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Generalized Oscillator Strengths of the Helium Atom.
lll. Transitions from the Ground State to the 3'D and O'P States*

Yong-Ki Kirn and Mitio Inokuti
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The generalized oscillator strengths of He for the 1 S 3 D and 4 P transitions have been
calculated with correlated wa0e functions, according to both the length and velocity formulas.
The agreement between the two alternative results is within 3% or less for moderate values
of the momentum transfer. The resulting Born cross sections for charged-particle impact
are also given. Compared with our values, available experimental data on the 3 D excitation
are substantially larger, while for the 4 I' excitation they agree within + 50%.

1. INTRODUCTION

2. DEFINITIONS

The following notation is the same as those
used in paper I: f„(K) is the GOS for the transi-
tion from the ground state to the state n; f„ is the
optical oscillator strength; lim f„(K)=f„, as K
-0; Kh is the momentum transfer; a, is the
Bohr radius; E„/R is the excitation energy for
state n in Rydbergs; T =mv'/2, where m is the
electron rest mass, and v the incident particle
velocity; and finally, ze is the charge of the in-
cident particle. We also take over the following
equations.

Formula I (the "length" formula):

Formula II (the "velocity" formula):

a ' N

n

2
xdr ' dr& (2)

To test rigorously the validity of the Born ap-
proximation, it is essential to minimize those
uncertainties in the generalized oscillator
strength (GOS) which come from the inaccuracy
in the wave functions. We have extended our
earlier work' ' by calculating with the Weiss
correlated wave functions' the GOS of He for the
1'S-3'D, 4'P transitions.

The Born excitation cross sections for charged-
particle impact are computed and compared with
other theoretical and experimental data.

Formula III (the "expansion" formula), for small

E only:

f (K)= Q (Ka ) f /Xi
n

= '0 n

The Born cross section, represented by the
Bethe procedure:

For an optically allowed transition,

4va'z' — f 4c T y E'
0 s s s s

T/R E /R R T/R T'
s

(4)

For an optically forbidden transition,

4' 'z' -
y E'

0 s s
z' T/R z' T/R T'

The parameters cs bs' ys and ys' are de
termined from the GOS. [See Eqs. (12), (13),
(15), and (16) of paper I.] The parameter ys de-
pends on the mass of the incident particle, and
we denote by ys(e) the value for electrons, and
by yz( ) that for infinite reduced mass (compared
to the electron mass), a very good approximation
to protons and other heavy particles.

The Weiss wave functions' are of Hylleraas
type and contain 53, 52, and 18 terms for the
ground, 3'D and 4'I' states, respectively. The
excitation energies and other properties com-
puted from the Weiss wave functions are in very
good accord with the best available theoretical
and experimental information (Table I). The
computational method is essentially the same as
that described in Sec. 3 of paper I, except for the
fact that the spherical Bessel function j,(Kr) ap-
pears in the "velocity" calculation for f2iD (K) and
that the computation is cumbersome. [See Eqs.
(9) and (10), paper I. ]
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TABLE I. Comparison of properties calculated from the %'eiss wave functions and those from other sources in
atomic units.

Property

Excitation energy E
(Total energy for the 1 S state)

Expectation value of r
&

Expectation value of r f2

Optical oscillator strength, "length"

Optical oscillator strength, "velocity"

Source

Experiment
Weiss (Ref. 3)
Green
Pekeris

%'eiss
Pekerisc

Weiss
Pekeris

e
Weiss
Greenb

e%'eiss
Greenb

2.903 724
2.903 383
2.903 724

1.19348
1.19348

2.516 43
2.51644

3D

0.848 07
0.848 11
0.847 77

63.178

126.42

4P
0.872 63
0.872 77
0.872 32
0.872 65

294.86
304.06

589.72
608.14

0.030 2

0.029 6

0.030 3
0.029 6

%'. C. Martin, J. Res. Natl. Bur. Std. (U. S. ) 64A,
19 (1960); includes relativistic effects. Other energy
values are nonrelativistic.

C. L. Pekeris, Phys. Rev. 115, 1216 (1959);
B. Schif'f, H. Lifson, C. L. Pekeris, and P. Rabinowitz,
ibid. 140, A1104 (1965).

L. C. Green, E. K. Kolchin, and N. C. Johnson, Phys.
Rev. 139, A373 (1965); Astrophys. J. 144, 369 (1966).

Computed from the %'eiss wave functions by the
present authors.

e
Reference 3.

3. GENERALIZED OSCILLATOR STRENGTHS

The GOS's are tabulated in Table II, and the
expansion coefficients for Formula III [Eq. (3)]
are given in Table III, The agreement between
the length and velocity results is within 3% for

(Ka,)'s 5 and within 1% for more significant re-
gion (Kao)' (1.

Although the 4'P wave function is not as elaborate
as the other %eiss wave functions, it yields a re-
liable f4&~(K) judged from the close agreement of
the length and velocity results. Because of close

TABLE II. The generalized oscillator strengths for the 3 D and 4'P excitations of He.

(Kao)

0.05
0.10
0.15
0.20
0.25

0.30
0.35
0.40
0.45
0.50

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Formula I

4.2206 x 10
7.4421 x 10
9.8603 x 10
1.1634 x 10
1.2892 x 10
1.3739 x 10
1.4260 x 10
1.4522 x 10
1.45S2 x 10
1,4486 x 10

1.4268 x 10
1.3959 x 10-'
1.3582 x 10
1.3157 x 10
1.2698 x 10
1.2218 x 10"
1.1726 x 10
1.1230 x 10
1.0736 x 10
1.0248 x 10

3'D
Formula II

4.2652 x 10-
7.5052 x 10
9.9255 x 10
1.1691x 10
1,2936 x 10
1.3768 x 10
1.4273 x 10
1.4520 x 10
1.4567 x 10
1.4458 x 10

1.4231 x 10
1.3914 x 10
1.3532 x 10
1.3102 x 10
1.2640 x 10
1.2158 x 10
1.1665 x 10
1.1169x 10
1,0676 x 10
1.01S9x 10

Formula I

2.848 x 10
2.6SS x 10
2.536 x 10
2.393 x 10
2.258 x 10
2.130 x 10
2.010 x 10
1.896 x 10
1.789 x 10
1.689 x 10

1.594 x 10
1.505 x 10
1.421 x 10"
1.342 x 10
1.268 x 10"
1.199x 10
1.133 x 10
1.071 x 10
1.013 x 10
9.590 x 10

4|P
Formula II

2.860 x 10
2.701 x 10
2.550 x 10
2.408 x 10
2.273 x 10
2.145 x 10
2.025 x 10
1.911x 10
1.804 x 10
1.704 x 10

1.609 x 10
1.520 x 10
1.436 x 10
1.356 x 10
1.282 x 10"
1.212 x 10"
1.146 x 10
1.084 x 10
1.026 x 10
9.714 x 10
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TABLE II. (Cont. )

184

Formula I Formula II Formula I
4i@

Formula II

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2,6

2.8
3.0

3.2

3.6
3.8
4.0
4.2

4.8
5.0

6.0
6.5
7.0
7.5
8,0
8.5
9.0
9.5

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

8.4200 x 10
6.8499 x 10
5.5510 x 10
4.4964 x 10
3.6480 x 10
2.96&2 x 10
2.4236 x 10
1.9869 x 10
1.6358 x 10
1.3525 x 10

1.1231x 10
9.3660 x 10
7.8435 x 10
6.5954 x 10
5.5679 x 10
4.7186 x 10
4.0137 x 10
3.4264 x 10
2.9352 x 10
2.5228 x 10

1.7519 x 10
1.2391 x 10
8.9127 x 10
6.5097 x 10
4.8219 x 10
3.6181 x 10
2.7473 x 10
2.1091x 10
1.6356 x 10
1.2804 x 10
3.4514 x 10
3.3703 x 10
6.0339 x 10
1.5379 x 10
4.9386 x 10
1.8668 x 10
7.9670 x 10
3.7348 x10 '
1.8870 x 10

8.3679 x 10
6.8059 x 10
5.5139x 10
4.4647 x 10
3.6203 x 10
2.9434 x 10
2.4012 x 10
1.9664 x 10
1.6169 x 10
1.3351 x 10

1.1071x 10"
9.2194 x 10
7.7096 x 10-'
6.4735 x 10
5.4574 x 10
4.6187 x 10
3.9238 x 10
3.3456 x 10
2.8627 x 10
2.4579 x 10

1.7028 x 10
1.2022 x 10
8.6337 x 10
6.2982 x 10
4.6605 x 10
3.4939 x 10 "

2.6507 x 10-'
2.0333 x 10
1.5755 x 10
1.2323 x 10

7.712 x 10
6.237 x 10
5.072 x 10
4.148 x 10
3.412 x 10
2.821 x 10
2.345 x 10
1.958 x 10
1.644 x 10
1.386 x 10"

1.174 x 10
9,985 x 10
8.527 x 10
7.309 x 10
6.289 x 10
5.430 x 10
4.704 x 10
4.088 x 10
3.564 x 10
3.116x 10

2.254 x 10
1.657 x 10-
1.236 x 10
9.340 x 10
7.144 x 10
5.525 x 10
4.316 x 10
3.404 x 10
2.708 x 10
2.172 x 10
8.101 x 10
9.678 x 10
2.035 x 10
5.961 x 10
2.169 x 10
9.182 x 10-"
4.348 x 10
2.244 x 10"
1.239 x 10

7.825 x 10
6.338 x 10"
5.163 x 10
4.229 x 10
3.484 x 10
2.884 x 10
2.401 x 10
2.008 x 10
1.687 x 10
1.424 x 10

1.207 x 10
1.027 x 10
8.776 x 10
7.524 x 10"
6.474 x 10
5.589 x 10
4.840 x 10
4.203 x 10
3.661 x 10
3.197 x 10

2,304 x 10
1.683 x 10
1.245 x 10
9.316 x 10
7.037 x 10
5.360 x 10
4.114 x 10
3.178 x 10
2.470 x 10
1.929 x 10

3D
Final state

4ig

0.009 5930
—0.024 7254

0.035 6259
—0.037 5938

0.032 2414

0,030 1676
—0.034 6558

0.017 8689
—0,001 8249
-0.005 0664

TABLE III, Power-series expansion coefficients
f„~~i/) ' [see Eq. (3)] for the generalized oscillator
strengths of He.

spacing of levels it is very difficult at present to
resolve electron-impact differential cross sec-
tions for the O'D and 4'P excitations, and we are
unaware of experimental data on these individual
excitations to be compared with our result.

The GOS's calculated in the length formula by
van den Bos' with a two-term Hartree-Fock-
Roothaan wave function for the ground-state and
Eckart wave functions for the excited states are
in good agreement [lower by -6% than our result
for O'D at (Ka,)' = 0.5 and higher by - 6/p for O'P
at (Ãa, )'=0.1] with ours.

Bell, Kennedy, and Kingston' calculated the
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FIG. 1. The generalized oscillator strengths of He
for the I S 3 L transitions. The circles (G) are ex-1 i

perimental data by Lassettre et al. (Ref. 8), and squares
( ) those by Geiger (Ref. 9). Neither experiment had
sufficient energy resolution to separate the 3 8, 3 P,
and 3 D transitions, and their "3 P" data actually in-
clude all three transitions.

GOS's from a six-term Hylleraas ground-state
wave function and modified hydrogenic excited-
state wave functions in both the length and velocity
formulas. For the 3'D excitation, their velocity
result is almost the same as ours [smaller by 1/o

at (Ka,)' = 0.5] and the length result is lower [by
6% at (Ka,)' = 0.5] than our result. Recently, Bell,
Kennedy, and Kingston' have essentially duplicated
our work in the length formula only, using %'eiss
wave functions; they concluded that their "accu-
rate" GOS for the 3'D excitation should be accu-
rate to O. I%%uq and lie about halfway between the
length and velocity results of Ref. 5. The values
of f3'(K) in Table II, however, are a few to
several percent larger than those in Ref. 6,
particularly for small momentum transfer, and
do not support their conclusion at all. ' As for the
4'P excitation, the GOS in Ref. 5 is somewhat
larger than ours [by -8%%uo for the velocity result,
and by -5%%uo for the length result at (Ka,)'=0.1],
and that in Ref. 6 is essentially identical to our
length result as it should be.

In Sec. 4C of paper I, we implied that the
"apparent" f3~&(K) deduced from experiment by
Lassettre, Krasnow, and Silverman' as well as
by Geiger' is actually the sum of the GOS's for
the 3'S, 3'P, and 3'D excitations, because neither
experiment had enough energy resolution to
separate the three states. In Fig. 1, we have
plotted f3~~(K) (from paper I), the sum of the
three excitations, and the experimental data.
Now the agreement between theory and experi-
ment, particularly that of Ref. 8, is improved.

The differential Born cross sections for the
3'D excitation in the textbook by Mott and Massey"
(Table VI, p. 481) are almost by a factor of 3
too large, whereas the 4'P cross sections there
are in good agreement with our result.

As is the case for the 2'S and 3'S excitations

TABLE IV. Parameters for the excitation cross
sections of He. ISee Eqs. (4) and (5). ]

Parameter
Final state

3 D 4'I

Rf, /E,
ln ~s
RfsES fin(4cs)

S
(e)
(~)

0.002 51

—0.004 07

0.0173
—1.816
—0.00743

0.000 040
0.015 1

discussed in paper I, the first nonvanishing co-
efficient fn'" for the 3'D excitation [see Eg. (3)]
is sensitive to the choice of wave functions used.
The values of f3~D'" in the literature~~'~'
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FIG. 2. Excitation cross sections for the 1 S 3 D
excitation of He. Note that the ordinate is the excitation
cross section times T=mv /2. For electrons T as given

2

on the top scale is the incident energy. The open circles
(~) are electron-impact experimental data by Moustafa
Moussa et al. (Ref. 23); the closed circles (~ ) those
by St. John et al. (Bef. 20); the closed triangle () by
Gabriel and Heddle (Ref. 19); and the chained curve
(- ~ - .— ) on top left corner marked "Z" by Zapesochnyi
(Ref. 21). The other chained curve marked "DDG" rep-
resents the proton-impact experimental data by Denis
et al. (Ref. 22). Other theoretical cross sections are
represented by broken curves (——); "SM" and "MP"
denote the results of impact-parameter approximations
by Stauffer and McDowell (Bef. -15) and McDowell and
Pluta (Ref. 18), respectively; "Fl" and "Fv" the length
and velocity Born calculations, respectively, by Fox
(Ref. 12); "BKK" represents the "accurate" Born cross
section by Bell et al. (Refs. 6 and 14. See comments
on the accuracy of their results in Sec. 3, 4 and Foot-
note 7); "OB"the Born-Ochkur approximation result by
Ochkur and Brattsev (Ref. 16); and "G"the Born cross
section by Gaillard (Refs. 17 and 22). The solid line
gives the present result (the same for both electrons
and other heavy charged particles).



42 Y.-K. KIN AND M. INOKUT I 184

)00

010

500
T (sV)

)000
I

5000 )04

N
hl

NO

e 005
tt:
I-

2 3 4 5 6
In (T/R)

FIG. 3. Excitation cross sections for the 1 S 4 Pi i

excitation of He. The open triangles (~) represent
proton-impact experimental data of Thomas and Bent
{Ref. 24). Other notations are the same as those in

Fig. 2. The solid curves are the present results: The
lower one is for incident electrons, and the upper one

may be used for incident protons and other heavy par-
ticles. See the paragraph below Eq. {5) of the text.

range anywhere from 0.0031 to 0.0195, compared
to the accurate value of 0.009593 (Table III).

4. BORN EXCITATION CROSS SECTIONS

The parameters for the Born excitation cross
sections [Eqs. (4) and (5)] are listed in Table IV.
There is a variety of experimental and theoretical
information on the 3'D excitation cross sec-
tion. ' ~' f" ~ All of the experimental data"
are obtained through optical methods and they
may be subject to errors inherent in such a
method. All experimental 3'D cross sections
are substantially larger than the Born result,
as shown in Fig. 2. Although the electron-im-
pact cross section for the 3'D excitation mea-
sured by Moustafa Moussa, de Heer, and
Schutten" apparently attains an asymptotic be-
havior for Tp 1000 eV (Fig. 3), its magnitude is
about 40% larger than that predicted by theory.
Other experiments seem even less compatible

with theory. Among the many theoretical cross
sections, that by Bell et al. ' ' "~" and by van
den Bos' come close to our result. The 3'D ex-
citation cross sections in Refs. 6 and 14 are -4%
lower than ours in the asymptotic region (Fig. 2).'

The experimental data on the 4'P excitation
cross section" " agree with our result (Fig. 3)
within +50%. Again, the data of Moustafa Moussa
et al."exhibit the energy dependence predicted
by the Bethe theory, but not the magnitude. The
4'P excitation cross section calculated by van
den Bos4 is very close to ours, and those by
Bell et al. ' are somewhat larger.

Bell, Kennedy, and Kingston'~'~" also present
their cross sections in the form of Egs. (4) and
(5) (including terms of higher negative powers of
T), but they seem to have determined the param-
eters cs s ys an ys ' by numerically fitting
to the Born cross sections evaluated at various
incident energies. With the Bethe procedure
described in the Appendix of paper I, these
parameters are uniquely determined from the
GOS itself. The parameters for the 4'P excita-
tion given by Bell et al.' " are in good agree-
ment with those in Table IV, but those for the
3'D excitation are different from ours. ' The
contributions from the remainder O(E+'/T') in
Eqs. (4) and (5), which represents the difference
between the Born cross section and its repre-
sentation by the Bethe procedure, become sig-
nificant only at rather low incident velocities
where the validity of the Born approximation it-
self becomes doubtful.

Printing errors in paper I. In Table II, the
exponent of f3'~(K) at (Ea,)' = 50 should read
"10 '."Seven lines below Eq. (16), "Xz" and

&s ' should read ys an 'ys ' ' respectively.
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A simple theory based on a free scattering model and the Born approximation is used to de-
scribe the loss of electrons from an atomic system during high-energy impact with another atomic
system. Calculations for electron loss by atomic hydrogen incident on helium, atomic nitro-
gen, and argon agree well with the Born approximation and the high-energy experimental data.
At high energies the cross sections decrease as aE, where E is the laboratory system energy,
and for atomic hydrogen projectiles, a has the values 1.6 X 10 cm eV, 1.3 &10 cm eV,
and 4.7 & 10 cm eV for targets of helium, atomic nitrogen, and argon, respectively.

INTRODUCTION

Born approximation calculations' ' for the
electron-loss cross sections in high-energy col-
lisions involving the few-electron systems of hy-
drogen and helium show good agreement with ex-
perimental data. ' ' For target and projectile
systems with more electrons, the Born approxi-
mation calculations become much more difficult.
Dmitriev and Nikolaev' have done calculations
for the few-electron systems using a simpler
theory, which gives results identical to the Born
approximation at very high energies. The free
scattering theory of Dmitriev and Nikolaev' as-
sumes that an electron, moving with the same
velocity as the projectile nucleus, is removed if,
in elastic and inelastic collisions with the target
atom, it receives enough momentum transfer to
increase its energy above the ionization potential
of the projectile system. The Born approxima-

tion is used to treat the free electron-target atom
scattering, with the use of the closure approxi-
mation for the inelastic processes. In view of
the simplicity of such a theory, calculations
based on it have been performed for heavier tar-
get systems. At high energies the agreement be-
tween experiment data, ' ' and calculations for
atomic hydrogen incident on helium, atomic ni-
trogen, and argon is good. The theory should
also provide reliable estimates at very high ener-
gies for heavier projectile systems, for which no
experimental data appear to be available.

THEORY

Let k&be the magnitude of the initial momentum
vector k, of the incident electron, where it is
assumed that the velocity of the incident electron
is identical with the relative velocity of the heavy
bodies. Let kf be the momentum of the scattered


