Surfaces (Springer-Verlag, Berlin, 1965).

3 G. Carter and J. S. Colligon, ITon Bombardment of Solids
(Elsevier Publishing Co., Inc., New York, 1968).

4 N. V. Pleshivtsev, Cathode Sputtering (in Russian) (Atomizdat,
Moscow, 1968).
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in the basic processes that various authors consider
responsible for sputtering. In a number of theories it
has been assumed that the majority of atoms are sput-
tered by random collision processes, even in crystals.>2
Other authors assumed that regular lattice structure
causes other than random collision processes to domin-
ate sputtering of both single and polycrystals.’3-16
There have been discussions on the role of focused
collision chains in the ejection process'*~'% and the role
of channeling and transparency in the anisotropy of the
sputtering yield of single crystals.4:15.18.8 Another dis-
cussion on where the sputtered particles come from
in the random ejection theories has been carried on
less explicitly. In Refs. 6, 8, 11, 12, and 16, mostly
surface atoms account for the sputtering yield, whereas
in Refs. 5, 7, and 10, a great deal of the sputtered
atoms must have travelled some distance through the
crystal before being ejected.

The arguments used in the above discussions are
based mainly on experimental results, and secondly on
evidence from computer simulation. The ‘‘pure”
theorist had little information available on collision

5 F. Keywell, Phys. Rev. 97, 1611 (1955).

¢D. E. Harrison, Phys. Rev. 102, 1473 (1956); 105, 1202
(1957); J. Chem. Phys. 32, 1336 (1960).

"D. T. Goldman and A. Simon, Phys. Rev. 111, 383 (1958);
R. S. Pease, in Proceedings of the International School of Physics
““Enrico Fermi” Course (Academic Press Inc., New York, 1964),
Vol. 13, p. 158; Yu. V. Bulgakov, Zh. Tekhn. Fiz. 33, 500 (1963)
[English transl.: Soviet Phys.—Tech. Phys. 8, 369 (1963)7].

8 E. Langberg, Phys. Rev. 111, 91 (1958).

(1;6%)K. Rol, J. M. Fluit, and J. Kistemaker, Physica 26, 1009
(1‘0 Y]\;’ Brandt and R. Laubert, Nucl. Instr. Methods 47, 201

967).

1P, Joyes, J. Phys. (Paris) 29, 774 (1968).

12 M. W. Thompson, Phil. Mag. 18, 377 (1968).

18 M. W. Thompson, in Proceedings of the Fifth International
Conference on Ionization Phenomena in Gases, Munich, 1961
(North-Holland Publishing Co., Amsterdam, 1962), p. 85; the
model proposed in this paper has been improved and extended
by many authors since 1962.

14 D. E. Harrison, N. S. Levy, J. P. Johnson, and H. M. Effron,
J. Appl. Phys. 39, 3742 (1968); Appl. Phys. Letters 8, 33 (1966).

18 D. Onderdelinden, Can. J. Phys. 46, 739 (1968); thesis,
University of Leiden, 1968 (unpublished); this thesis contains a
list of references on the “transparency model.”

(1;“6(6:). Lehmann and P. Sigmund, Phys. Status Solidi 16, 507

17 N. T. Olson and H. P. Smith, Phys. Rev. 157, 241 (1967);
R. G. Musket and H. P. Smith, J. Appl. Phys. 39, 3579 (1968);
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18S. A. Drentje, thesis, University of Groningen, 1968 (un-
published).
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cascades that was based on calculations from first
principles and accurate enough to stand an argument.
Because of the complexity of the problem, it was
necessary in all theories quoted above either to intro-
duce a number of extra assumptions that ought to be
results of a theory (if valid at all) or to introduce a
number of adjustable parameters that determine the
radius of a cascade, the number of atoms set in motion,
the surface binding energy, etc. An additional un-
certainty pertinent to the earlier treatments®® was a
lack of knowledge of interatomic potentials and collision
cross sections that has been removed at least partially
later.

It is the purpose of this and two following papers
to present a systematic theory of sputtering on the basis
of a minimum of assumptions. Necessary basic assump-
tions concern the characteristics of a single collision
(differential cross section, inelastic stopping), the
structure of the medium (random or crystalline), the
structure and binding forces of the surface, and some
factors that depend on specific experimental arrange-
ments like beam-target geometry, high or low ion
energy, etc.

A useful starting point for this program is the sputter-
ing of a random target, since collision cascades in random
media are governed by the equations of transport
theory, and a good deal of experience has been collected
recently on application of these equations to slowing
down of ions. Lindhard et al. established cross sections
governing collisions of ions and atoms in the keV region
from Thomas-Fermi theory and showed that one can
predict ion ranges accurately by using these cross
sections. Sanders? generalized Lindhard’s procedure
to calculate the spatial extension of a collision cascade
and the momentum distribution of recoiling atoms.
Sanders based his treatment on the power approxima-
tion of the Thomas-Fermi scattering cross section®
and the assumption that all collisions are elastic. This
is a specific case where many calculations can be
performed by exact methods.2 The power cross
sections are accurate enough to allow comparison with
experimental results over limited ranges of ion
energy 222

A very successful calculation of an emission problem
on the basis of transport theory was performed by
Hachenberg and Brauer,?® who treated electron-electron
emission. The present theory is somewhat similar to

% J. Lindhard, V. Nielsen, and M. Scharff, Kgl. Danske Viden-
skab. Selskab, Mat.-Fys. Medd. 36, No. 10 (1968).

2 J. Lindhard, M. Scharff, and H. E. Schigtt, Kgl. Danske
Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14 (1963).
lis:e{l') B. Sanders, thesis, University of Leiden, 1968 (unpub-

% M. T. Robinson, Phil. Mag. 12, 741 (1965); 17, 639 (1968).

#P. Sigmund and J. B. Sanders, in Proceedings of the Inter-
national Conference on “‘Application of Ion Beams lo Semicon-
ductor Technology,” edited by P. Glotin (Editions Ophrys, Paris,
1967), p. 215.

2 J. B. Sanders, Can. J. Phys. 46, 455 (1968).

26 0. Hachenberg and W. Brauer, Advan. Electron. Electron
Phys. 11, 413 (1959).
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theirs. The only pervious attempt to base a sputtering
theory on Boltzmann’s equation is Harrison’s.® Joyes'
made a compromise by applying transport theory to
one part of the sputtering process and single collision
arguments to another. The methods of transport theory
in general have been discussed most extensively in
monographs on neutron transport theory (e.g., Ref.
27).

A qualitative picture of the sputtering of a random
target by an ion beam looks as follows. An impinging
ion undergoes a series of collisions in the target, and
atoms that recoil with sufficient energy undergo
secondary collisions, thereby creating another genera-
tion of recoiling atoms. Both the ion itself and energetic
recoil atoms have the possibility of getting scattered
back through the surface by a series of collisions from
a depth that may be a certain fraction of the total
ion range. These back-scattered ions and energetic
recoil atoms account for most of the sputtered energy?®>
but constitute only a minor portion of the number of
sputtered atoms. Note that the energy distribution of
sputtered atoms peaks heavily at very small energies.!?
The slowing-down paths of both the ion and all ener-
getic recoils are surrounded by clouds of higher-order
recoil atoms with very low energy. These atoms have
small ranges and therefore can only get sputtered if they
are located originally within a couple of atomic layers
from the surface. But there are so many of them that
they account for the major portion of the sputtering
yield.

A yield calculation consists of a number of steps:
(1) to determine the amount of energy deposited by
energetic particles (ion and recoil atoms) near the
surface; (2) to convert this energy into a number of
low-energy recoil atoms; (3) to determine how many
of these atoms come to the very surface; and (4) to
select those atoms that have sufficient energy to over-
come the surface binding forces. These steps will be
visible in the mathematical treatment, although there
will be needed only one basic equation to determine
the sputtering yield, and not four. Also, the order in
which the above steps enter the theory will deviate from
the chronological order. The essential input quantities
are the cross sections for scattering of high-energy
ions and atoms [steps (1) and (2)], the cross section
for scattering of low-energy atoms [steps (2) and (3)],
and the surface binding forces [step (4)]. While good
high-energy cross sections are avialable,® we have to
allow for some uncertainty with respect to the latter
two quantities. It will turn out that they determine first
of all the absolute magnitude of the sputtering yield,
while the variation of the yield with the atomic number
of the ion, ion energy, and angle of ion incidence is
insensitive to these quantities, at least at ion energies

*" B. Davidson, Neutron Transport Theory (Clarendon Press,
Oxford, 1957).

28 P. Sigmund, Can. J. Phys. 46, 731 (1968).

¥ H. H. Andersen, Appl. Phys. Letters 13, 85 (1968).
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that are large compared to the threshold energy for
sputtering (~20 eV). Only such ion energies will be
considered in this paper, since the surface collisions
that dominate sputtering near threshold cannot be
described by transport theory.

It is the opinion of the author that the mechanism
sketched above accounts for the main features of
sputtering of amorphous and liquid targets, and that
only some modifications have to be applied in order to
describe the dominant effects of the regular lattice
structure in single-crystal sputtering. The anisotropy
of the sputtering yield is accounted for by a reduction
of the energy deposited near the surface when bom-
bardment is along a channeling direction.!5:!8:1° Provided
that there is a ‘‘compensation” of this orientation
effect,® random slowing down of the 7on can be assumed
when the sputtering yield of a polycrystal is calculated.®
The anisotropy of the ejection pattern is consistent with
the assumption that those collisions that lead to actual
ejection of an atom are governed by the regular surface
structure.!® There may be a contribution of focused
collision chains to the sputtering yield that will not
average out in case of a polycrystal. If this contribution
were substantial, the sputtering yield of a polycrystal
would be greater than that of an otherwise identical
amorphous target. It has been pointed out!® that the
contribution is small, first of all since no appreciable
temperature dependence of the experimental sputtering
yields of polycrystals®:® has been found. Single-crystal
yields® are inconclusive, since the temperature depen-
dence found there is sensitively anisotropic, and thus
dominated by the ion, rather than the ejection charac-
teristics. An important point is the observation that in
single crystals sputtered by heavy ions at various
energies preferred ejection only accounts for a minor
portion of the sputtering yield.'”® Theoretical con-
siderations of two groups of authors!®:* gave roughly
identical results, but led to opposite conclusions,
since Lehmann and the present author assumed that
the maximum focuson range is of the order of 10 inter-
atomic distances or less at room temperature, while
Nelson and Jan assumed considerably longer ranges.
There is no reliable experimental information available
on focuson ranges. Computer simulation suggested only
a small contribution of focusons“35 to sputtering.
Most of Harrison’s" results, however, were produced
under conditions where focusons are not expected to be
significant.

In the present paper we make use of the working

® J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 34, No. 14 (1965).

3 R, S. Nelson, Phil. Mag. 11, 291 (1965).

#1. N. Evdokimov, V. A. Molchanov, D. D. Odintsov, and
V. M. Chicherov, Dokl. Akad. Nauk SSSR 177, 550 (1967)
[English transl.: Soviet Phys.—Doklady 12, 1050 (1968)].

# F. Schulz and R. Sizmann, (to be published); F. Schulz,
thesis, University of Munich, 1967 (unpublished).

# R. S. Nelson and R. V. Jan, Can. J. Phys. 46, 747 (1968).

% R. N. Schlaug, thesis, University of California, Berkeley,
1965 (unpublished).
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hypothesis that the sputtering yield of a polycrystal
can be calculated by assuming random slowing down
throughout the cascade. Otherwise there would only
be very few experimental sputtering yields of amorphous
oxides and liquids to compare with. The effect of
focusons will be included in a later paper, together
with a more detailed discussion of single-crystal sputter-
ing. It should be stressed that a consistent theory for
arandom target is an important and probably necessary
first step toward an understanding of sputtering of
crystalline targets, irrespective of the significance of
lattice effects.

In the present paper the emphasis is on sputtering
yields under various bombardment conditions, i.e., ion
beams over a large energy range at perpendicular or
oblique incidence, backward and transmission sputter-
ing, sputtering by radioactive or fission sources, and
neutron sputtering. Energy distributions and ejection
characteristics will be treated in a subsequent paper
(ID).

The basic transport equation that governs the
sputtering of a random target with a plane surface
will be derived in Sec. 2. The equation contains eight
variables, but it is reduced to an equation for the sput-
tering yield for several geometries in Sec. 3, whereby
five variables can be eliminated. In the same section,
the equation is reduced further to a set of integral
equations with only one variable by taking spatial
moments and expanding the angular dependence in
terms of Legendre polynomials. In Sec. 4 the input
quantities are discussed, and analytic solutions of the
moment equations are presented. A general sputtering-
yield formula is derived, and its implications are dis-
cussed. Section 5 deals with applications. The case of
homogeneous isotropic source is simplest and is dis-
cussed in Sec. 5 A. In all other cases it is necessary to
reconstruct spatial distribution functions from mo-
ments. The general procedure and application to trans-
mission sputtering and other possible experiments are
discussed in Sec. 5 B. Backward sputtering of thick
and thin targets is considered in Sec. 5 C.

2. BASIC EQUATIONS

For convenience we assume a target with a planar
surface. The results of the theory can be applied
directly to other targets like wires, etc., since the radius
of a wire is usually large compared to the dimensions of
a collision cascade. Microscopic deviations from a
planar surface will be discussed later.

Let us assume an atom starting its motion at a time
{=01in a plane x=0 (Fig. 2), with an arbitrary velocity
vector v. The basic quantity of interest is the function

G (x,vo,v,1)d*vedx (1)

which is the average number of atoms moving at time
¢ in a layer (x,dx) with velocity (v,,d%vo). The number
of atoms with velocity (vo,d*o) penetrating the plane
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x in a time interval ¢t is given by
G (2,v0,v,8)d*0] vo, | dt (2)

where v, is the x component of vy,
The sputtering yield for backward sputtering of a
target with a plane surface at x=0 is then

S=/d3v0;'1'03l/ dt G(0,vq,v,0), 3)
0

where the integration over d%, extends over all v, with
negative x components large enough to overcome surface
binding forces. Similarly, the yield of transmission
sputtering through a surface at x=d is given by

S=/d3v0vo,/ dt G(d,vo,v,1), 4)
0

where 9o, must be positive.
In an isotropic and homogeneous medium, the func-
tion G(x,vo,v,t) will satisfy Boltzmann’s equation

190 i)
—=—G(x,vo,v,l) ——G (x,vo,v,t) =N / do[G(x,vy,v,1)
ot dx

v

—G(x,V(),VI,[) "‘G(A‘,VO,V"J)] ’ (5&)
where (Fig. 3) v is the |v|, N is the density of target
atoms, do is the differential cross section [ =de (v,v/,v'’)
=K(v,v,v')d%'d%"], v/ is the velocity of scattered
particle, v’ is the velocity of recoiling atom, and
n is the v,/%.

Equation (5a) differs from the usual form?” in that
we deal with a ‘“forward equation,” where v is the
variable and v, a parameter, while the reverse is true
for the “backward” form used in neutron transport
theory. Another important difference is that we deal
with two “scattering” terms instead of only one, since
the effect of the recoiling atom has been taken into
account in the last term on the right-hand side.

Equation (5) is derived by a standard argument (see,
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F16. 3. Geometry of a single-scattering event: laboratory system.

for example, Refs. 21 and 22). Consider a particle
moving at {=0 in x=0. After a time 8¢, it may or may
not have made a collision. Hence,

G (x,v,vo,t) =Nvdt / do[G(x,vo,v' ) +G (x,vo,v"' 1) ]

+<1—-Nv6£ / do)G(x-—nvat, Vo, v, —0t).

The first term on the right-hand side expresses the
probability for a collision specified by v/, and v",
Nuvdtde, multiplied by the sum of the contributions to
G of the two collision partners, and integrated over all
possible collisions. The second term is the probability
for not making a collision, multiplied by the contribu-
tion to G of a particle with unchanged speed, but
changed initial position and starting time. After ex-
pansion of this equation in powers of &8/, Eq. (5a) is
obtained from the first-order terms.

We assumed two-body collisions between the atoms.
An extension to many-body collisions would be easy if
adequate expressions for the cross section were available.
Note, however, that no assumption is made that two-
body collisions are elastic. Thus, do in Eq. (5a) is
understood to contain electronic energy loss implicitly.

Equation (5a) applies to an ion of the same species
as the target atoms. For the more general case of an
arbitrary ion incident on a monatomic target we define
an analogous function G, (x,vo,v,f)d*vodx, which is the
average number of farget atoms moving as a conse-
quence of an 7on starting with v at =0 in x=0. If the
ion-target cross section is denoted by doay, we im-
mediately get

19 a
—=—G (¢ (.’X,V(),V,D ‘7]—_6(1) (.’U,Vo,v,l)
v Ot ox

=N / (10'(1)[6(1) (x,Vo,V,/)

—G(l) (x,VU,V,,t) "‘G(ZXZ,VQ,V”,!)] ) (Sb)
which is completely analogous to Eq. (3a), except that
G and not G, represents the recoil term. Thus, Eq.
(S5a) can be solved only if G has been found from
Eq. (5a).
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In the following, we shall disregard the existence of a
free surface in the calculation of G(x,vo,V,!). The
validity of this approximation depends on how often
atoms are scattered back and forth through an imagi-
nary surface in an infinite medium. This effect is assumed
to be relatively unimportant when compared with
slowing down of neutrons? and electrons,’® because
of the dominance of soft atomic collisions and rapid
stopping as compared with the neutron case, and be-
cause of the more favorable mass ratio as compared
with the electron case, all factors leading to more
straightened-out particle trajectories. Already in case
of electrons the effect appears to be small.?

In view of Egs. (3) and (4), we are only interested
in the function

F(x,vo,v) = / ) G (x,vo,v)di. (6)

F(x,vo,v) | voz| d®vp is the total number of atoms that
penetrate the plane x with a velocity (vo,d®s) during
the development of the collision cascade. F (x,v,,v) satis-
fies an equation that follows from Eq. (5a) by integra-
tion over ?:

1 d
~8(x)0(v—vo) —p—F (x,vo,v) =N / do[F (x,vo,v)
v ax

—F (x,vo,v)—F (x,vo,v"")].  (7a)
Here we have assumed that
G(x,vo,v,t=0)=058(x)d(v—vy),
representing one starting particle, and
G(x,vo,v,0)=0,

since at = oo, all atoms have slowed down below any
finite velocity .. For an arbitrary ion we obtain
similarly from Eq. (5b)

a
—na“Fu)(x,Vo,V);V/dtT(l)[F(l)(ﬁ’,Vo,V)
X

—F(l)(x,vg,v')—F(.v,vo,v")], (7b)
where F ) follows from Gy by integration over /. Note
that there is no source term, since at /=0 there are
no moving farget atoms.

3. EQUATIONS FOR SPUTTERING YIELD
AND MOMENT EQUATIONS

Equations (7a) and (7b) are rather comprehensive
but are not easy to solve, since there are seven vari-
ables. We will consider the general solutions in Paper
I1, but the present discussion will be restricted to the
calculation of sputtering vields. According to Eqs. (3)

3 L. V. Spencer, Phys. Rev. 98, 1597 (1955).
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and (6), the yield follows from Eq. (7a) by integration
over vy, so that we get rid of three variables.

We consider only backward sputtering for the mo-
ment and introduce the functions

H(wv)= / Boa]v0u | F (5, v0,Y) (8a)

and

H ) (x,v)= / d*vo| voz| F (1) (,¥0,V) (8b)

where the integrations over v, obey the conditions
170=j”o=/”$ 0,
Eo=%M2v022 U("Io) )

©)
(10)

and U (no) is a surface binding energy that, in general,
depends on the direction of ejection, characterized by
the direction cosine no. We have introduced the common
notation (Fig. 3)

Mi=mass of ion,

(11)

M,=mass of target atom.

The functions H(x,v) and H y(x,v) represent the
sputtering yields of a target atom or arbitrary ion,
respectively, for the case that the source is at x=0 and
the sputtered surface in the plane x. Thus, H (x,v) are
measurable in principle for x<0. Since we actually deal
with an infinite medium, these functions are also well
defined for x> 0.

We treat Eq. (7b) first. Multiplying both sides by
| v0-] and integrating over v, yields

i)
—3(x)n0(—mO(E—U (n)) —nb—xﬂ (x,v)
=N / do[H (x,v)—H (x,v)—H (x,v")], (12)

where E is the energy of the impinging particle,

E=iM.?, (13)
and
0(5)=1, for £>0
=0, for £<0. (14)

Obviously, in a random medium H (x,v) will depend
only on x, v, and 5, the directional cosine, but not on the
azimuth of v with respect to the x axis. Introducing

energy instead of velocity variables, we finally obtain
from Eq. (12)

a3
—3(x)mB(—n)0(E—U (n)) —v(;—H (x,E,n)
X

=N / do[H (x,En) —H (x,E' ') —H (%,E" '], (15)
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where E’, %', E”, and o'’ are the energies and directional
cosines (with respect to the x axis) of the scattered and
recoiling particle, respectively. The sputtering yield is
given by

S(E)n) =H(x= O,E;ﬂ) . (16)

In the case of transmission sputtering, the source term
in Eq. (15) reads +3(x)n0(n)6(E—U ()], and in Eq.
(16) we have to set x=d instead of x=0.

The standard procedure for solving this type of
equation is to expand the angular dependence of H
[and Hy] in terms of Legendre polynomials.?” This
expansion converges rapidly whenever the angular
dependence of the function in question is relatively
smooth. We know from experiment!—3 that the sputter-
ing yield does not show dramatic fluctuations as a
function of 7, at least for not too oblique incidence.?”+%8
We expand

H(x,E,n>=§0 Q+HDH(E)Pi(n),  (17)

where P;(n) are Legendre polynomials. We then insert
this expression into Eq. (15), and make the usual
transformations,?:25:27:36.% to get the following set of
equations for the coefficients H;(x,E):

d
X

—QIH+)N / doT H(3,E)— P (coss!) Hy(w, EY)

—Pi(cos¢”)Hu(x,E")], (18)

where

2141 0
QI(E)=—2—- (=n)dnb(E—Um)P:(n) (19)

-1

and (Fig. 3) ¢’ is the laboratory scattering angle of
scattered atom and ¢’ is the laboratory scattering angle
of recoiling atom. In case of transmission sputtering,
Qi(E) has to be multiplied by (—1)%

It is customary and convenient to go over to moment
equations, i.e., to multiply Eq. (18) by x* (n
=0,1,2,---), integrate over x, and introduce the

37 Recently, Evdokimov and Molchanov (Ref. 38) reported an
oscillatory behavior of the sputtering yield as a function of the
angle of incidence 6 on polycrystalline samples. This deviation
from monotonic increase with 8 occurred at angles above about
70°, and the explanation proposed by the authors invokes a
rearrangement of the surface layer of a polycrystal to form a
close-packed plane. Thus, the assumption of random orientation
of the crystallites is not valid, as far as the surface is concerned.
The explanation of the effect is therefore outside the scope of
random cascade theory. The possible rearrangement of the
surface layer may play a role in the determination of surface
binding forces and the angular distribution of sputtered atoms.

#1. N. Evdokimov and V. A. Molchanov, Can. J. Phys. 46,
779 (1968).

% K. B. Winterbon, P. Sigmund, and J. B. Sanders, (unpub-
lished).
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moments
Hp(E)= dx x"H(x,E) (20a)
and -
H y" (E) =[ dx x"Hu)z(x,E) . (ZOb)

At the same time we separate elastic from inelastic
(electronic) collisions by the scheme of Lindhard et
al.24 This yields

8,u0Qu(E)+nllH " Y(E)+(+1)H ™t (B)]
d E
= QIHDNS.(E)—H B+ QDN / do (E,T)

X[H(E)—Pi(cos¢”)H,"(E—T)

—Pi(cos¢’)H*(T)], (21a)

and, by an analogous derivation,

n[lH qayia" " (E)+ (+1)H gy (E) ]

d
= (2A+1)NS @ye(E)—H )" (E)
dE

LN f " dow (B,T)H wr(E)

T=0

—Pi(cos¢)H ay"(E—T) —Pi(cos¢)H,"(T) ], (21b)

where S.(E) and Suy.(E) are the electronic stopping
cross sections, do(E,T) and doq)(E,T) are the differ-
ential cross sections for elastic scattering, T is the recoil
energy, and

cos¢' = (1—T/E)!2
+3(A—Mo/M)(T/E)1—-T/E)™"2,
cos¢’' = (T/Tm)'?,
Thn=vE,
'Y=4M1M2/(M1+M2)2-

Note that in Eq. (21a), M1=M,, so cos¢’ = (1—T/E)'/?
and cos¢’’ = (T/E)'2.

Moment equations are useful only when there is a
procedure available to reconstruct a function of x from
its moments. Distribution functions of the present type
are often close to Gaussian shape, so that the Edge-
worth expansion*! in terms of Gaussians and derivatives
of Gaussians may be useful. This has first been recog-
nized by Baroody** and has been used successfully in
both range theory,?? radiation damage% and
sputtering.?®

4 J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, Kgl.
Danske Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 10 (1963).

4 H. Cramer, M. athematical M ethods of Statistics (Princeton
University Press Princeton, N. J., 1945).

4 E. M. Baroody, J. Appl Phys 36 3565 (1965).
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In deriving Eqgs. (21a) and (21b), we neither intro-
duced a bulk displacement threshold E4 nor a bulk
binding energy V lost to the lattice by a recoiling atom.
The latter quantity may not always be neglected,
especially in covalent crystals. In those cases the recoil
term H,*(T) in Eqgs. (21a) and (21b) has to be replaced
by H;»(T—V). Note, however, that in Refs. 5, 7, and
10, bulk binding energies had to be 1ntroduced since
the yield would otherwise have been infinite. This
indicates a basic inconsistency of these theories.
Obviously, energy conservation requires that even for
E4=0 and V=0 only a finite number of atoms can
penetrate to the surface and overcome the surface
barrier. The competition between surface and bulk
binding forces will be discussed in detail in II, since it
shows up in the energy spectrum of sputtered atoms.

Isotropic sources. Examples of isotropic sources are
radioactive atoms on the surface or in the bulk of a
specimen, and recoils from elastic collisions caused by
an isotropic flux of fast neutrons. The sputtering
yield of a source located at x=0, with the surface in
the plane z, is given by

1 1
S@E)= f dnH (v, En)=Ho(w,E),  (222)
-1

by averaging Eq. (17) over all directions of recoil
momentum. If recoil and target mass are different, we
have

Sw®E)=H ay(x,E). (22b)

Thus, both Hy(x,E) and H 1yo(x,E) are measurable
quantities.

4. ANALYTIC SOLUTIONS

Before attacking the problem of solving Egs. (21a)
and (21b) we have to specify the input quantities S,
and Sqye, do and do 1y, and the surface binding energy
U (no). For analytic calculations we need simple expres-
sions. Otherwise we have to solve the equations
numerically.

A. Electronic Stopping
When needed, we use Lindhard’s expressions? 4
S(E)=KE'"?, Swe(E)=KnE"?, (23a)

except when the ion velocity is so high that the Bethe-
Bloch formula® applies. The latter can be approximated
by

S(l)e(E) = const/E . (23b)
The constants K, K (1), and const depend on the atomic
numbers and masses of ion and target.?#

“ H. A. Bethe, and J. Ashkin, in Experimental Nuclear Physics,
edx;gg by O. E. Segré (John Wiley & Sons, New York, 1953),
p- X
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B. Cross Sections for Elastic Scattering

An especially useful choice is the power approximi
tion of the Thomas-Fermi cross section,? where

do=CE-"T-\-mqT,
doy=CmyE—"T+™dT,

(24a)
(24b)

and m is a number between 0 and 1. m=1 holds for
Rutherford scattering. Over a major portion of the keV
range and for medium-mass ions and atoms, m=3 is a
fair approximation, while in the lower-keV and upper-
¢V region, m=7} should be adequate. In the eV region
where the Thomas-Fermi potential overestimates the
interaction, a Born-Mayer potential may be appro-
priate, but even in this case, Eq. (24a) may be a reason-
able approximation if m is taken close to zero.*
The constants C and C ) are given by

C= %1(}\,,,0«222 (2Z2262/(1/22)2'" ’

C(l) = %7!')\,,,0122 (M1/M2)m(2Z1Z282/(112)2"’ s

(25a)
(25b)
where Z, and Z, are atomic numbers, @12 and a,. are

Thomas-Fermi screening radii, and \,, are dimensionless
constants equal to*%

M=0.5, A\p=0.327, \y;=1.309.  (26)

It will be convenient in the following also to charac-
terize collisions in the eV range by a power cross
section. For m=0 we get from Eqs. (24a) and (24b)

(l0'=CdT/T, d0'(1)=C(1)dT/T, (27)

and, if Eqgs. (25a) and (25b) were assumed to remain

10°, N
r €005 €=02
F €:002 /\ €=0.
r €001 \ / \ il‘
107"
! L
(12) |
10721~
L
102t el e
107 107 1072 107!

1
12

F16. 4. Comparison between differential cross sections for Born-
Mayer interaction (solid curves) and Eq. (27) (dashed curve).
f(*?), ¢, and e are defined in Egs. (31a)-(31c).

# P. Sigmund and P. Vajda, Danish Atomic Energy Commission
Riso Report Nos. 83 and 84, 1964 (unpublished).
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valid,
(28)
Iigure 4 shows a ‘‘Lindhard plot” of the cross section

(27) and that following from Born-Mayer interaction
between two atoms

Cléﬂ'/\u(lgzﬂ, (,'(I)J%W)\odlzg.

V(r)=Aderie, (29)

where 7 is the distance between the nuclei, 4 is a con-
stant, and « is the screening radius. Andersen and the
present author*> proposed

A=52(Z 7" eV, a=0.219 A. (30)

Classical scattering angles for the potential (29) have
been computed by Robinson,*® and the curves in Fig.
4 were found by numerical differentiation and plotting
the function

2012 do
e =——, (312)
wa? dt
where
t=eT/Tn (31b)
and
M, E
e=—— —. (31¢)
M+M. A

The Born-Mayer cross sections do not reveal quite as
nice ‘‘similarity” properties as Thomas-Fermi cross
sections,® i.e., the f(#/?) curves do not coincide for
different values of e. At high e energies, though, the
curves appear to converge toward a dependence
f(@#1%)=7.35045 that is equivalent to Eq. (24a) with
m=0.055. This value of m is indeed very close to zero.
Unfortunately the Born-Mayer cross section will be
needed at very small e where this asymptotic formula
would not be too accurate. The energies of interest
go well below ¢=0.005, the smallest energy for which
cross sections have been tabulated.*

At these energies, the validity of most existing
potentials becomes questionable, and so does the
concept of two-particle collisions. We choose the form
(27) that leads to f(#/2)=\y#'/2, first of all because
of its simplicity. For A\o=24 (dashed curve in Fig. 4)
one obtains a reasonable over-all fit at the lowest e
energies. Note especially that the constant 4 in Eq.
(29) does not enter the cross section. This removes a
major ambiguity, since 4 values for the same elements,
as given by different authors, differ by as much as
several orders of magnitude#* For the purpose of
numerical evaluations we replace Eq. (28) by

Co=3mAea®, No=24, a=0.2194,

(28')

% H. H. Andersen and P. Sigmund, Nucl. Instr. Methods 38
238 (1965) ; Danish Atomic Energy Commission Ris6 Report No.
103, 1965 (unpublished).

“ M. T. Robinson, Oak Ridge National Laboratory Report
No. ORNL-3493, 1963 (unpublished).
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in view of Eq. (30). From Egs. (27) and (28') we
obtain the center-of-mass scattering angle x as a
function of impact parameter p,

singx = exp(— p*/Noa?), (32)

i.e., heavy deflection for p<<av/A\¢ and small deflection
for p>>a+/No. The critical impact parameter av/Aq is
about 14, i.e., of the order of an atomic radius.
Robinson*” has reconstructed the ‘“‘potential” under-
lying the scattering law (32) and concluded that the
variation with energy and the deviation from exponen-
tial shape remain with the uncertainty of the potential
(29).

Apart from the differential cross sections, we need
the elastic stopping powers

CE1—2 m

Su(E) = / Lo = (33a)

1—m
and

Tm 1
S(l)n(E)=/ Tda(1)=1————C<1>‘yl”’"El_2"‘. (33b)
0 —m

These expressions can be used to define rough energy
limits within which cross sections for various values of
m apply, especially the limiting energy E* up to which
the cross section with m=0 is feasible. For I:>I'*| we
assume that m=1%, so

3\13 3/2M1+M2/1112 APAVAY
E*=( ) - ) (34’)

2)\0 Mg \ a

Q12

where E* is of the order of some hundred eV.

For m=0, the stopping powers (33a) and (33b)
become proportional to energy, so that, for example,
the total range of an ion or atom diverges. This will
not introduce any divergencies into the sputtering
calculation, but to make sure that no drastic over- or
underestimate of the sputtering yield is made, one
might prefer to use a low-energy cross section with a
finite value of m~0.05, as suggested by Fig. 4. Such a
calculation has been done, and the resulting change in
the absolute magnitude of the sputtering yield is
measurable, but small compared with the uncertainty
introduced by the lack of knowledge of surface binding
conditions.

C. Surface Binding Forces

Both the magnitude and the angular variation of the
surface binding energy deserve careful consideration.
Obviously, introduction of a bulk displacement energy
E4=25 eV and neglect of a surface binding energy?:7:10:48
must falsify the energy spectrum. There is little doubt
that atoms may be ejected at very few eV. In some

4 M. T. Robinson (private communication).

4 P. V. Pavlov, D.I. Tete’baum, E. I. Zorin, and V. I. Alekseev,
Fiz. Tverd, Tela 8, 2679 (1966) [English transl.: Soviet Phys.—
Solid State 8, 2141 (1967)].
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theories, surface binding was contained implicitly in
more comprehensive fitting parameters.®*!> The prob-
lem received attention in computer simulations of
sputtering,3% and Thompson'? pointed out that the
angular distribution of sputtered particles may be
sensitive to U(no). In single-crystal sputtering, U (no)
is one of the factors that determine the shape of spot
patterns.!®

There is little first-hand information available about
U (o). Evaporation data cannot be used tacitly in
sputtering, since evaporation appears to take place
from preferred positions, and since the energy necessary
for an atom to ultimately leave the surface is probably
transferred to this atom in several steps.* Possibilities
to determine U (no) from sputtering experiments will be
discussed in II.

Two basically simple surface conditions have been
used in previous theories. The first is the planar
potential barrier or work-function model, leading to

U(no)=Uo/né, (35)

since the energy component perpendicular to the surface
must be greater than the barrier height U, in order
that an atom can be ejected. The second is a spherically
potential barrier®

Uno)="U. (36)

While Eq. (35) is well established in many emission
phenomena, the author feels that its use in sputtering
is not justified without comment, despite frequent use
(for a review, see Ref. 35).

As an example, we consider the ejection of a surface
atom. U(no) is determined by the cohesive forces pro-
vided by neighboring atoms and conduction electrons.
Let us assume a simplified lattice model with only two-
body interactions between nearest-neighbor atoms and,
to be specific, consider the (100) surface of an fcc
crystal. We take the interatomic potential around the
equilibrium distance,

V(rij)=—Vot+ f(ri;—D)?, (37a)

where V is the bond strength, f the force constant,
and D the nearest-neighbor distance. For nearest-
neighbor interaction this lattice is stable, even at the
surface. Note that the cohesive energy is 6V, per atom®
and not 12V, as stated in Ref. 35. The surface atom in
question has the equilibrium position x=y=3=0 (Fig.
5). If the atom is part of an ideal surface, its eight
nearest neighbors (1-8) make up a potential in the
harmonic region,

W (x,y,8) = — 8V o+ f(2423y2+4322) , (37b)
where x is the direction perpendicular to the surface.

(14996(7}). A. Somorjai and J. E. Lester, Progr. Solid State Chem. 4,1

®R. M. J. Cotterill and M. Doyama, in Lattice Defects and
Their Interactions, edited by R. R. Hasiguti (Gordon and Breach,
Science Publishers, Inc., 1967), p. 1.
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F16G. 5. Geometry of ejection process; (100) surface of fcc crystal.

W (%,y,2) is the potential acting on an atom moving
away from its equilibrium position, provided that the
neighbors keep at rest. The interesting feature of Eq.
(37b) is that the force constant is smallest in the x
direction, which is in contrast to the assumption of a
planar potential barrier.

In a sputtering experiment, the surface will usually
be far from ideal. Let us neglect deformations, inter-
stitials, etc., and just look at W (x,y,z) for the case that
one or more of the four nearest neighbors in the surface
(atoms 1-4 in Fig. 5) have been removed. We obtain:
one neighbor removed:

W (,9,2) = — TV o f (224 §oP-+ 3£ 92);
two adjacent neighbors removed:
W (x,y,2) = — 6V o+ f(2424-2y*4-227) ;
two opposite neighbors removed:
W (x,9,2) = — 6V o+ f (2224 2y2+22°£ 2yz)
three neighbors removed:
W (%,9,2) = — 5V o+ f 2224394322+ y2) ;
four neighbors removed:
W (x,9,2) = —4V o+ f (2224 y*+27) . (37g)

In Eq. (37g), the atom is located on top of an ideal
surface, like an adsorbed atom. The potential barrier
decreases from 8V, in Eq. (37b) to half that value in
Eq. (37g), and the force constant becomes relatively
greater in the x direction from Eq. (37b) down through
Eq. (37g).

Equations (37) should not be overinterpreted.
Obviously, all the simplifications made in the deriva-
tion tend to eliminate the more collective part of surface
binding forces, such that Eq. (36) seemed more appro-
priate than Eq. (35). But we want to make the following
conclusions:

(37¢)

(37d)

(37¢)

379)

(1) Equation (35) is not as accurate—and Eq. (36)
not as unphysical—as one might suspect.

(2) There will, in general, be a distribution of binding
energies U.

(3) The average surface binding energy may depend
slightly on the crystal surface considered and on the
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state of damage of the surface. This might explain
part of the observed dose dependence of the sputtering
yield,! but may interfere with other dose effects.

We shall go into more details—such as investigating
other crystallographic surfaces—since this model cannot
in any respect compete with a careful computer simula-
tion of the ejection process. Such a study is being done.*
Note that atomic binding forces were not included in
any of the previous computer simulations of sputter-
ing.14.35.48.52

In the following, we assume that the most realistic
expression is indeed Eq. (35), at least for metals, with
U, equal to the cohesive energy per atom or the mea-
sured sublimation energy. But in order to check the
sensitivity of the sputtering yield to U(n,) we make a
parallel calculation with Eq. (36).

D. Zero-Order Moments

This subsection and the following one are devoted to
the solution of Egs. (21a) and (21b) with the input
quantities introduced in the two previous paragraphs.
While the complete solutions would be difficult to
obtain, and would not be convenient for further use,
it turns out that only very few of the H,*(E) are signifi-
cant in the limit of high ion energies, i.e., £>U,. Since
Uy is of the order of a few €V, we have to assume that
E is greater than 100-200 eV. Hence, sputtering near
threshold is excluded from consideration. The assump-
tion that £3>U, will be applied consistently, and only
the terms with the highest power of £/U, will be taken
into account in each order #. Equations (21a) and (21b)
have not been treated previously in connection with
ion slowing down, but they are similar to other sets
of equations that have been solved by use of power
cross sections.?—25.39.40.83,54 The key reference is the
thesis of Sanders,? but contrary to Sanders, we calculate
exact asymptotic solutions that are found by Laplace
transform.®

For n=0fEq. (21a) reads

E
Qu(E)=(A+1)NCE™ | ——
0 T1+m
X[HL(E)—P((1-=T/E))HLM(E—T)
—P((T/E})HXNT)], (38)

where we assumed S.(E)=0 for the moment, and in-
serted do from Eq. (24a). With surface binding from
Eq. (35), we obtain the following expressions for the

8t D. Jackson (in preparation).

#2D. T. Goldman, D. E. Harrison, and R. R. Coveyou, Oak
Ridge National Laboratory Report No. ORNL-2729, 1959
(unpublished).

@ J. B. Sanders, Physica 32, 2197 (1966).

8 P. Sigmund, Radiation Effects 1, 15 (1969).
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source terms (19):

Qu(E)=1(1—-U/E), (39a)
Q1(E)=3[—1+ (Uy/E)**], (39b)
Q2(E)= (5/16)[14-2Uo/E—3(Uo/E)*],  (39c)
Qs(E)= (1/4)[— (U/E)}**+ (Uy/E)*?].  (39d)

Equations (39a)-(39d) hold for E>U,. For E<U,,
we have Q;(E)=0 and hence
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Equation (40) is trivial but important for the mathe-
matical solution of Eq. (38).

With the alternative surface binding condition (36),
we would retain only those terms that are independent
of Uy/E in Egs. (39a)-(39d).

The procedure of determining the leading terms of an
asymptotic expansion in powers of E has been described
in great detail by Robinson® on the example of the
Kinchin-Pease equation of radiation damage theory.
Therefore, we only present the results of our calcula-
tion, which is straightforward but somewhat lengthy.
Writing only terms with positive powers of E, we

HY(E)=0, for E<U,. (40) arrive at the expressions
m E 1 Em
HY(E)~ } , (41a)
Y1) —y¢y(1—m) 1—2m 8NCU2?" —1/m—B(—m,2m) 8NC
—1 m E\2 1 Em
H’(E)~ + ) (41b)
Y(0)—¢(1—m) 1—4m ANCU 22 1/m~+2/ (142m)+B(—m, 342m) 6NC
1 E2m
HA(E)~— ) (41c)
1/m~+3/(1+m)+3B(—m, 2+2m)+2B(1—m, 2m) 8NC
HL(E)~0. (41d)

The functions B(£,7) and ¢ (£) are the 8 function and
the digamma, function

B(&m)=T(ETm)/T(E+0),
¥(8)=(d/d) InT'(£).

Which of the expressions in Eqs. (41a)-(41c) is the
leading one depends on the value of m. For m=0, i.e.,
E<E*, we obtain

(42a)
(42b)

1
H (E)~m R (43a)
1 B

Bo(E)~ 40’ (1) NCoUg 2 (436)
HE)~HH(E), (43¢)
~0, (43d)

where Cy is given by Eq. (28'), and
V(&)= (d/de(®), ¥ (1)=3%= (44)

The constant terms were dropped in Eqgs. (43a)-(43d).
Obviously, the term H(E) is leading, and the only one
to be taken into account for m=0.

It is a very central point of the calculation that the
term H’(E) is leading at all energies E>>U,, and that it
has the same asymptotic form, Eq. (43a), i.e., that we
have to insert m=0, even at energies E> E* where the
scattering of the ion is governed by a cross section with

m>%. Both a physical and a mathematical argument
are presented to prove this point.

Let us first discuss the meaning of the moment
H(E). According to Eq. (22a), the function H(x,E)
determines the sputtering yield from a surface in x of
an isotropic source located in x=0. According to Eq.
(20a), the moment H(E) is the integral of H(x,E)
over all #, i.e., determines the number of atoms pene-
trating a plane at an arbitrary position x with a certain
minimum energy, when there is a homogeneous isotropic
source of recoiling atoms throughout an infinite medium.

The first term in H°(E), according to Eq. (41a), is
proportional to (E/Uo)(U#"/NC), where E/U, is,
roughly, the number of atoms per ion that is set in
motion with an energy greater than U,, and Ug@™/NC
is, apart from a factor, the range of an atom with
energy Uo. Obviously, the latter quantity is determined
by the scattering law valid at E=U,, i.e., m=0, while
the former quantity is insensitive to the scattering law
of the high-energy ions.

The second term in Eq. (41a) is proportional to
E*m/NC, which is the range of a particle of energy E,
apart from a factor. This term obviously determines
the probability that the ion itself penetrates the plane
under consideration. Hence, one has to insert those
values of 7 and C that are appropriate at the energy E.
For m>3, the second term could compete with the
first one. Numerically, however, the second term is
negligibly small. Let us assume a medium mass target
so that the range E*"/NC is of the order of 100 A at
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100 keV where m=21. The range (U¢"/NC)m—o is of
the order of 1 A, while the factor /U, is about 10*-10°.
Thus, the ratio between the two competing terms is
about 100-1000, and does not depend on E for m=3.
At high energies, inelasticity reduces both terms, while
at lower energies the situation of Eq. (43a) is
approached.

Once the second term in Eq. (41a) is neglected, we
also have to drop the second term in Eq. (41b). The
first term in Eq. (41b) must be dropped since it is
smaller by a factor of (U,/E)!/? than the leading term.
Similar considerations apply to the moments for /> 2.

The observation may be of interest that quantities
characterizing low-energy recoils (Co,L o) enter only the
terms H(E) and H{*(E), while quantities character-
izing the ion enter both H(F), H*(E), H(E), and
some of the higher moments H,°(F2). This is related to
the fact that the velocity distribution of low-energy
recoils is essentially isotropic, apart from a weak
anisotropy required by momentum conservation”? and
expressed in the /=1 term, while the velocity distribu-
tion of the ion is anisotropic during the slowing-down
process.

The second proof of Eq. (43a) for m>0 is is purely
mathematical. Let us consider the last integral in
Eq. (38) for I=0, i.e.,

E dT
/ HI(T).
Uo T1+m

For E> E*, we have m=3}. The integral is split up into
the region U< T<E* where H?(T) is known from
Eq. (43a), and the region E*<T<XE, where H(T)
is unknown. The second integral in Eq. (38) is split up
in a similar way. The method of Laplace transform
can then be applied to calculate the asymptotic solu-
tions of Eq. (38) for EX>F*. The calculation is straight-
forward and completely analogous to a previous one on
the Kinchin-Pease equation.® As a result, one obtains
Eq. (43a) as the leading term of the asymptotic
expansion.

None of the considerations in this subsection is
bound to the assumption that m is exactly equal to
zero at small energies. Should m be slightly greater than
zero, the expression for H(E) has to be calculated
from Eq. (41a).

When H(E) is determined on the basis of the surface
binding condition (36) instead of (35), one obtains
twice the value given in Eq. (43a). This doubles the
calculated sputtering yield.

The effect of electronic stopping S.(%) on HP(E) is
readily included. Since H*(E) is proportional to E, for
elastic scattering, and since the integrand in Eq. (38)
for /=0 has the form discussed by Lindhard ef al.,% we
can take over their result and replace £ by »(E), so
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that
)

1
H"(F)=— ) C))
8y'(1) NCoU,
where v(E)/E is the fraction of the energy that is not
lost to ionization during the slowing-down process.
Both analytic and numerical estimates of this function
are available for M= M,.4
We now consider the solutions of Eq. (21b) for
M #M,. For n=1=0 and Sy).(F)=0, Eq. (22b) reads

O'—‘/110(1)[H(1)00(E)—H(l)oo(E—'T)-—II()O(T)]. (46&)

Inserting H(F) from Eq. (43a), and neglecting the
condition
for E<U,

H 1y (£)=0, (46b)

that follows from Eq. (40), the linearity of HO(E)
with E shows that
Huy(E)=H(E) (47a)
must be the solution of Eq. (46a), independent of the
form of do(1). By inserting doy from Eq. (24b), and
getting proper solutions by taking into account Egs.
(40) and (46b), one arrives at the result that Eq.
(47a) is exact in the highest order in E.
When electronic stopping is included (i.e., S, in H

and Sqye in H (1)), one can again take over the results
of Lindhard ef al.,* so that

1 vy (E)
&/ (1) NColUy

H ' (E)= (47b)

The function »q)(E) has been calculated for a few
examples,” and a computer code exists at Aarhus
University that can tabulate vy(E) for any desired
ion-target combination. Both »(E) and v, (E) were
calculated on the basis of the comprehensive Thomas-
Fermi cross section rather than the power cross sections,
Eqs. (24a) and (24b). It is both justified and consistent
to use these results in the present connection, since
the cross section for high-energy ions—for which
electronic stopping is important—does not enter Eq.
(43a).

Finally, we have to estimate the effect of a bulk
binding energy V on the solutions of Eq. (38). As
mentioned previously, the recoil term H,°(7) has to be
replaced by H.°(T—V). Direct solution of Eq. (38) is
not very convenient, then. An easier way is to go
over the velocity distribution function F (x,v,,v) defined
in Eq. (6). This function will be of central interest in
II, and since we will not make much use of H 0 (£) for
V70 in the present paper, we only mention the results
and refer to II for a derivation. Keeping the surface
binding condition (35), one has to make the following
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substitution in Eqgs. (43a), (45), and (47b):

1 1 Uy 21
L ~[<1+_> 1n<1+—> - 1] s
UO V 2V L’YO

With the surface binding condition (36), the proper
substitution is

1/Ue— (1/V) In(14+2V /).

Both expressions are exact for V<< U, and very accurate
for V £2U,, while they are inaccurate for V>>2U,.

(48b)

E. Higher Moments, General Sputtering-Yield
Formula, and Depth of Origin
of Sputtered Atoms

With the substitution

H(E)= (3/4x*) (NCoUo)'F i (E) , (49)
Eq. (21a) reads for, n>1,
P " (E)+n(+1)F " Y(E)
d
=(21+1)NS,,(E)EF,"(E)+(2H—1)N / do
¢
X[F " (E)—Pi(cos¢”)Fi*(E—T)
—Pi(cosg”)F(T)], (50a)
and from Egs. (44) and (45)
FME)=8w(E). (50Db)

Equations (50a) and (50b) determine moments of the
depth distribution of deposited energy F(x,E,n), where
F(x,E)dx is the amount of energy deposited in a
layer (x,dx) by an ion of energy E starting in x=0,
and all generations of recoil atoms. Equation (50b) is
the normalization

/ dxF (x,E ) =v(E). (50¢)

The function F(x,E,) has been introduced in Ref. 24,
with the slight difference that the vector distribution
was considered there, while we deal with the depth
distribution here. This causes different coefficients of
Fyp,»! and Fi1"! on the left-hand side of Eq. (50a).
The two distributions can be transformed into each
other, and an extensive study of both distributions for
elastic scattering [v(E)=FE] is being finished.®® Aver-
ages (x™) for n=1, 2, and 3 over F have been published
for elastic scattering,* and distribution functions have
been reconstructed from the averages.?® Hence, we only
discuss those features of F that are important for the
understanding of the present applications. For details
the reader is referred to Refs. 24 and 39.
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The most important property of F is that it depends
only on the slowing-down characteristics of the primary
particle and high-energy recoil atoms. The depth
distribution of deposited energy extends over a distance
of the order of the ion range. Therefore, it is not in-
fluenced by the ranges of low-energy recoils. For the
same reason, one is justified in neglecting the cutoff
energy U, that arises from Eq. (40) in the integral
equation (50a) and in neglecting the bulk binding
energy V in the recoil term F;*(T). Asymptotic expan-
sion for large F of the correct equations?3® shows that
neither Uy nor V enters the highest terms.

Going back from the moments in Eq. (49) to the
distribution function, we obtain

3 F(x,Em)
]1(1:1’1717):—*——‘—7 (51a)
47l"2 IVC()L'Y()
and from Egs. (21b), (47a), and (47b),
3 F(l)(xyE)n)
Hy(,En)=——"""—, (51b)
42 NC,U,

where F 1y (x,E,n) is the deposited energy distribution
for M1 M ,. Also, this function is known from previous
work.24¥ H and H (1) as given in Egs. (51a) and (51b)
determine the sputtering yield for a surface at x and a
source at x=0. The orientation of the surface (backward
or forward sputtering) does not make any difference,
since only the /=0 term was taken into account in the
zero-order moments.

We now rederive the sputtering-yield formula (51a)
on a more qualitative basis that makes clear the various
steps that make up the sputtering process. The argu-
ment also holds for Eq. (51b).

(1) During the slowing down of the ion and energetic
recoil atoms, a certain amount of energy F(x,E,n)dx
is deposited in a layer (x,dx) near the surface of the
target. This energy is bound to remain in this region,
since it is stored in kinetic energy of very slowly
moving atoms.

(2) The number of low-energy atoms that are set in
motion with an energy (Eo,dE,) follows from the
recoil density®® by multiplying the amount of energy
available with a factor

m dEo
V)= (1—m) E¢
Hence, for m=0, the expression

6 F(x,E,n)
" B dx,

w2 E¢

EoLE (52)

gives the number of atoms recoiling with an energy
(Eo,dEo) in a layer (x,dx).

 P. Sigmund, Appl. Phys. Letters 14, 114 (1969).
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(3) Half of these atoms move toward the surface,
and their velocity distribution is isotropic for E&E.
The number of atoms that initially have energy enough
to overcome the surface barrier is found by integrating
Eq. (52) and taking into account the surface binding
condition Eo>U (7o), Eq. (35). This yields

1 F(x,En)
— -(—dx (53)
1I'2 Uo

atoms that satisfy the conditions for sputtering initially.

(4) If the depth Ax from which the sputtered particles
come is small, one may neglect the loss of energy
between the points of origin and the surface. Then,
the sputtering yield becomes

1 F(x,En)
H(xEn)=——""
7I'2 Uo

Ax. (54)

Comparing this expression with Eq. (51a), we obtain
Axz=%(1/NC,) (55)

for the effective depth of origin of the sputtered atoms.

From Eq. (28') one obtains Ax=4.8 A for copper.
Note that, as it stands, Ax depends only on the density
of the target. When the energy loss between the point
of origin and the surface is not neglected, one obtains a
slightly larger value for Ax.

F. General Yield Formula

Equations (51a) and (51b) make possible a clear
distinction between those features of the sputtering
yield that can be predicted with good accuracy from
collision theory and other features where one would
expect uncertainties.

The function F(x,E,n) is determined by Egs. (50a)
and (50b), which require electronic stopping and the
differential cross section as input quantities. Except for
the case where the oz energy is in the eV range, both
quantities are known with reasonable accuracy, and
current experimental and theoretical work will certainly
clarify some of the open questions in the near future.
Also, the assumptions of two-particle scattering and
random slowing down are justified, unless bombard-
ment is done under channeling conditions. Therefore,
the problem of determining F (x,E,n) is reduced to the
purely mathematical problem of solving Eq. (50a) and
reconstructing the function from its moments, prefer-
ably by dropping the assumption of an infinite medium
and introducing a surface without binding forces.?® At
least for elastic collisions, the problem of calculating
F (x,E,n) has been solved with reasonable accuracy,24:28.3
but only for an infinite medium. These results will be
used in Sec. 4 G. For inelastic collisions, Eq. (50a) has
to be solved numerically, except in some simple cases
that will be discussed below. The coding is being done,
but no results are available yet.
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Assuming that F and F (1) can be calculated properly,
one concludes from Egs. (51a) and (51b) that the
dependence of the sputtering yield on ion fype, energy,
and angle of incidence and the relation between back-
ward and transmission sputtering (x=0 or d) can be
predicted accurately by collision theory.

The other quantities occurring in Eq. (51a) charac-
terize the target only. The following uncertainties should
be mentioned:

(a) The assumptions of random slowing down and
of binary collisions may break down at low energies.
There may be a small contribution from focused colli-
sion sequences. The quantitative effect on the sputtering
yield will depend on the target.

(b) The rather uncertain low-energy cross section
as defined by Eqgs. (27) and (28’) affects the numerical
factor in front of Eq. (51a), the value of Cy (that may
depend on the target), and the accurate dependence
on U 0.

(c) The surface binding condition (35) affects the
numerical factor in front of Eq. (51a); the value of U,
is not known from first principles but determines the
magnitude of the yield. Further uncertainties arise
when a bulk binding energy is introduced [Egs. (48a)
and (48b)7].

(d) Also, the assumption of a planar surface may
influence the magnitude of the yield. So long as surface
roughness is on a scale that is small compared to the
dimensions of the cascades, its effect on the sputtering
yield will often average out. Surface roughness on a
larger scale, however, will tend to increase the yield.
The quantitative effect depends on the geometry and
can be estimated when the shape of the surface is
known.

(e) The assumption of an infinite medium may also
affect the flux of low-energy recoils.

There is no way at present of getting an estimate of
the cumulative uncertainty from the above points, but
one has to expect an a@ priori uncertainty of at least
a factor of 2 in either direction. On the other hand, it
will turn out that in almost all those cases where
measurements done by several groups provided reliable
sputtering ratios, the apparent accuracy of Egs. (51a)
and (51b) is much better (~20-30%). This good agree-
ment is nof achieved by adjusting any of the available
input parameters, but may be due to cancellation of
errors. Possible procedures to determine the material
factor (3/4x2)/NCoU, accurately will be discussed in
Sec. 5 A.

G. Relation to Previous Theories

Qualitative arguments of the type discussed in Sec.
4 E have been used previously to derive yield formu-
las.®7 Because of the introduction of bulk instead of
surface binding energies (Es=~25eV, U,=3eV for
noble metals), the number of atoms set in motion was
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relatively small. Therefore, in fitting experimental
sputtering yields, one had to assume rather long “diffu-
sion” paths of the atoms prior to ejection. Brandt and
Lambert,”® in an elaborate mathematical treatment,
also introduced bulk binding energies, and furthermore
described the stopping of low-energy recoils by the
Thomas-Fermi cross section® that yields much smaller
stopping distances in the 10-100-¢V range than the low-
energy cross section used in the present work. One
would expect, therfore, that the final yield formula of
Brandt and Lambert underestimates the sputtering
yield by at least an order of magnitude but, in fact,
their yield formula shows good agreement with some
experimental data. The author was unable to trace
out which additional assumption in the theory can-
celed this discrepancy.

More or less explicitly, many theories of sputtering
by ion beams?®7-10.12.13,15,19 assumed that only the first
collision undergone by the ion gives rise to a cascade
that eventually leads to sputtering. From that, by a
simple path-length argument, the angular dependence
of the yield was supposed to follow a 1/9=1/cosq
dependence. We will see later that there are substantial
deviations from this result at all mass ratios except
for M << M,. If the energy deposited in the first collision
is assumed not to propagate away on a larger scale,
one can insert the elastic stopping power S.(E) of the
ion for the deposited energy in Egs. (51a) and (51b).
This approximation is only justified in some limiting
cases that will be discussed below, since recoiling atoms
may have considerable ranges. However, the stopping
power can enter in many ways into a yield formula,
both by qualitative and quantitative arguments. Since
S»(E) is known over a large energy range with reason-
able accuracy,” one would expect that for a given
ion-target combination, any yield formula of the form
S(E)=bS,.(E) can be fitted to experimental data by
use of only one adjustable parameter 6. Thus, the varia-
tion of the yield with ion mass and angle of incidence
is a better criterion for the validity of a yield formula
than the yield-versus-energy curve for a specific ion-
target combination.

Onderdelinden*® and Joyes! treated energy deposi-
tion as a two-or three-step process, respectively. This
is probably justified, since energy has degraded consider-
ably in the second or third generation of recoil atoms.
However, the mathematical treatment for realistic
cross sections'® (Joyes! assumed hard-sphere scattering)
is almost as complex as the treatment of all steps, which
is based on the integral equation.? Despite this, we will
use two-step arguments in some applications later.

Onderdelinden*® also introduced a characteristic
depth xo; the energy deposited within xo was assumed
to be responsible for sputtering, so that, roughly, for
an ion range R smaller than x,, all energy is available
for sputtering [S(E)aE], while for R>xo, only the
portion deposited within x, is of interest [S(E)
aSa(E)xo]). The depth xy was used as a fitting param-
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eter. For Cu, x,=80 A, and for Au, x,=150 A. For
Art-Au bombardment, the energy of transition Ej,
between the linear and the nonlinear regime of the
sputtering-yield curve is below 1 keV, according to
experimental data.! Onderdelinden calculated E;=~4
keV. Even at this energy, the average projected
range?*% is only about 20 A. The origin of the dis-
crepancy between this value and the above 150 A
seems to be the basic assumptions underlying the fitting
procedure. We will see at the end of the paper that the
depth responsible for sputtering is nor constant, as
assumed by Onderdelinden, but a certain fraction of
the ion range, i.e., it increases with energy. The yield-
versus-energy curve becomes linear at low energies

because the stopping power is essentially linear [Eq.
(33a) for m=0].

5. APPLICATIONS

This section deals with the application of the yield
formulas (51a) and (51b) to various geometries of
sputtering experiments. Emphasis will be laid on
possible experimental arrangements to give independent
measurements of the two major components of Eq.
(51a): the deposited energy distribution F(x,E,) and
the factors depending on target properties. This pro-
cedure has the effect that yield-versus-energy curves
for backward sputtering by eV and keV ion beams will
be discussed only at the end, although these measure-
ments have been most frequent in experimental work.

The index (1) that distinguishes between the equal-
and non-equal-mass cases will be dropped from now on,
except in Sec. 5 C a iii.

A. Homogeneous Isotropic Sources

In this section we consider the sputtering by energetic
particles from an isotropic source that is distributed
homogeneously within a target.

Let us rewrite Eq. (51a) in the form

H(x:Ef’l)': AF(x;E;"]) ) (563')

and let us forget, for the moment, that we have cal-
culated the value of

3 1 0.0420

A=— = 56b
47!'2NC0U0 NU0A2 ( )

by use of a number of assumptions. According to the
discussion in Sec. 4 F, A is a property of the target
material and the state of the surface. In view of the
uncertainties discussed there, accurate measurements
of A would be desirable. It will turn out that homo-
geneous sources are the most suitable tool for this
purpose.

We consider an infinite medium with a homogeneous
isotropic source of recoiling atoms in the half-space
20 and an activity of T' recoils per unit time and
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volume. From Eqs. (22a) and (56a) we obtain the
number of atoms sputtered into the half-space x<0
by a recoil at y>0:

S(xaE)=H0(—x7E)=AF0(—x7E) )

where F, is the zeroth coefficient of the Legendre
polynomial expansion of F(x,En). Let ® be the total
number of sputtered atoms per unit time and surface
area. Then

(57)

0

=T / S(x,E)dx=AT / Fo(—x,E)dx. (58)
0 0

Since F, is the depth distribution of deposited energy
for an isotropic source, we have Fo(—x,E)=Fo(x,E).
Hence,

% 1 =
/ P = E)ds=- / Fo(, E)dx=3F0(E) =}v(E),
0 —o0

by use of Eq. (50b). This yields

®=1ATy(E). (592)

For a finite specimen with dimensions that are large
compared to the radius of the collision cascades, one
obtains the sputtering yield S per primary particle

S=3IAQ/W)v(E), (59b)

where Q is the surface area and W the volume of the
specimen. Equations (59a) and (59b) do not contain
quantities that depend on the spatial distribution of the
collision cascade and are independent of the macro-
scopic shape of the specimen. It should be possible to
use Eq. (59a) or Eq. (59b) to determine both A and
v(E). Note that »(E)=E in the elastic collision region.

a. Radioactive Targets

Let us assume a silicon target doped homogeneously
with Rn?2 atoms at a concentration ¢ (dopants/atom).
The energy E of the a particles is £,=15.5 MeV, while
the recoiling Po®® nuclei have E,;~100 keV. With the
half-life 7, Eq. (59a) yields

/ ' ®(1)dt=1NcA[vi(E)+rvo(Es)], (60)

0

where v1(E) and »:(E) apply to a particles and Po2?#
atoms, respectively. From Lindhard ef al., we have
v1(E1)=12 keV, while vy(E,) is slightly smaller than
E,, around 90 keV. For a rough estimate, we insert
Eq. (56b) for A. With a dopant concentration of 1073,
one obtains about 10 sputtered atoms/cm? within the
half-life of r=3.8 days. (Concerning the surface binding
condition of Si, see the discussion in Sec. 5 C.) The
amount is large enough to be detected by tracer tech-
niques. The significance of sputtering for the high
volatility of o emitters has been pointed out by Riehl
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and Sizmann.’® In their experiments, the activity was
concentrated on the surface, so that only sputtering by
the recoiling nuclei played a role. The present example
shows that in homogeneously doped specimens the
contribution from « particles is still small but not
negligible.

b. Neutron Sputtering: Total Vield

The conditions underlying Eq. (59b) are satisfied if a
target is immersed into an isotropic flux of fast neutrons
in the core of a reactor. A neutron that hits the target
creates Néo, primary recoiling atoms in the average,
where o, is the total neutron cross section and & the
average distance that a neutron travels through the
target. Hence, the number of atoms sputtered from
the whole surface is given by

S=2A¢gNo.(»(E)), (61a)
where

g=5Q/4W (61b)

is a geometric factor that is equal to unity for a spherical
specimen, and (v(E)) is the average of »(E) over the
spectrum of recoil energies. For a spherical target, Eq.
(61a) will also be applicable to beam experiments. For
other targets the factor g depends on the orientation
of the beam with respect to the target. For an order-of-
magnitude estimate of the yield, we set g=1 for both
in-pile and beam experiments.

The quantity (»(E)) has been calculated in connec-
tion with radiation damage studies.’”%8 For reactor
irradiation, (v(E)) depends on the neutron spectrum.
For gold, with the spectrum of the Munich reactor,
Kohler and Schilling®” calculated (v(E))=4keV for
both elastic and inelastic neutron scattering events."
The total cross section is ~6 b in the energy region of
interest. Inserting Eq. (56b) for a rough estimate of the
yield, we obtain S=1X10"5 sputtered atoms per fast
neutron (>0.1 MeV) for this particular reactor spec-
trum. For a pure fission spectrum, the expected yield
is more than twice as high. For a 14-MeV neutron
beam, one expects a value between 10~ and 103
atoms per incident neutron.

Measurements have been done by several groups.
Norcross et al.% report S= (1.08-£0.3) X 10~ from in-pile
measurements; Keller and Lee® got yields as high as
S=1 with a Pu-Be source (=4.2 MeV), a result that
was withdrawn later. Keller,% with a minimum resolu-
tion of S=6X10"*, did not detect any sputtered atoms

% N. Riehl and R. Sizmann, Radiochim. Acta 1, 44 (1964).

57 W. Kohler and W. Schilling, Nukleonik 7, 389 (1965).

%8 P. V. Thomsen (unpublished).

% In their evaluation, Kshler and Schilling (Ref. 57) did not
make use of the Lindhard »(E) function, but used a much less
accurate expression. This inaccuracy, however, is insignificant in
the case of gold, because the maximum recoil energy is well
within the elastic collision region.

% D. W. Norcross, B. P. Fairand, and J. N. Anno, J. Appl. Phys.
37, 621 (1966).

81 K. Keller and R. V. Lee, J. Appl. Phys. 37, 1890 (1966).
@ K. Keller, Plasma Phys. 10, 195 (1968).
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when using a 14.1-MeV neutron beam, and Garber
et al.® report S=3X107* on a single crystal, also with
a 14.1-MeV beam. All data refer to gold, but scatter
too much to allow a detailed comparison with experi-
ment.

Equation (61a) also applies to thermal neutrons,
when the cross section for (n,y) processes is inserted
for o,. The quantity (v(E)) can then be replaced by
{E), since (n,y) recoil energies are small (<1 keV).
The relative importance of fast and thermal neutrons in
sputtering is the same as in radiation damage, because
both quantities are proportional to the factor ¢, (v (E)).
The connection to radiation damage has already been
pointed out by Taimuty.%

¢. Fission Sources

In a target doped with fissioning nuclei, Egs. (59a)
and (59b) determine the number of ejected target
atoms if »(E) is replaced by (vi(E1)+vs(E2)), where
the indices 1 and 2 distinguish between the two fission
fragments, and the average is taken over the distribu-
tion of fragment masses. One can relate the sputtering
yield to the number Sz of escaping fission fragments
per unit time and volume. Fluegge and Zimen®® deter-
mined the escape probability P for a particle with a
well-defined range R to be P=%(Q/W)R. Hence, the

ratio
S (n(E)+ve(Es))
—=2— (62)
Sr (Ri(ED)+R(E))

gives the number of ejected atoms per escaping fission
fragment. R;(E;) and R,(E,) are the ranges of the two
fragments, range straggling being neglected. For
uranium, Nilsson® reports an experimental value of
S§/Sr=43, while earlier measurements of Rogers and
Adam®? gave about 2000. The value of Nilsson® has to
be corrected by a factor of %, since he assumed an
escape rate of P=%(Q/W)R in his data treatment
instead of the above value. With a calculated®® (»,(E;)
+v2(E2))=8.7 MeV, a measured® (R;(E;)+R:(E,))
=19 mg/cm? and Eq. (56b) for A (U¢=5.56 eV ), we
obtain S/Sr=28. This agrees with Nilsson’s corrected
value of §/Sr~22 within experimental error.%.7

% R. I. Garber, G. P. Dolya, V. M. Kolyada, A. A. Modlin, and
A. L Fedorenko, Zh. Eksperim. i Teor. Fiz. Pis'ma v Redaktsiyu
‘Z’I ggss) :(]1968) [English transl.: Soviet Phys.—JETP Letters 7, 296

& S. I. Taimuty, Nucl. Sci. Eng. 10, 403 (1961).

(1;;8) Fluegge and K. E. Zimen, Z. Physik Chem. B42, 179

6 G. Nilsson, J. Nucl. Mater. 20, 231 (1966).

% M. D. Rogers and J. Adam, J. Nucl. Mater. 6, 182 (1962).

88 J. Lindhard and P. V. Thomsen, in Symposium on Radiation
Damage in Solids and Reactor Materials, Vienna, 1962; Radiation
Damage in Solids I (International Atomic Energy Agency,
Vienna, 1962), p. 65.

% J. B. Niday, Phys. Rev. 121, 1471 (1961).

" R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley,
Selected Values of Thermodynamic Properties of Metals and Alloys
(John Wiley & Sons, Inc., New York, 1963).

(1;1617)) J. Peterson and M. M. Thorpe, Nucl. Sci. Eng. 29, 425
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B. Deposited-Energy Function

While it is possible to calculate the deposited-energy
function F (x,E,n) in Eq. (56a) with much better accu-
racy than the material constant A, direct measurements
of the dependence on x, E, and n would be desirable.
The most interesting of the three variables is the depth
variable x, both from an experimental point of view,
since it determines the depth distribution of radiation
damage,®* and from a theoretical point of view, since
reconstruction of a function of x from a finite number
of averages (x*) is a problem that does not have a
unique solution, even when the general behavior of
F(x,E,n) is fairly obvious from physical arguments.

Backward sputtering experiments only determine F
at x=0, so this particular geometry can only be used to
check the dependence of F on E and ». Depth distribu-
tion measurements of radiation damage determine
F(x,E,n), but one has to be cautious in interpreting the
damage observed near the target surfaces, since strain
fields near a surface may impose conditions on the
stability and annealing behavior of defects that are
different from the bulk.

Sputtering experiments are therefore preferred in the
present connection. In order to determine a depth
dependence, one must move the source away from the
surface, e.g., implanting radioactive atoms at a well-
defined depth in the target, or move the surface away
from the source, which can be realized in transmission
sputtering experiments.

a. Iidgeworth Expansion

In the elastic collision region, and at somewhat
higher energies where electronic stopping is not dominat-
ing, the distribution F(x) (we drop the variables E and
n for the moment) is similar to a Gaussian, especially for
My S M,, where the ion undergoes a number of heavy
deflection processes. Deviations from Gaussian shape
are most pronounced when M{>M,, since in this
case the ion trajectory is essentially a straight line with
a rather well-defined length, so the deposited energy is
determined primarily by the stopping power of the ion
along the track. But in this case the recoiling atoms
have considerable ranges, so there is still a good chance
of getting a statistical distribution. This is different
in the energy range where electronic stopping dominates
and heavy elastic scattering events are infrequent.
Then the function F(x) is given by the variation of
nuclear stopping with traveled path length, the latter
quantity being governed by electronic stopping.

When F (x) is similar to a Gaussian, one can approxi-
mate the function by the Edgeworth expansion?s:28.41.42
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in terms of the moments (x"):

N@iggim@—%m®

+(—Zm<s>+1;—;m(s))+- - ] (633)
where

(damy= (o )", =23, (63b)
onl®) = (d"/de") Qm) 1B n=0,1,2, -+ (630)
£= (v— () (), (634)
T1=(Ax?)/(Ax?)2, (63e)
To=(Axt)/{Ax?)*—3. (63f)

If only the first term in the large square brackets is
taken into account, one has a simple Gaussian with the
width (Ax2)12, centered around x= (x). The second term
introduces the ‘‘skewness,” and the third one the
“excess”’ of the distribution. Similar types of expan-
sions, using either Gaussian or non-Gaussian basal
functions, have been investigated recently.*®

Figure 6 shows the normalized distribution functions

<Ax2>l/2

2(8)= %), 3(Dde=1, (64
BO=" Lg@)s (64a)

calculated for perpendicular incidence (p=1) and elastic
scattering with the power cross sections (24a) and
(24b) for m=%, and three representative mass ratios.

My/M,= 174

Fic. 6. Function g(¢) [Eq. (64)] for perpendicular incidence.
m=4. Thin solid curve: Gaussian, first term in Eq. (63a) ; dashed
curve: first and second term in Eq. (63a); thick solid curve: all
three terms in Eq. (63a).
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Input parameters (Ax") are taken from previous
work.2? The apparent over-all convergence of the
expansion (63a) is good in all cases, but there is poor
convergence in both tails of the distribution for Ms/M,
=1, The skewness is a sizable correction in all cases.
The straight lines represent the stopping power as a
function of traveled path length, under the assumption
that the ion slows down along a straight line [for
m=1 the stopping power does not depend on energy,
according to Egs. (33a) and (33b)]. These lines repre-
sent poor over-all approximations in all cases. Figure 7
shows a similar curve,

1
g(x)= F(x), fg(x)dx=1, (64b)

v(E)

for a high-speed particle, where both electronic and
nuclear stopping are inversely proportional to E, over
the main part of the ion track. The figure is qualitative
in every respect, the actual peak being much narrower,
but it demonstrates clearly that a Gaussian is not a
good zero-order approximation to F(x) in this case.

Another important restriction on the validity of the
Edgeworth expansion stems from the assumption of an
infinite medium. Obviously, if a thin foil is bombarded
whose thickness is smaller than the average penetration
depth of the ion, the collision cascade cannot fully
develop as in an infinite medium, and consequently
less energy will be deposited in all depths. A general
treatment of the effects of finite target thickness is
beyond the scope of this paper. In the following we will
assume either that target thickness is >2{Ax2)'/2, so
that the main part of the Gaussian is inside the target,
or that a target is so thin that the majority of the ions
can penetrate with small energy loss.

. }
05 10
X/R

FiG. 7. Qualitative picture of the damage distribution in case

of a high-speed particle with an initial energy in the Bethe-Bloch
region. The dashed parts on both ends have been plotted on a
magnified scale.
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b. Angular Dependence of Moments

From Egs. (50a) and (S0b) one derives that only
the moments F¢’, Fi!, F?, Fi%, F3, etc., are different
from zero. The angular dependence of the averages
(x") can then be calculated from the relation

/ " e (x)da= ,Z QI+DFrPin),  (652)

which follows from Egs. (17), (20a), and (56a). The
moments F;» are found from Eq. (50a). In order to
simplify the interpretation of the distributions dis-
cussed in the following, we also introduce the averages
over F for a point source. In this case, another coordin-
ate system X, ¥, Z is fixed to the beam, such that the
source is in the origin and the beam is parallel to the
X axis. The calculations in Refs. 22, 24, and 25 refer
to this system of coordinates. One easily derives the
following connections between the averages:

(®)=n(X), (65b)
(@) =X X2+ 1 —n2)(V?), (65¢)
(@) =nXX*)+3n(1—n)(XV?), (65d)
(@) =n X) 61— X2V2)+ (1—)X¥*).  (65e)

Note that there is cylindrical symmetry around the X
axis, ie., (V2)=(2Z?), etc.; Egs. (65b)-(65¢) do not
involve any specific assumptions on the cross section.
For elastic scattering with the power cross sections
(24a) and (24b), the moments (X?¥2¢) have been
calculated in Ref. 24 up to n=p+42¢9=3. Moments for
n=4 are tabulated in Ref. 39.

For an isotropic source, one has to average over all
7, so Egs. (65b)-(65€) read

@)=0, )=}RY, =0, (H=1RY, (662)
where

R=X24V24 22, (66b)

c. Sputtering by Implanied Layers of Radioactive Atoms

If heavy radioactive ions are implanted into a light
target, the depth distribution is relatively sharp, so
measurements of the sputtering ratio as a function of the
depth of the implanted layer determine the depth
distribution of energy deposited by a plane isotropic
source. Most feasible are a-active sources.” For the
detection of long-range energy transport at low energies,
Cd*-implanted layers could be of interest, if activated
by a source of thermal neutrons.

From Egs. (57), (63a), and (66a) we obtain the
sputtering yield per recoiling atom from a plane
isotropic source at a distance x from the surface:

S(x,E>=A(%)mv (E)( ¢o<s)+§—:m(s>- : ) (67a)

™ The significance of this experiment was pointed out to the
author by J. A. Davis several years ago.
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3a?

3 (R
5 P2=3<— —1).
() 5 (e
The correction term (T'2/24)¢4(§) in Eq. (67a) deter-
mines the deviations from a Gaussian distribution and
amounts to 10-20%, of ¢o(¢), for Ms/M 2% and £S2.5
in the elastic collision region. For My/M <} the correc-
tion is important [ S3¢o(£)]. From the measured
dependence of S(x,E) on x, one can obtain (R?) for the
particular recoil energy and, if the absolute value of
S(x,E) is measured, one can also determine A. In
practice, S(x,E) is folded with the range distribution
of implanted ions, but this should not be an obstacle,
especially for small range straggling (M,>M,). The
sputtering by o« particles only plays a role when the
implanted depth is large compared to the range of
recoil atoms.

One expects from Eq. (67a) that the sputtering yield
should increase monotonically with decreasing im-
planted depth x. However, Eq. (67b) holds only when
x> (5(R2))12; otherwise the surface is within the half-
width of the distribution of deposited energy, which
would cause Eq. (67a) to overestimate the sputtering
yield.

Experimental results are not available to the author’s
knowledge. However, Riehl and Sizmann®® measured
the sputtering of an a-active surface layer evaporated
on gold. Their reported sputtering yield, 57410
sputtered gold atoms for every recoil moving info the
target, appears low when compared to the measured
self-sputtering ratio of gold at perpendicular incidence,
which is” S~ 52. Nevertheless, it might be of interest
to derive a modification of Eq. (67a) that would allow
to calculate the sputtering of a radioactive surface
layer.

Since only those recoils contribute to sputtering that
move in the inward direction, we average Eq. (56a) only
over the range 0<<1. This yields

S(x:E) = AF(x:E) ’

(67b)

o=

with
F(x,E)=% (2+1)aiF:(x,E),
f

where

1
az=/ dnPi(n).
0

Averages over F(x,E) become, then,

@=5X), M=KR), (®)=X)+LXV?),
so )
v(E r —(X)
SO.E) _A<Ax2>1/2L S""(2(4\952)1/2)' ' J » (68a)
where

(A2%) =3(R?)—{(X)*. (68b)

™ O. Almén and G. Bruce, Nucl. Instr. Methods 11, 279 (1961).
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Equation (68a) is not very reliable, since even for
M 1> M, the surface is always located within the half-
width of the Gaussian, but the formula is certainly
better than Eq. (67a) for x=0, since the surface does
not coincide with the peak of the Gaussian. Because
of the limited accuracy, there is no need for including
higher terms of the Edgeworth expansion in Eq. (68a).

d. Transmission Sputtering: Low and Intermediate
ITon Energies

We consider transmission sputtering of a foil of
thickness d by a beam of ions of energy L, incident at
an angle 0, where cosf=7. The energy E should not be
far up in the inelastic collision region, so that the distri-
bution of deposited energy is not too different from a
Gaussian. Then from Eqs. (56a) and (63a),

~
1

v(
S(En)=A

VT (692)
where
£=(d—(@))/(Qa?)'?, (B =n(X),

(Ax?)=72(AXH)+ (1—n*)(¥?). (69b)

Figure 8 shows calculated yields for transmission
sputtering on gold foils of three different thicknesses
bombarded by argon ions at perpendicular incidence,
as a function of ion energy. The solid portions of the
curves were calculated from Eq. (69a). Electronic
stopping was taken into account semiquantitatively,
by scaling all lengths with the p(e) curve of Lindhard
et al? and calculating »(E) from an analytic formula
given in Ref. 40. Inelasticity plays a significant role,
especially in the yield curve for d=1000 A. At high
energies, where (x)>>d, the majority of the argon ions
penetrate the foil with little energy loss. The transmis-
sion sputtering yield can then be estimated roughly by
use of Egs. (70b) and (90). As it happens, the high-
energy portions of the yield curves coincide with the
backward yield on a thick target that is also included
in Fig. 8. This is specific for the mass ratio My/M ;=5
of Art-Au. When M,/M <5, the backward sputtering
yield is expected to be smaller than the high-energy
portion of the transmission sputtering yield. The inter-

20

[ I AN
sl AtAu P YN
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/
5 backward -7
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F1c. 8. Transmission sputtering yields calculated for Ar* ions
incident on gold foils of three different thicknesses: d= 50, 250,
1000 A, as compared with the calculated yield for backward
sputtering. For details see text.
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mediate (dashed) parts of the curves are based on
plausible interpolation between the low- and high-
energy parts, taking into account that they must lie
below the values predicted by Eq. (69a).

Measurements at intermediate energies have been
performed by Robinson™ with molecular ions of hydro-
gen and deuterium incident on polycrystalline gold
foils. The energy per incident afom varied between 5
and 15 keV, and the foil thickness between 500 and
1500 A. Sputtering yields up to 0.025 per incident atom
were recorded (maximum yield per molecule=0.0743).
There are not enough data points at any fixed energy
or foil thickness that would allow evaluation of (x) and
(Ax?), but the data can be compared to theory if one
assumes (x) and (Ax?) to be similar to the corresponding
averages over the range distribution, the latter ones
being known.” The similarity of range and damage
distribution for M <<M, has been demonstrated for
elastic collisions. The magnitude of the measured
yields turns out to be smaller by more than a factor
of 10 than the yields calculated by use of Eq. (56b).
From a comparison with measured backward sputtering
yields of protons and deuterons incident on copper and
silver,76=78 it appears most likely that the main part
of the discrepancy is due to an experimental error.

e. Transmission Sputtering: High Ion Energies

At high energies, the deposited energy is not distri-
buted as a Gaussian. If the emerging ion has an energy
E that is still high up in the inelastic collision region—
which will usually be the case for MeV protons, a parti-
cles, and fission fragments penetrating foils—the de-
posited energy is primarily given by the elastic stopping
power. However, recoil atoms may still lose energy to
electrons, so the correct form of Eq. (56a) will be

vE1
S(Ey) =a’AN / do (E1,T)v(T) (70a)
0

if the ion escapes perpendicular to the surface. The
factor o' (=% for Rutherford scattering) takes into
account the fact that some of the energy is not deposited
inside the target surface. This will be discussed in detail
in Sec. 5 C. When the relative energy loss of the ions in
the foil is appreciable, Eq. (70a) may have to be aver-
aged over the distribution of exit energies ;, which can
either be measured or calculated. Averaging over exit
angles is only necessary in extreme cases. A cos™!
dependence will be reasonable for the latter purpose.

“ C. H. Robinson, J. Appl. Phys. 39, 3441 (1968).
s H. E. Schigtt, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 35, No. 9 (1966).
(17966(1)?)' Grgnlund and W. J. Moore, J. Chem. Phys. 32, 1540
V. M. Gusev, M. I. Guseva, V. P. Vlasenko, and N. P.
Elistratov, Izv. Akad. Nauk SSSR Ser. Fiz. 24, 689 (1960)
[English transl.: Bull. Acad. Sci. USSR Phys. Ser. 24, 696 (1960)].
0. C. Yonts, C. E. Normand, and D. E. Harrison, J. Appl.
Phys. 31, 447 (1960).
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In the case where recoiling atoms have encrgies
within the elastic collision region (e.g., 1-McV protons
incident on gold foils), Eq. (70a) reduces to

S(E)=a'ANS.(E). (70b)

A yield measurement with this geometry has been
made by Nelson and Thompson™ with protons of
initial energy 3.4 MeV bombarding a gold foil with
preferred orientation. Under the conditions of this
experiment, channeling of the protons can be excluded
safely as a possible disturbing effect. The energy
distribution of the emerging protons was rather broad,
and centered around FE;=300 keV. At this energy,
Eq. (70b) predicts a sputtering yield of 0.0025 atoms/
ion. Nelson and Thompson measured 0.0007 for each
of the three (110) spots in a {111} surface. This gives
0.0021 as the contribution of the spots to the total
yield. The average yield is expected to be larger than
0.0025, since the energy distribution of the protons
extends down to zero energy™ and the sputtering yield
increases as 1/E; until £; comes down to about 10 keV.
A more detailed comparison is not possible, since neither
the energy distribution of emerging protons nor the total
sputtering yield was measured.

This experiment played a unique role in the develop-
ment of the field of sputtering, since a measurement
of the yield was used to determine ranges of focused
collision sequences. Obviously it is not necessary to
invoke such long focusons (350 A) in order to explain
the measured sputtering yield.

f. Transmission Sputtering: Beams of Fast Neutrons

This case is very similar to the previous one. Usually
the neutron beam will penetrate without appreciable
scattering, so Eq. (70a) reads

S(E)=ANo (I,) (v (E)), (71)
for perpendicular incidence, where o(%,) is the total
cross section of a neutron with energy E,, and (v(E)) is
the average of »(E) over the spectrum of recoil energies.
The factor o' in Eq. (70a) is very close to unity for
fast neutrons. Of course, Eq. (71) differs from Eq.
(61a) only by a geometric factor. Note that Eq. (71)
determines the sputtering yield from the far side of the
foil, while Eq. (61a) determines the total yield.

C. Backward Sputtering

Most experimental data on sputtering deal with
backsputtering by ion beams. For this geometry,
there exist experimental results that have been repro-
duced by different groups within an accuracy of
typically 10-30%. Apart from various experimental
conditions that influence the surface contamination, a

" R. S. Nelson and M. W. Thompson, Proc. Roy. Soc. (Lond
259, 458 (1961). P ¥. Soc. (Landon)
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major factor limiting the accuracy of experimental data
is the texture of polycrystalline targets.®

a. Elastic Collision Region

In the elastic collision region we have v(E)=E, so
Egs. (56a) and (63b) can be combined to give

S(Em) = (AE/(Ax) ) [o(E0)—§T1¢3(E0)— - -], (72a)

where
£o=—(w)/(Ax?)! /2. (72b)

For the power cross section (24a), the moments (x")
have the general form?%

(@)= (£2"/NC)"hn(n) (73)

where %, (n) is some function of ». This means that
£, and therefore the contents of the brackets in Eq.
(72a), is independent of ion energy. The factor in
front of Eq. (72a) is proportional to NCE™" which is
essentially the stopping power. Hence, the sputtering
yield is a product of the stopping power of the ion
and some function of the angle of incidence. The latter
function may depend on 7 and the mass ratio M,/M,.

1. Variation with angle of incidence: moderate-mass
ratios. In order to estimate the dependence of S(F£,n)
on 7, we only take into account the term ¢q(£) in the
brackets of Eq. (72a). Figure 6 indicates that neglecting
the ¢* term may not be justified for M >M,. Note
that decreasing n means a shift of the distribution
Z(¢) toward the surface, apart from a change in the
shape of the distribution.

Inserting Egs. (65b) and (65¢) into Egs. (72a) and
(72b), we obtain the variation of the yield with 7,

SEn )
<oy o) b 00

where S(£,1) is the yield for perpendicular incidence.
With the moments (X), (AX?2), and (V%) that are tabu-
lated in Ref. 24, Eq. (74) can be evaluated, and S(E,3)
turns out to increase monotonically with decreasing 7.

For not-too-oblique incidence, one can approximate
Eq. (74) by

S(Em)
—=n"7=(cosf)~/,
S(E,1)

=1 (75a)

where the exponent f is found by expanding Eq. (74)
in powers of 1—»2. We obtain

¥ (xy
+ ( — 1> .
(AxX?)\ax?)
® A. L. Southern, W. R. Willis, and M. T. Robinson, J. Appl.
Phys. 34, 153 (1963).

j=1

(75b)
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F1G. 9. Factor f determining the dependence of sputtering
ratio on angle of incidence as defined in Egs. (75a) and (75b).

Figure 9 shows f as a function of mass ratio, for m=3%
and m=1%. The two curves essentially agree, so the
angular variation of the yield will not be sensitive to
ion energy, and for M,/M,S3 the exponent f is
about 3, independent of the mass ratio. Both conclu-
sions are in complete agreement with recent experi-
mental results.®
For grazing incidence, Eq. (74) predicts

sen (o) )

(76)

We know from experiment®# that the sputtering yield
goes through a maximum at very oblique incidence
and approaches zero for §=90°. This maximum cannot
be explained on the basis of the assumption of an
infinite medium. There will be a certain glancing angle
at which the repulsive action of the surface atoms is
strong enough to prevent the ions from penetrating
into the target, and this angle will, in general, depend
on the structure of the surface as indicated by experi-

10 T T I T T

a o N o o
>

S(9:90°)
s(g=0"

N oS

ol 10 10
M2/M;

Fic. 10. C_alculqteq ratio of the sputtering yields for grazing
and perpendicular incidence, from Egs. (76). The repulsive action
of the surface on the incident ion has been neglected.

8 G. Dupp and A. Scharmann, Z. Physik 194, 448 (1966).

8 V. A. Molchanov and V. G. Tel’kovskii, Dokl. Akad. Nauk
SSSR 136, 801 (1961) [English transl.: Soviet Phys.—Doklady
6, 137 (1961)7.

(1;6]5%‘ B. Cheney and E. T. Pitkin, J. Appl. Phys. 36, 3542
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ment.3 If we only consider nongrazing incidence, Eq.
(76) gives an indication of the range of validity of the
expansion (75a). Figure 10 shows that the ratio
S5(0)/S(1) depends on the mass ratio but is insensitive
to m, i.e., the ion energy. In the region M./M;S3
(dashed curves in Fig. 10) the Guassian approximation
is expected to fail. The value of S(0)/S(1) should agree
at least qualitatively with the observed ratio S(7max)/
S(1) in the maximum. Ratios of 4-5 have been mea-
sured by Cheney and Pitkin® with both Xet and Art
ions incident on copper targets, in good agreement with
Fig. 10. Figure 11 shows the variation of the Art-Cu
sputtering ratio with angle of incidence as compared to
experimental results of several groups. The agreement is
very satisfactory for 6. <70°. The experimental data of
four different groups,® #-3 together with the theoretical
prediction of Eq. (74), clearly show that the 1/cosf
dependence that was measured,® calculated,®™° or
postulated!® previously, is too weak for 6. S70°. Only
for M KM, is the 1/cosf dependence appropriate,
according to Fig. 9.

1. Variation with ion mass. We concluded in the
beginning of Sec. 5 Ca that the energy dependence
of the sputtering yield is determined by the stopping
power. For perpendicular incidence, we write

S(E)=AaNS,(E), (77)

where S.(E)=[1/(1—m)]Cy*™E"2" is the eleastic
stopping power of the ion [Eq. (33b)], and « is a factor
that depends only on m and M,/M,. The accuracy of

/
/
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/
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== e = == MOLCHANOV ef gl. /
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A DUPP et al.
2|~ O CHENEY etal.
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Fi16. 11. Variation of the sputtering yield with angle of incidence
for Ar* ions incident on polycrystalline copper. Thick solid curve:
Eq. (74) evaluated for m=4%; thin solid curve: 1/cosd. Experi-
mental results of Dupp and Scharmann (Ref. 81), Molchanov
and Tel’kovskii (Ref. 82), Cheney and Pitkin (Ref. 83), Rol ef al.
(Ref. 84), and Colombié (Ref. 85).

8P, K. Rol, J. M. Fluit, and J. Kistemaker, Physica 26, 1000

(1960).
lis;: e§ . Colombié, thesis, University of Toulouse, 1964 (unpub-
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the calculated value of a depends on how accurately
the deposited energy function is approximated by a
finite number of terms in the Edgeworth expansion.
Figure 12 shows « as a function of M,/M, for m=3%
and m=%. The curves labaled ‘“Gaussian” follow

I/
15—
/
- /
-
B m=1/2
1.0 —
/
| e GAUSSIAN /
@ |- e=———— CORRECTED GAUSSIAN/

|- o= = ———— NONGAUSSIAN / /
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-
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F1G. 12. Factor @« [Eq. (77)] as a function of mass ratio for
four different approximations to the distribution function of
deposited energy. (a) m=3; (b) m=4%.
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from neglecting everything except the Gaussian in the
brackets of Eq. (72a), and the curves labeled ‘““corrected
Gaussian” take into account the term proportional to
©3(%0). The third set of curves, called “non-Gaussian,”
also stems from an expansion of the type of Eq. (72a),
but with a basal function ¢o(£)=constX exp(—\|£|%),
where 8 is different from 2, and chosen to give the
correct ratio (AX*)/(AX?%)?2 Details of this expansion
have been discussed elsewhere.?® Comparison of Fig.
12(a) with Fig. 12(b) shows that the two sets of curves
are very similar, and that the three approximations
give nearly the same results except for m=3%, Mo/M1<3.
The horizontal lines labeled “limit M >M,” are based
on the assumption that the ion is not deflected while
penetrating the layer that is relevant for sputtering.
The derivation follows in the next subsection. These
lines are supposed to represent the case M >M,
rather accurately.

It appears most reasonable for further evaluation to
use the Gaussian approximation for M;<S M., since
it appears to compromise between the other two
approximations, and the asymptotic straight lines for
M>>M,. If we remember the limited accuracy of the
power cross sections, the difference between Figs. 12(a)
and 12(b) does not appear significant enough to justify
the use of two different curves of « versus M,/M, for
m=% and m=%. We therefore take the arithmetic
means of both the Gaussians and the asymptotic
straight lines (Fig. 13) and make a reasonable inter-
polation in the range 0.25M,/M;50.5. The accuracy
of the resultant curve a versus M,/M, is estimated to
be 10-209, within the elastic collision region. It has
been checked that the curve o versus M,/M, for m=1,

[_rﬂl leTIIITI T TTTTTT
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F16. 13. Factor a [Eq. (77)] as a function of mass ratio in the
elastic collision region.
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which is of interest in low-energy sputtering, agrees
closely (better than 109,) with the one for m=3%
[Fig. 12(a)] at all mass ratios. The same is true for
m=% and m=1%, but the uncertainty at small mass
ratios is even larger for m=% than in Fig. 12(a) for
m=1. Once o has been found independent of m, one
recognizes that S,(IZ) is the only quantity entering
Eq. (77) that depends on the ion-target interaction
cross section. It is therefore appropriate to use the best
approximation for S,(F) that is available and not the
power cross sections for the purpose of comparison with
experiment. We will use the Thomas-Fermi cross
section as calculated by Lindhard ef al.? at sufficiently
high energies [> E*; Eq. (34)] and the expression

Su(E)=CoTm=1mNea?Tm (78)

at lower energies. Equation (78) follows from Eq. (33b)
by setting =0 and inserting Eq. (28’). A comparison
with experimental results is postponed to Sec. 5 C c.

1i1. The case M >>M . Tt is obvious from Fig. 12(a)
—and was concluded before®—that the Edgeworth
expansion does not converge rapidly for small mass
ratio Mo/M;. In order to determine the factor « in
this case with some accuracy, we calculate the deposited
energy in an alternative way that is appropriate when-
ever the ion penetrates the significant layer for sputter-
ing essentially undeflected, and with only small relative
energy loss. We consider perpendicular incidence first.
The deposited energy at the surface x=0 becomes,
then,

Fu(0,E,1)
0 Tm
=N[ 11.1:/ do (1 (E,T)F(—x,T, cos¢’), (79)
0 0

where F(—x,T,cos¢’’) is the deposited energy function
for an atom recoiling at a distance x from the surface
with energy T and an angle ¢ [cos¢’’ = (T/Tn)'?]
to the surface normal, and Ndxdo ) (E,T) is the proba-
bility for the ion to create such a recoil atom while
traveling through dx. We introduced the index (1)
again in order to distinguish between ion and recoil
atom. The intergation over dx has been extended to
infinity, since F falls off rapidly as a function of x (Fig.
6). The dependence of E on x in doy(E,T) has been
ignored, because of the assumption of small average
energy loss in the relevant layer, and deflection of the
ion has been neglected. Interchanging the order of
integrations, we can rewrite Eq. (79) as

Tm
Py (0,E1)=N f do (B, T) Ty (cose”),  (80)
0
where we made use of the definition?

1 0
v =— /ﬂ daF (5, E,m) (80b)
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v was called the sputtering efficiency, and turned out
to be independent of ion energy for a given power
cross section. Apart from this exact result, v is also
insensitive to m.22 The variation of  with the direc-
tional cosine 7 is strong. For perpendicular incidence,
v is typically a few percent, while it becomes % for
7=0 in an infinite medium.

Numerical calculations show that vy (y) is approxi-
mately a parabola.’® We evaluate the integral equation
(80a) by assuming two different parabolas for y(n):

vi(m)=3(1—9)?, (81a)
Yo(n) =7t G—7v2) (1—n)?, (81b)

where v, is the value of v for perpendicular incidence.
The experimental result is® v,~0.028 for M= M,.
Equation (81b) should be a better approximation than
Eq. (81a), since it has the correct values at both n=1
and n=0. By evaluating the integral with the cross
section (24b) and taking into account the definition
of a [Eq. (77)], we obtain

a=a1=[23—2m)2—m) ] (82a)
from Eq. (81a), or
(1—m)(5—2m)
a=ay=a1+Aa, Aa=vy,———— (82h)
B—2m)(2—m)

from Eq. (81b). Note that m characterizes the ion.
With v,=0.028 we get @1=0.167 and «;=0.186 for
m=%, and @;=0.129 and «;=0.150 for m=3%. The
straight lines a=a; have been drawn up in Figs. 12(a)
and 12(b) with the label “limit M >M,.”

Note that the integrand in Eq. (80a) is a monoloni-
cally decreasing function of T, so it must be predomi-
nantly the soft collisions that contribute to sputtering.
Moreover, the relative contribution of soft collisions
to the total sputtering yield is greater than their contri-
bution to the stopping power. This is a very important
result. Note that it was derived under the two assump-
tions of perpendicular incidence and no deflection.

For oblique incidence the procedure is very similar.
Taking over the notations of Sec. 2, we evaluate the
expression

F(l)(O,E,n)=N/ dx/d0<1>(V,V")F(—x,T,ﬂ")
0

Y f doay (V) Ty, (83)

where n”’ is the directional cosine of a recoiling atom

to the surface normal. We insert the cross section
(24b) and replace the energy variable T by the angular
variable cos¢’’ and the azimuthe x’’ of the recoil

8 K. B. Winterbon (unpublished).
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direction:

F oy (0,E,m) =2NC ) "1yt

1 27 gx!
X/ d coso’’ / —(cose" )2y (9,
0 0o 2

™

or, with the definition of & [Eq. (77)] and the stopping
power from Eq. (44b),

1
a=2(1—m) / d cose”
0

2 X
X (cose ) [ (), (84)
0 27!'
where

7"’ =cosf cose¢’’+sinb sing’’ cosy’’ (84b)

and 6 the angle of incidence with respect to the surface
normal.

For oblique incidence, the directional cosine '’ in
Eq. (84b) can take on negative values. The expressions
v1(n) and v2(n) in Egs. (81a) and (81b), however, only
hold for positive values of .

From the obvious relation

F(xy E; —17)=F(—x, ]5) 7))

that holds for an infinite medium, we derive by use
of the definition (80b) and the normalization (50c) that
ym=1—y(—n). (85)

Equation (85) is used to define y(n) for negative values

of . The two integrations in Eq. (84a) can then be

performed. The calculation is cumbersome but straight-

forward. We are mainly interested in the result for

nearly perpendicular incidence, where 1—n?=sin% is

small. Writing down the terms of lowest order in sin%,

we obtain

=2y S5—4m

a=ay+(1=2vp)———

? 4(3—2m)(2—m)

. 1 B(%)%—m)

Xsin?— (1 —2y,)— ——————(sin24)=™- - -, (86)
4r (2—m)?

where a; is defined in Eq. (82b) and B(3,3—m) is a
B function as defined in Eq. (42a). Equation (86)
holds for m <1.

By use of Eq. (82b), we can also write

S «

SM

(1=2v,)(5—4m)
142v,(1—m) (5—2m) 2
(1=2y,)B(3,3—m) (sin®g)* ™

C142y,(1—m)(5—2m)

sin26

-, (87a)
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which, by means of Eq. (75a), gives
 (=2vy) 54
1427, (1—m) (5—2m)

(87b)

provided that the term of order 2—m can be neglected.
With y,=0.028, we obtain f=2.54 form=} and f=2.98
for m=1%, indicating the the angular dependence is
somewhat more pronounced for small 6 than indicated
by Fig. 9, for M,/M<1. However, the term with
(sin?6)2~™ is appreciable especially for m=3. Figure 14
shows a comparison with experimental results by
Holmén and Almen® for graphite bombarded with
mercury ions. The agreement between Eq. (87a) and
the experimental results is very satisfactory for §545°.

b. High and I'ntermediale I'nergies

The effect of electronic stopping on the sputtering-
yield formula cannot be described in full detail at
present, since the numerical solutions of Eq. (50a),
including inelasticity, are not available yet. As in
previous sections, however, a number of cases can be
treated without detailed knowledge of the deposited-
energy function, and some examples will be considered
here.

1. Tons in the Rutherford region. At high enough
energies, even very light ions have a vanishingly small
probability of undergoing heavy deflections near the
surface. Hence, the considerations of the foregoing
section concerning the case M >M, should also be
applicable here. Let us first consider the case where the
majority of the recoiling atoms have energies in the
elastic collision region (e.g., 1-MeV protons bombarding
gold). Then Eq. (77) should determine the sputtering
yield with « given by Eqgs. (82a) and (82b) for m=1
(Rutherford scattering). We get a=a1=ay=1. Figure
7 shows that because energy dissipation starts at x=0,
some energy is deposited at x <0, so less energy will
be deposited in the surface than would be calculated
from the stopping power. We have a=3 because most

2.5 T T T T T T
Hq"—C
20 O 30 kev Y, —
§l§ O 54 kev Y
ala

. Fic. 14. Angular dependence of sputtering yield for Hg* ions
incident on graphite. Experimental points from Holmén and Almén
(Ref. 87). Thick solid curve: Eq. (87a) for m=}; dashed curve:

(cos8)~ with f=5/3 (Fig. 9); thin solid curve: 1/cos8.

8 G. Holmén and O. Almén (to he published).



408

recoils move perpendiuclar to the beam, and y(n=0)
=1, according to Eqgs. (81a) and (81b). If we had taken
into account the existence of a real surface in the calcu-
lation of the deposited-energy function, @ might have
become slightly smaller.

Obviously, because low-energy recoils moving perpen-
dicular to the beam dominate so heavily, it does not
make any difference whether the proton enters or
leaves a target with a certain energy E at a certain
angle 6. Therefore, backsputtering and transmission
sputtering are equivalent in the Rutherford collision
region, except, of course, for the effects of energy loss
and multiple scattering of an ion penetrating a foil
with finite thickness. This is the reason why we have
o’'=a=1%in Eq. (70a).

The angular dependence of the sputtering yield
follows from Eq. (87a). For m=1, both the second and
the third terms are proportional to sin20. However, for
m=1, a fourth term must be taken into account that
is equal to the third but with opposite sign. Therefore,

S(6)/S(0)=14 (1—2v,) sin20= (cosf) 0% (88)

for Rutherford scattering and not-too-large 6. This
result also holds for both backward and transmission
sputtering.

If the ion energy is so high that recoil atoms lose a
substantial part of their energy in electronic collisions,
one has to replace the stopping power S,(E) in Eq.
(77) by the integral

Tm
/ do(ET)(T),

just as in Eq. (70a).

1. Backsputtering by fast neutrons. The initial
assumption made in Sec. 5 C a iii—that the bombarding
particle penetrates a certain layer essentially unde-
flected and with negligible energy loss—is ideally
fulfilled for fast neutrons. The cross section, however,
does not have the form (24b). We note that the quantity
o in Egs. (82a) and (82b) is determined by the depen-
dence of doy on T, while the dependence on E only
enters the stopping power. Thus, assuming isotropic
scattering as a rough approximation, we write

don=0,(E)dT/Tn (89)
for the differential cross section of a fast neutron, and
therefore we can apply the results of Sec. 5 C a iii with
m=—1.

Equations (82a) and (82b) yield a;=1/30 and
Aa=14v,/15, so a=0.0595, indicating that back-
sputtering by fast neutrons is a negligibly small effect,
as far as elastic scattering of neutrons is concerned. This
is because isotropic scattering causes most energy to
travel toward the inner regions of the target.

We wish to compare the above result to the case
of transmission sputtering. Equation (79) applies to
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this situation if the variable —x is replaced by x. Then,
making use of Eq. (85), we obtain

(90)

ad=1—a,

where o’ is the quantity introduced in Eq. (70a).
Since a1 for fast neutrons, we could set o’~1 in
Eq. (71). We conclude that about 17 times as much
material is sputtered from the far side of the target as
from the side where the beam hits, for perpendicular
incidence when inelastic scattering can be neglected.

For light elements, electronic stopping of recoil
atoms will become important. This affects the sputtering
yield in two ways. First, as usual, we have to replace
the recoil energy T by »(7) in the stopping power. This
reduces both backward and transmission sputtering.
Second, the radius of the recoil cascades will be smaller.
This will reduce « further, while « will not be affected.
Thus, the ratio between backward and transmission
sputtering yields may be even smaller than 1/17 when
inelastic scattering of the neutrons is unimportant.
A substantial difference between backward and trans-
mission sputtering has been measured,® but because
of the apparent uncertainties in the measured sputtering
yields, a quantitative comparison is not yet possible.

For the angular dependence of the backsputtering
yield, Eq. (87a) predicts, for m=—1,

S5(0)/S(0)=144.76X % sin?0~ (cosf)—*76.  (91)

This strong dependence on 6 is not surprising in view
of the small yield for perpendicular incidence.

Note that the results of this sub-section could also
be applied to the earlier sputtering theories where the
primary scattering cross section was assumed to be
isotropic, and sputtering was assumed to be caused by
the first collision undergone by the ion.5:7-* Comparison
of the value ¢/=0.0595 with Fig. 13 shows that the
calculated sputtering yield would then be too small by
about an order of magnitude.

111, Tons in moderate inelastic collision region. This is
the most complex case. Except for M 3>M,, violent
deflections of the ion must be taken into account, so
electronic stopping of both the ion and the recoiling
atoms influences the sputtering yield. Because of a
decrease in penetration depth, the cascades develop
closer to the surface, so the possibility cannot be ruled
out that for special ion-target combinations over a
certain energy range, electronic stopping may give
rise to an dncrease in sputtering yield. Certainly there
may be a partial cancellation of the three effects. We
will assume elastic stopping in the following, but have
to bear in mind that the error made may be substantial.
This point is hoped to be improved in the near future,
when Egs. (50) have been solved numerically.

1v. Protons and deuterons at intermediate energies. If
the a-versus-mass-ratio curves in Figs. 12 and 13 were
continued to the abscissa of M3/M =197 for protons
bombarding gold, one would arrive at an enormous
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sputtering yield. However, both protons and deuterons
undergo predominantly electronic collisions at essen-
tially all energies,” so that our derivation does not
apply to the case. We show by a simple calculation
that « is of the order of unity for protons and deuterons.
From Eq. (63) and the definition of a [F(x=0)
=aNS.(E)], we obtain

1 v(E) e
a= )12 — , (92
NS.(E) @y exP( 2(Ax2)) ©2)

taking into account only the Gaussian part of the
distribution of deposited energy. For not-too-light
targets, we can neglect electronic stopping of recoil
atoms. Then we have®

Wv(E)  S.(B) S.(E)
dE  Sn(E)+S.(E) SJ(E)

Inserting Eq. (23a) for S.(E) and assuming S.(E)
=const (m=1%), we get

y(E)=2ES,/S.. (93)

Inserting this into Eq. (92) and going over to dimension-
less energy and length units e and p, respectively, 4

Eq. (92) reads
€1/2 1 <p2>
27r —1/2 —_— ,
eryren( 0, o0

=

(L) "
where & is the electronic stopping constant in dimension-
less units.2 The quantities {p) and (Ap?) could be
calculated by use of Schigtt’s procedure.” For a rough
estimate, it is sufficient to assume that the distribution
of deposited energy coincides with the distribution
of projected ranges.? The latter distribution is known
from Schigtt’s work. Since the quantities 1£2(Ap?) and
(Ap®)/{p)? do not depend on the target, « depends only
on the ion and the energy. Figure 15 shows a as a
function of e for protons and deuterons. The accuracy
of the curves is hardly better than the difference
between the proton and deuteron curve, and neither
curve should be used for the purpose of a quantitative
comnparison with experiment. It is obvious, however,
that at intermediate energies (e~1), backscattering
of ions causes o to be substantially greater than the
high-energy value a=3, but much smaller than the
value that would result from assuming purely elastic
scattering.

Note that for e<1.5 we have™ (Ap%)!/2> (p), which
indicates that Fig. 15 overestimates « in this energy
region because of the neglect of the surface in our
calculation.

¢. Comparison with Experimental
Yield-versus-Energy Curves

Before calculating absolute yield curves, we have to
make a decision concerning the surface binding condi-
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F1c. 15. Factor a in Eq. (77) for protons and deuterons incident
on a heavy target, as a function of Lindhard’s dimensionless
energy variable (Refs. 21 and 40) e=E[M./(M1+M>)]Ja/Z\Z1e?.
The curves are based on Eq. (94), but should only be considered
rough estimates.

tions. Equations (48a) and (48b) express two kinds
of uncertainties: first, the question of whether the
ejection probability is approximately isotropic or follows
a work-function model; second, the relative significance
of the bulk and surface binding energies V and U,,
respectively. At present we solve the problem by
definition, but note that analysis of energy and angular
distributions (Paper II) may give additional informa-
tion:

(a) For metals, we use the work-function model (35)
with V=0 and U, equal to the measured sublimation
energy.

(b) For covalent crystals, we assume an isotropic
ejection probability [Eq. (36)] with U, equal to the
measured cohesive energy per atom, and V twice this
value.

Assumption (b) has the effect that, because of Eq.
(48a), the value of A as given in Eq. (56b) has to be
multiplied by a factor } In5=0.805. Assumption (a),
when applied to some refractory metals, tends to over-
estimate the sputtering yield, as follows from a compari-
son with experimental yield curves. We have to leave
open the question of whether this discrepancy is due
to inadequacy of the sublimation energy as a measure
of surface binding or to non-negligible bulk binding
forces. A complication arises in semiconductors, since
it is known that silicon and germanium turn amor-
phous after doses of the order of* 10“ ions/cm? for
bombardment at room temperature, so that both the
measured sublimation energy (3.82 eV for Si and 3.82
eV for Ge) and the cohesive energy (7.83 and 7.63 eV,
respectively®®) become questionable. Empirically, by

8 J. W. Mayer, L. Eriksson, S. T. Picraux, and J. A. Davies,
Can. J. Phys. 46, 663 (1968).

8 R. Biuerlein, in Radiation Damage in Solids, edited by D. S.
Billington (Academic Press Inc., New York, 1962), p. 358.
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I'16. 16. Low-energy sputtering yields for Xe* and Kr* ions
incident on a series of targets. Experimental results from Rosen-
berg and Wehner (Ref. 91) and Wehner et al. (Ref. 98). Theoret-
ical results from Eq. (95). Uy is the measured sublimation energy
for metals (Refs. 70 and 92). For Si, Uy=2F,=7.83 eV; for Ge,
Uy=7.63 eV. E, from Ref. 89 (a) Xe* ions of 400 eV. Not cor-
rected for secondary electrons. (b) Kr* ions. Dashed curves:
experimental results; solid curves: Eq. (95), corrected for second-
ary electrons with y=0.07 (Ref. 1).

assuming U, to be given by the latter pair of values
and neglecting V, one gets good agreement with
experimental results, but other combinations of U, and
V may be equally successful and more feasible. Most
interesting in this connection are measurements on
germanium single crystals at various bombardment
temperatures® that clearly show that the sputtering
ratio changes almost abruptly at a certain temperature.
However, the fact that the yield can either decrease
or increase at this temperature, depending upon crystal
orientation, indicates that there is a pronounced trans-
parency effect on the incident ion that is difficult to
separate from the effect of a change in surface and bhulk
binding energies.

% G. S. Anderson, J. Appl. Phys. 38, 1607 (1967).
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1. Ion energies smaller than 1 keV. Up to the limiting
energy E*, defined in Eq. (34), we have to insert Eq.
(78) for the stopping power in Eq. (77). This yields

S(E)= (3/4r%)aT /U, (93)

for the sputtering yield at perpendicular incidence.
This expression does not depend on either Ao or a.
Apart from the mass number M, U, is the only
target property that enters Eq. (95). The quantity
a is given in Fig. 13. It is well known, mostly from the
experimental work of Wehner and his group (reviewed
in Ref. 1), that yield curves are indeed linear at energies
down to somewhat below 100 eV, especially for not-too-
light ions where E* is not too small. Figure 16(a)
shows a comparison of measured and theoretical yield
values at E=400 eV."% For xenon ions, E* is larger
than 400 eV for all targets under consideration.

The agreement is excellent with Be, Si, Cr, Ni, Cu,
Ge, Ru, Rh, Pd, Ag, Ir, Pt, and Au as targets. Other
targets show measured yields that are smaller by up
to a factor of 2 than the calculated ones. The deviations
appear systematic and are most pronounced with Ti, V,
Zr, Nb, Hf, Ta, Th, and U as targets.

The variety of targets considered in Fig. 16 covers
the range of mass ratios 0.069< M,/M,<1.50. In order
to check the validity of the a-versus-M,/M curve for
larger values of M,/M, one must consider lighter ions.
FFor Krt ions, the situation turns out to be very similar
as for Xe ions [Fig. 16(b)]. With Art, Net, and Het
ions the comparison cannot be done in this simple way.
First, the experimental data have to be corrected for
secondary electron emission.! The correction factors
are not known accurately. Second, £* becomes so small
that the yield curves are not really linear in the 100-
600-eV region (see Ref. 1). Third, for He* ions, and to a
lesser degree for Net ions, the validity of Fig. 13 is
questionable, because of the assumption of an infinite
medium and neglect of scattering out of the surface.
Some low-energy yield curves for lighter ions will,
however, be included in the curves discussed in the
following section.

ii. keV heavy and medium-mass ions. For I:>E* in
the elastic collision region, we insert Eq. (56b) into

TaBLE I. Reduced nuclear stopping cross section s, (e) for Thomas-
Fermi interaction [after Lindhard et al. (Ref. 20)7].

€ Sa(€) € sn(e)
0.002 0.120 04 0.405
0.004 0.154 1.0 0.356
0.01 0.211 2.0 0.291
0.02 0.261 4.0 0.214
0.04 0.311 10 0.128
0.1 0.372 20 0.0813
0.2 0.403 40 0.0493

“D. Rosenberg and G. K. Wehner, J. Appl. Phys. 33, 1842
(1962).

92 K. A. Gschneidner, Solid State Phys. 16, 275 (1964).

9 P. Sigmund, Bull. Am. Phys. Soc. 13, 1445 (1968).
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IF16. 17. Sputtering yields for Cu calculated from Eq. (97a) (solid curve) and Eq. (95) (dashed curve), compared with experimental
results by Almén and Bruce (Ref. 95), Dupp and Scharmann (Ref. 96), Guseva (Ref. 97), Keywell (Ref. 5), Rol et al. (Ref. 84), South-
ern et al. (Ref. 80), Wehner et al. (Ref. 98), Weijsenfeld (Ref. 99), and Yonts ef al. (Ref. 78). Uy=3.51 eV. Low-energy yields of Weh-
ner et al. (Ref. 98) have not been corrected for secondary electrons. (a) Xe* ions; (b) Krt ions; (c) Artions; (d) Ne* ions.

Eq. (77) to obtain
S(F)=0.04200S,(E)/U, A (96)

for the sputtering yield at perpendicular incidence.
a is given in Fig. 13, and U is the height of the surface
potential. For S,(E), we take the expression of
Lindhard et al.,” calculated by assuming Thomas-Fermi
interaction:

Sn(E)=4nZ:1Zse*aro[ M1/ (Mr+M1) s (e),

where

(97a)

ML.E/(Mi+M>)
YAVALILO
a12=0.8853a¢(Z:234Z2/3)7112

€=

sn(€) is the universal function tabulated in Table I,
and ao is the Bohr radius. The evaluation of Eq. (97a)
for a given ion-target combination is greatly facilitated
when Winterbon’s tables are used.* One can then write

A 9p
. "':'Sn(f) )

U7/ eN

S(E)=0.703

(97h)

9 K. B. Winterbon, Chalk River Report, No. AECL-3194,
1968 (unpublished).

where A, is the atomic weight of the target, s the
dimensionless length wunit for 1ug/cm? of target
material, and ¢ the value of € for E=1 keV. p and ¢ are
tabulated in Ref. 94 for many ion-target combinations.
Note that the numerical constants in Egs. (97a) and
(97b) are based on the choice of A\o=24, a=0.219 A
[Eq. (28')]. Other parameters could easily be inserted
by going back to Eq. (56b).

Figure 17 shows sputtering yields of polycrystalline
copper for inert gas ions at perpendicular incidence,
over an energy range of four decades. Mass ratios
range from about 0.5 to 3. The agreement with experi-
mental results is very good in general.®*=* This con-
firms that the variation of the yield with ion energy
follows approximately the Lindhard stopping power, in
agreement with the conclusion of Brandt and Laubert.!®
Furthermore, the agreement is about as good at keV
energies as in the eV range. This indicates that the

9% Q. Almén and G. Bruce, Nucl. Instr. Methods 11, 257 (1961).

% G. Dupp and A. Scharmann, Z. Physik 192, 284 (1966).

9 M. I. Guseva, Fiz. Tverd. Tela 1, 1540 (1959); [English
transl.: Soviet Phys.—Solid State 1, 1410 (1960)].

% G. K. Wehner, R. V. Stuart, and D. Rosenberg, General Mills
Annual Report of Sputtering Yields Report No. 2243, 1961
(unpublished), referred to in Ref. 1.

% C. H. Weijsenfeld, thesis, University of Utrecht, 1966
(unpublished).
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F1c. 18. Sputtering yields for Ag calculated from Eq. (97a) (solid curve) and Eq. (95) (dashed curve), compared with experimental
results by Almén et al. (Refs. 95 and 100), Fert et al. (Ref. 101), Guseva (Ref. 97), Keywell (Ref. 5), Perovié¢ and Cobié¢ (Ref. 102),
and Wehner ef al. (Ref. 98). Us=2.96 eV. Low-energy yields of Wehner et al. (Ref. 98) have not been corrected for secondary electrons,

(a) Xet ions; (b) Kr*ions; (c) Art ions; (d) Ne* ions.

numerical value of Co=3%n\ea? that did not enter the
low-energy yield formula is accurate enough, at least
for copper as a target. All curves extend somewhat into
the inelastic collision region. The influence of electronic
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F16. 19. Sputtering yields for Pd calculated from Eq. (97a)
(solid curve) and Eq. (95) (dashed curve), compared with experi-
mental results of Almén et al. (Refs. 95 and 100) and Wehner
et al. (Ref. 98). Low-energy yields have nof been corrected for
secondary electrons. Uy=3.90 eV.

stopping is assumed to be small in these cases, and the
good agreement at high ion energies confirms this. For
neon, the sputtering yield is overestimated slightly,
probably because of the neglect of the surface. The
position of the maximum is not well predicted in the
Xet-Cu curve. Although such an effect could, in prin-
ciple, be caused by electronic stopping, this is unlikely
for the present ion-target combination. More likely we
deal with a systematic deviation of the actual stopping
power from the Thomas-Fermi value. Similar effects
are observed with other very heavy ions and other
targets. An explanation on the basis of possible texture
of the target can therefore be ruled out.

Figure 18 shows a similar set of yield curves for
silver. The agreement between the experimental data
of several groups is not as good as in the case of cop-
per!®1% In the case of Almén’s data,?® the discrep-

10 Q. Almén and co-workers (unpublished).

1t C. Fert, N. Colombié, and B. Fagot, in Ionic Bombardment,
Theory and A pplications (Gordon and Breach, Science Publishers,
Inc., 1964), p. 92.

12 B. Perovi¢ and B. Cobi¢, in Proceedings of the Fifth Interna-
tional Conference on Iomization Phenomena in Gases, M. unich,
1961 (North-Holland Publishing Co., Amsterdam, 1962), p. 1165.
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ancy presumably stems from the texture of two different
polycrystals. Unfortunately, none of the data extends
to energies beyond the maximum. While the theoretical
curves tend to underestimate the sputtering yield
slightly (except for neon), the reverse is true in the case
of palladium (Fig. 19), a metal that is very similar to
silver. The discrepancy appears to be definite, and gives
an indication of the accuracy of the yield formula when
applied to predict absolute sputtering yields.

Figure 20(a) shows the Art-Au sputtering yield,
which is similar to those of copper and silver.®® Figure
20(b) presents yields for cadmium and zinc. These
metals have particularly small sublimation energies
and correspondingly high yield values. The agreement
with theory is surprisingly good.

All the targets discussed so far were polycrystalline.
Yield measurements on truly amorphous targets have
been done by Nghi and Kelly.!** The results show that
the sputtering yields of amorphous oxides do not differ
substantially from those of the corresponding metal
polycrystals. In some cases, amorphous yields may
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F16. 20. Sputtering yields for argon ions. (a) Gold: Almén et al.
(Refs. 95 and 100), Patterson and Tomlin (Ref. 103), Wehner
et al. (Ref. 98) (uncorrected) ; Weijsenfeld (Ref. 99), and Colombié
(Ref. 85). Up=3.80 eV. (b) Zinc and cadmium: Colombié (Ref.
85). Us=1.36 eV (Zn), 1.16 eV (Cd).

103 H. Patterson and D. H. Tomlin, Proc. Roy. Soc. (London)
A265, 474 (1962).

14 .. Q. Nghi and R. Kelly (to be published).
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F16. 21. Sputtering yields for ‘“amorphous’ targets. (a) Argon
ons on silicon and germanium : Southern et al. (Ref. 80) and Weh-
ner et al. (Ref. 98) (uncorrected). Uy=7.83 eV (Si), 7.63 eV (Ge).
(b) Mercury ions on graphite: Holmén and Almén (Ref. 87) and
Wehner et al. (Ref. 98) gmcorrected). Uy=7.36¢V.

even be higher. A quantitative comparison with the
present theory is not possible, since the theory only
applies to monatomic targets. Similar conclusions can
be drawn from yield measurements on metal carbides
by Gurmin ef al.1% Experiments on liquid targets would
be of interest. Existing datal® only deal with sputtered
ions.

Some crystalline targets turn amorphous under ion
bombardment at the doses required in sputtering
experiments. Figures 21(a) and 21(b) show yield
curves for Ar*-Si, Art-Ge, and Hg+-C (graphite). In
case of germanium, the agreement with theory is about
as good as in copper. Silicon shows some discrepancy
both at low and higher ion energies. The Hgt-C yield
curve underestimates the yield in the 10-100-keV range,
but the same was true for the Xet-Cu and Xet-Ag
curves. Although there are not enough data available
on sputtering of monatomic amorphous targets, the
observations are consistent with the assumption that
our yield formula applies equally well to polycrystalline
and amorphous targets.

Finally, we mention that the yield formula over-

105 B. M. Gurmin, T. P. Martynenko, and Yu. A. Ryzhov, Fiz.
Tverd. Tela 10, 411 (1967) [English transl.: Soviet Phys.—Solid
State 10, 324 (1968)].

106 H. L. Garvin, National Aeronautics and Space Administra-
tion Report No. NASA CR-54678, 1968 (unpubﬂshed).
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cestimates, in general, the sputtering yields of refractory
metals, as compared with experimental results of
Colombié,® Wehner and Rosenberg,'*” and Almén and
Bruce.®® Dependent on the ion type, these discrepancies
are equally well observed at low ion energies (Fig. 16).
We therefore conclude that the main reason for the
discrepancy is to be found in the assumptions concerning
the surface and bulk binding forces.

Not many yield measurements have been done on
ionic crystals. Navinsek!® reports yield values for Art
ions on NaCl and KCl crystals. With a cohesive energy
of!™ Uy=7.50 eV, NaCl has practically the same input
parameters as silicon for the sputtering-yield formula,
except that we multiply Eqgs. (95) and (96) by a factor
of 0.805, treating an ionic crystal as a covalent one.
The predicted sputtering yields are somewhat larger
than Navinsek’s reported values. The difference is
probably due to crystal-lattice effects, since the crystal
was bombarded parallel to a (100) direction.

By comparing Fig. 17(d) with Fig. 17(a), one recog-
nizes that the Xe*-Cu sputtering yield is larger than
the Net-Cu yield for £ 500 eV, while the opposite is
true at smaller energies. This crossover between yield
curves for light and heavy ions has been observed a
long time ago,! and various explanations have been
proposed.!® In the present picture the crossover occurs
as a consequence of the properties of the stopping-
power function, and the accurate position is also
determined by the a-versus-M,/M; curve (Fig. 13).
Since the latter is not too accurate for M <<M, the
predicted values for the crossover do not always agree
with the measured ones.

1i1. Light ions. Experimental sputtering yields for
light ions have been reported by Wehner e al.9® (Het*
ions at eV energies), by Grgnlund and Moore,’® Gusev
et al.,” and Yonts ef al.”® (protons, deuterons, and Het
ions in the 10-keV region), and by Kaminsky"! (deu-
terons above 100 keV). For several obvious reasons,
application of the theory to sputtering by light ions in
the eV region does not appear feasible. For the ~10-
keV, region we can use « as given in Fig. 15, but we
must remember that the curves are only qualitatively
correct. Comparison with experimental results indicates
that « is smaller (=1) than predicted by Fig. 15. This
may partially be accounted for by our neglect of the
surface in the calculation. It is hoped that a more
accurate treatment of this case will be possible in the
near future.

Kaminsky’s'" ion energies are in the Rutherford
region, so that a=3 should apply. However, well-
aligned single crystals were used in the bombardments,
so that the assumption of random slowing down of the

(1;’;1()3. K. Wehner and D. Rosenberg, J. Appl. Phys. 32, 887
108 B Navinsek, J. Appl. Phys. 36, 1678 (1965).
108 M. Tosi, Solid State Phys. 16, 1 (1964).
16 M. K. Sinha, J. Appl. Phys. 39, 2150 (1968).
M. Kaminsky, Phys. Rev. 126, 1267 (1962).
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jons is not justified. It turns out that for both (100)
copper and (100) silver crystals the measured sputtering
yields are smaller by approximately a factor of 2 than
the calculated random yields, for deuteron bombard-
ment at 100 keV up to 1.5 MeV. This small difference
indicates that there is no major effect (<2) of channel-
ing on sputtering yields for these projectiles, con-
sistent with our conclusion in Sec. 5 C a iii that sputter-
ing is determined by soft collisions in this case.

d. Backsputtering of Thin Foils and
Depth Responsible for Sputtering

In Sec. 4D we derived the result that the majority
of the sputtered particles originate from a surface
layer of thickness Ax=5 A. Obviously this does not
mean that a film of thickness Ax would exhibit the
same backward sputtering yield as a thick target.
When a very thin film is bombarded, the collision
cascades cannot develop as in an infinite medium, and
therefore the backsputtering yield of such a film will,
in general, be smaller than that of a semi-infinite
medium. For example, for the Art-Au case, we have
a=~0.8 for a thick target, according to Fig. 13. When
a film of thickness d=50 A is bombarded at an energy
greater than 100 keV, the majority of the ions penetrate
the film, with some energy loss and multiple scattering.
Thus, the backward sputtering yield can be estimated
roughly by use of Eq. (82b), which yields a=0.2 for
m=1. This value is somewhat too small because of the
total neglect of Art ions deflected within the film, but
difference to the above value of @=0.8 is large enough
to show that the depth region that is responsible for
sputtering can be quite large.

We define xy as the minimum thickness a target
must have in order to essentially exhibit the sputtering
yield of a semi-infinite target. In general, x depends on
ion type and energy, the angle of incidence, and, of
course, the target material. Except at eV energies, x
will usually be larger than Ax. Therefore, x¢ is a prop-
erty determined by the deposited-energy distribution
function F(x,E,n). Specifically, in the elastic collision
region, within the range of validity of the power cross
section (24a), we have seen that the length unit of a
cascade is the quantity E**/NC [Eq. (73)], and that
all lengths, including the average ion range and the
average depth of deposited energy, are proportional to
this quantity. Therefore, the depth x,, irrespective of
its specific definition, must be proportional to the ion
range, i.e., increase with increasing energy. This result
is in contrast to Onderdelinden’s'® concept of x, being
a property of the target material independent of ion
energy.

In order to obtain a rough estimate of x,, we go back
to Fig. 6. We realize that the deposited-energy func-
tions drop down to practically zero at a certain distance
x¢' from the surface. Now shift the distribution to the
right, such that the dropoff coincides with the surface.
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We then deal with an ion that starts its motion at a
depth x¢’ inside the target and has a negligible sputter-
ing yield as compared to an ion starting at the surface.
Thus, the length x’ is a rough estimate of the depth
responsible for sputtering. Actually, xo’ is a lower limit
for xo, since an ion beam will have undergone multiple
scattering when arriving at a depth x,, and an ion
moving at an oblique direction is a more effective
sputterer. Figure 22 shows x,’ as a function of mass
ratio in the elastic collision region as calculated from a
Gaussian approximation to the distribution function,
as well as the non-Gaussian approximation mentioned
in Sec. SCaii. x was determined by matching a
straight line to the distribution function at the surface
x=0. From both Figs. 6 and 22, one concludes that
X0 is a sizable fraction of the total extension of the
cascade, which is ~2(x). This may not be surprising
in the case of M1<<M,, where the path length traveled
by the ion is several times its average projected range,
so that the ion is not “lost” for sputtering even when
having traveled quite deeply into the crystal, but in the
case of M >>M,, one might have expected a smaller
value of xo. While the apparent uncertainty in x is
relatively large for M >>M, (Figs. 6 and 22), the error
is not expected to be greater than a factor of 2. The
reason for the large values of x,/(x) is to be found in
the relatively large ranges of recoiling atoms.

These considerations have an immediate conse-
quence on single-crystal sputtering. When a crystal is
bombarded along a low-indexed direction, the proba-
bility for the ion to undergo violent collisions is reduced
bility for the ion to undergo violent collisions is re-
duced.® This will result in a smaller sputtering yield
for both M1>M, and M,<M,, for mutually different
but obvious reasons. In order that a substantially
smaller sputtering yield be observed, the ion must
avoid violent collisions while traveling through a
sizable portion of the depth region xy. In the medium-
and upper-keV region, x, is so large that the trans-
parency of the lattice cannot account for this. Thus,
for heavy- and medium-mass ions in the medium-
and upper-keV region, the anisotropy of the sputtering
yield appears to be a true channeling phenomenon, as
proposed by Onderdelinden,!*® rather than an effect
of transparency as believed earlier. The author would
like to mention that he had to revise the standpoint he
took at a recent discussion.!'?

For completeness, we also consider the case of ions
in the Rutherford energy region. We calculate the
deposited energy at a depth x <0 by a similar procedure
as in Sec. 5 C a iii, i.e., we gencralize Eq. (79):

F(l) (x:](“yl)

% Tm
=N / ds’ / d0'<1) (E,T)F(—x',T, COS(pN) . (98)
T 0

u2p, §iE;nund, in Gordon Research Conference on Particle-
Solid Interactions, Meriden, N. H., 1968 (unpublished).

THEORY OF SPUTTERING. I

415

T T T T T
GAUSSIAN

~ - NONGAUSSIAN

M2/M;

F16. 22. Rough estimate for the ion penetration depth xo that
is responsible for backsputtering in the elastic collision region.
(x) is the average depth of deposited energy approximately of the
order of the average projected range of the ion.

As in Sec. 5 C aiii, we extract the stopping power by
the substitution F qy=a(x) NS 1) (). In case of Ruther-
ford scattering for do (1), the function a(x) turns out to
be a step function, i.e.,

a(x)=0, for x<0
=1, for x=0
=1, for >0

which means that x, is formally zero. In practice, this
means that xy is of the order of Ax, the range of eV
atoms and depth from which the sputtered atoms origi-
nate. Thus, the observed weak anisotropy of the sputter-
ing yield of single crystals bombarded by fast protons'
cannot be a channeling effect, but is to be explained by
the different packing of low-indexed crystal planes
and/or transparency.

This discussion of finite-depth effects had to be
somewhat qualitative, since the infinite-time-and-space
distributions considered in the present paper do not
allow a precise determination of the relevant depths. A
more detailed discussion of the anisotropy of single-
crystal sputtering is being prepared for Paper III of
this series.
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Deep Multistream Diffusion in Ion Implantation*
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Very deep penetration of ions injected into crystals has been reported in several recent experiments. These
“supertails,” which extend deeper into the crystals than the normal stopping range or channeling range, have
the form 7 ,~ (x—x0)~", where #, is the number of incident ions per cm?, x is the distance from the surface of
the crystal,  is typically ~2-8, and xo is ~1 u or less. Multistream steady-state-diffusion models are de-
veloped to explain these supertails. The results agree well with published experimental data. Multistream
diffusion may also be involved in other experiments, such as radiation-enhanced diffusion experiments and
implantation experiments in which channeling is suppressed, but the measured concentration profiles are

within the maximum channeling range.

1. INTRODUCTION

HEN heavy ions with energies less than 1 MeV

are injected into a crystal, they are stopped near

the surface of the crystal, typically within a fraction of

a micron.! But in some special cases, measurements?*—8

of the number n#g of implanted ions per cm?® have

revealed large concentrations much deeper (up to 10 u)

than the normal stopping region. All of these supertails

observed to date have the form ng~ (x—x0)™", with

n=2-8, where x is the distance into the crystal measured
from the surface.

Although channeling® affords one explanation of
penetration up to depths of ~1 y, the supertails extend-
ing several microns deep are almost certainly not caused
by channeling.* Previous explanations of these super-

* Research performed in part at the Hughes Research Labora-
tories, Malibu, Calif.

17. 'Lindhard and M. Scharff, Phys. Rev. 124, 128 (1961). This
theory, developed for gases and amorphous sohds, has been
supplied successfully to crystals in the normal stopping region
(excluding channeling and diffusion).

2 B. Domeij, F. Brown, J. A. Davies, G. R. Piercy, and E. V.
Kornelsen Phys. Rev. Letters 12, 363 (1964)

3E. V. Kornelsen F. Brown, J A. Davies, B. Domeij, and
G. R. Piercy, Phys. Rev. 136, A849 (1964).

‘J A. Davies and P. Jespersgard Can. J. Phys. 44, 1631 (1966).

5 J. A. Davies, L. Eriksson, and J. L. Whitton, Can. J. Phys. 46,
573 (1968).

¢ H. Herrmann, H. Lutz, and R. Sizmann, Z. Naturforsch.
21A 365 (1966).

. W. Bower, R. Baron, J. W. Mayer, and O. J. Marsh,
Appl Phys Letters 9, 203 (1966).

50 Meyer, Nucl. Tnstr. Methods 70, 285 (1969).

? J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys.
Medd. 34, No. 14 (1965). See Refs. 2 and 4 for convincing channel-
1tng expenments and for references to previous channeling litera-
ure.

tails have involved either a single-stream diffusion with
a constant number of traps*? or superdeep channel-
ing.1'12 The exponential concentration predicted by the
single-stream constant-trap model could conceivably
be modified by a variation in the concentration of
trapping centers with distance from the sample surface,
but a change of the shape of #g from exponential to
power law for four orders of magnitude change in ng
and for different samples is highly unlikely. The possibil-
ity of anomalously deep penetration due to the periodic-
ity of the lattice has also been discussed by De Wames,
Hall, and Lehman,® and the effect of the crystal
binding of target atoms on the scattering process has
been considered by De Wames and Hall.*4

A theory is presented which explains all supertail
experiments known to the author. The power-law
profiles are explained by a general diffusion model,
suggested by McCaldin,'® in which several species such
as vacancies, self-interstitials, and implanted ions all
diffuse so rapidly that a steady state is maintained
throughout the bombarding time. Kornelsen et al.3
also suggested that interstitial diffusion which is stopped
by vacancies might be important.

10 J. O. McCaldin, Progress in Solui State Chemistry (Pergamon
Press Ltd., London, 1965), Vol. 2, p.
nC, Ergmsoy, ths Rev. Letters 12 366 (1964).
(1;26{5) 0. McCaldin and J. A. Brmkma.n Phys. Letters 17, 221
1B R. E. De Wames, W. F. Hall, and G. W. Lehman, Phys. Rev.
148, 181 (1966).
(1;‘ 616{ E. De Wames and W. F. Hall, Phys. Rev. Letters 17, 125
1], 0. McCaldin (private communication).



