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Quantum-mechanical rate equations are derived for semiconductor lasers (SL). Fluctuation operators
with shot-noise character describe the quantum nature of the transitions. These equations are treated in
the high-temperature limit for pure and highly doped III-V compound semiconductors. Numerical calcula-
tions are carried out for GaAs. From the mean rate equations we determine (a) the temperature depend-
ence of the threshold pump rate for pure bulk SL and the threshold current for SL junctions and (b) the
temperature and pump dependences of the mean light intensity and of the mean quasi-Fermi-level. By
linearizing the fluctuations around the mean values, the noise spectrum for the light intensity is obtained.
The general form of the noise spectrum is the same as that obtained by McCumber for a four-level laser
system. Above threshold a sharp resonance is found in the GHz region. The temperature and pump depend-
ences of the spectrum and especially of the resonance frequency are calculated in detail. The results from
the mean equations and from the noise calculations which are obtained for highly doped GaAs are compared
with experimental results for junction lasers, and good agreement is found. For pure SL the present numeri-
cal results are in good agreement with former analytical results of Haug and Haken for the mean intensity
and for the low-frequency part of the noise spectrum, which have been found for the regions below and
above threshold. The results for pure bulk SL are applicable to experiments with optical or electron-beam
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excitation.

I. INTRODUCTION AND SUMMARY

HE noise spectrum for laser light was first calcu-
lated by McCumber! for a four-level laser system.
Using rate equations with noise sources, a sharp reso-
nance in the GHz region has been found. A quantum-
mechanical justification of such an approach has been
given by Lax.? Recently, the noise spectrum of semicon-
ductor laser (SL) junctions has been studied experi-
mentally® in the microwave region. Continuous oscilla-
tions with a frequency of a few GHz have been found
both in the light intensity and in the junction current.
The temperature and current dependences of this reso-
nance frequency have been measured.

A theory, which is intended to predict the tempera-
ture and current dependences of the properties of the
SL light output and current has to take into account
a detailed description of the electron states and the dis-
tribution of the electrons over these states. The basic
quantum-mechanical equations have already been de-
veloped* for the SL and have been used for a calculation
of the low-frequency part of the noise spectrum both for
the light intensity and the junction current.® This ap-
proach did not, however, cover the immediate threshold
region. The results for the intensity spectrum of SL light
agreed with the result of a Hanbury Brown-Twiss ex-
periment by Armstrong and Smith.” Recently, the low-
requency spectrum for the junction current has also
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been measured® and an increase in the absolute noise
spectrum was found at threshold, as predicted in Ref.
6. In this paper the rate-equation technique will be used
in order to cover the full pump and frequency ranges,
especially the immediate threshold region and the high-
frequency part of the intensity noise spectrum. Further-
more, the temperature and pump dependences of the
mean light output, of the mean population, and of the
noise spectrum for the SL light intensity will be given
a detailed numerical treatment. Recently, methods of
continuous optical excitation have been developed?
which allow a careful study of laser action in spatially
homogeneous and, if desired, pure semiconductor bulk
materials. In order to give predictions for such experi-
ments, first optical band-to-band transitions in pure
semiconductors will be treated. Most experimental data
exist, however, for SL junctions with high doping levels.
It is well known that the temperature dependence of
the properties of these lasers is mainly determined by
the impurity states,'%-12 i.e.,, by the changed optical
matrix element and by the impurity bands or tails.
The following model will be used. (a) No k-selection rule
for the optical transitions, the matrix element is taken
to be that for transitions between an acceptor level and
the conduction-band edge; (b) the conduction band has
an exponential tail in the density of states; (c) the ac-
ceptor band is a very narrow band (& function for the
density of states); and (d) no spatial variations are
taken into account. This model gives simple analytical
expressions, but it has the shortcoming that one has to
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cut off the integral for the total spontaneous emission
in the used high-temperature approximation. The nu-
merical analysis is carried out for the example of pure
and highly doped GaAs, but the techniques can readily
be applied to all III-V compounds with a direct band
gap. In II-IV compounds, laser action involves exciton
states. A theory for stimulated phonon-assisted exciton
recombination which describes the basic laser process in
IT-IV compounds has been developed in Ref. 13.

The SL electron-electron scattering processes bring
the electrons in each band in a very short time into a
quasi-Fermi distribution and excludes any hole-burning
effects. As a direct consequence, only one single-laser
mode is stable.’* Another consequence is that it is suffi-
cient to know the total number of electrons in one band.
The two resulting quantum-mechanical rate equations
for the number of photons N in the laser mode and for
the total number of electrons N¢ in one band are non-
linear equations for N and N¢. Both quantities are still
operators. The quantum nature is contained in the fluc-
tuation operators which have shot-noise character. As
usual, a linearization procedure is used to solve the
equations. The photon number is split into a mean value
and the superimposed fluctuations. The fluctuations in
the total number of electrons are expressed by fluctua-
tions in the Fermi level.® The mean equations can be
reduced in the high-temperature limit to two quadratic
equations for the quasi-Fermi level of the upper band
and for the photon number. These equations determine
the temperature and pump dependences of both quanti-
ties. Quadratic equations are the simplest type of equa-
tions which can describe the saturation of the Fermi
level and the typical strong change in the light intensity
at threshold. It is shown that the simple analytical re-
sults given in Ref. 14 for the SL light intensity is an
excellent approximation for P,>1.02, where P, is the
normalized pump rate, i.e., P,=1 at threshold. The
threshold currents which are obtained for the high-
doping case are close in slope and magnitudetothecurves
which have been observed for SL junctions.?:1! The
noise spectrum has the structure which was first ob-
tained by McCumber.! The resonance in the GHz region
is very pronounced above threshold. The temperature
and current dependences of the spectrum and especially
of the resonance frequency are calculated. The shifts of
the resonance with temperature and current agree in
direction and order of magnitude with the experimental
findings.? The present numerical results in the low-
frequency part of the noise spectrum agree in the ranges

13 H. Haug and K. Grob, Phys. Letters 26A, 41 (1967); H. Haug,
J. Appl. Phys. 39, 4687 (1968).

. H. Haug, Z. Physik 195, 74 (1966). Based on these investiga-
tions, the multimode stabilization due to local inhomogeneities
have been discussed by I. A. Poluectov, Yu. M. Popov, and N. N.
Shuikin, in Proceedings of the Ninth International Conference on
the Physics of Semiconductors, edited by S. M. Ryvkin (Nauka
Publishing House, Leningrad, 1968) Vol. 1, p. 613; T. L. Paoli,

J. R. Ripper, and T. H. Zachos, IEEE J. Quant. Electron. (to
be published).
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of common validity with former analytical results®
which have been obtained for the regions below and
above threshold.

II. DERIVATION OF RATE EQUATIONS

The method of deriving the quantum-mechanical rate
equations from the basic equations of motion for the
system operators is well known.2 In the case of the SL,
the problem has already been solved for the number
operators of the electrons in a paper dealing with the
population and current noise.® In this paper, therefore,
only a brief review of the assumptions and method will
be given.

The equations of motion for the system operators
contain unitary time-development terms and also ir-
reversible terms due to the coupling to the heat baths.!s
These quantum-mechanical Langevin equations have
been derived for the SL previously.* The photon ampli-
tude bt of the single-laser mode obeys the equation

(—iwtk+d/d)ot () =i X grrs*amclaray+F1(), (2.1)
kiks

where w is the frequency of the empty cavity, « is the
loss constant, FT is the fluctuation operator, and gz, is
the optical matrix element between the state £,C with
wave vector k; in the upper band C (conduction band or
its impurity tail) and the state &,V of the lower band V
(valence band or impurity band due to acceptors).

The time derivative of the dipole-moment operator
aryclar,y is given by

(—tergkgtYigkst d/dt)ar,claryy
= — b gaky(Mayc —Mayv) FF (Drsongy,  (2.2)

where €k, = €x,c—e€r,v 1S the frequency between k,C
and %,V and vygx, is the damping constant, which is de-
termined by all phase-destroying processes.

The time development of the number operator 7 is
given by

@/dt)ynic=2 (—ibg*iika@riclansy+H.c.)
k2

_’sp,k1+Pk1+Fk10k10(t)+(d/dt)”k10|el—el; (2-3)

where H.c. means the Hermitian conjugate of the pre-
ceding term.

Tap,ky =27H % | gkikal 2o Lmiyc(1—nrgv)
2

is the rate of spontaneous emission into the continuum
of all light modes (except the laser mode), where py, is
the density of states for the light field. py, is the pump
rate. If one introduces pumping as a process which is
the inverse of spontaneous emission, one gets py,

16 The quantum-mechanical Langevin method has been de-
veloped by J. R. Senitzky, Phgg. Rev. 119, 670 (1960); 124, 642
(1961); H. Haken, Z. Physik 190, 327 (1966); M. Lax, Phys. Rev.
145, 110 (1966).
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=2mh 3 ky | Praka| 0570w (1—7kic), Where pi, is the
matrix element and p, is the density of states for the
pump field. Fy ck,c is the fluctuation operator which is
related to pumping and spontaneous emission. The last
term describes the important electron-electron scatter-
ing processes. It also consists of a transition-rate term
and a fluctuating term. The scattering processes bring
the electron gasin very short time into quasiequilibrium,
so that one can make the simplifying assumption that
the electron gas is always nearly in a quasiequilibrium
state. This fact has already been used in deriving the
relaxation and fluctuation terms in (2.2) and (2.3). An
equation similar to (2.3) holds for 7,y.

With the help of the fluctuation-dissipation theorem,®
the second moments of the fluctuation operators have
been calculated.

Using the identity (d/dt)N=[(d/dt)b"1b+bt(d/dt)b,
one can write down the equation for the number opera-
tor of the photons. Its right-hand side depends on the
dipole-moment operator ax,c'ax,v. Because y which con-
tains all phase-destroying processes is normally very
large, one can solve (2.2) adiabatically.? Inserting the
result in the equations of motion for N and #:¢,“one
finds equations which depend only upon number opera-
tors and fluctuation operators. If one splits the fluctua-
tion operators into their mean values and the fluctua-
tions around these mean values, the equation for the
photon number operator has the following form:

(d/d)N= —2«N+Eov+GN+F(t),  (2.4)

where

Ecv=3% |guka|22vkirs

kiks

X[ (ersks— D)2+ Vigks? T Mryc(1—nrgv)  (2.5)

is the rate of spontaneous emission into the laser mode,
and Q is the real laser frequency in the inverted crystal
resonator. The gain is G= E¢y — Ey¢, where Ey¢ is ob-
tained from Ecy [Eq. (2.5)] by interchanging C and V.
F(t) has shot-noise character, i.e.,

(F(OF(s))
=8(t—5)(2kN+(Ecv)(N+1)+(Evc)N). (2.6)

The averages ( ) in this paper are always averages over
all heat baths, which have been coupled to the system
to describe the nonunitary time development. As dis-
cussed in Ref. 4, one has to include for the semiconductor
averages over the electron system itself because of the
electron-electron relaxation process. In both (2.4) and
(2.6), the contributions of the thermal photons are
neglected.

Because of the assumption that the electrons in one
band are always in a quasiequilibrium, one does not
need the information about all individual occupation
numbers. It is sufficient to have one equation for the
total number of electrons in one band, N¢=3Y_x nrc. If
one sums the equation of motion for nx¢ over all %
values, the electron-electron terms drop out because
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they do not change the total number of electrons in one
band. The resulting equation is

(d/df)No=P—Rupp—GN —Ecy+Fc(l), (2.7)

where P=3, pr, and Ry,=3 i, 7ap,k, are the rates of
pumping and spontaneous emission, respectively. The
fluctuation operator again has shot-noise character:

(Fe(t)Fc(s))
=8(t—s){(P+Rspy+Ecv(N+1)+EvcN)) (2.8)
and

(F(OFc(s))=(Fc(DF(s))
= —8(t—5){(Ecv(N+1)+EvcN)).

ITII. MEAN-RATE EQUATIONS

From the quantum-mechanical rate equations (2.4)
and (2.7), the noise spectrum will be calculated by the
usual linearization method.!*? One determines first the
mean values N, 7ix¢, and 7xy and then takes small
fluctuations around these values into account. One de-
composes N=N+n(t). For the electrons, the expecta-
tion value of #xc and nxy are the quasi-Fermi distribu-
tion functions fic and fiy. The fluctuations around
these values can be expressed by a fluctuating Fermi
level ¢(#). Only one quasi-Fermi level is used, because
the quasi-Fermi levels in the upper and lower band are
related and can be expressed in terms of one another.

(:::8) =<;:)+As“(t)(a/a§)(; ::) NEE)

The two equations for the mean stationary rates can
then be written as

(2.9)

P—R,=%N, (3.2)
2k—G)N=Ecv. (3.3)

(The bars over all quantities in the following are omitted
for convenience.)

The first task will be to determine the threshold and
the laser frequency. In both examples which will be
treated in the following sections, the functions Ecy,
Eye, and G have, in the high-temperature range
(|t —A| <kT), the following form:

Ecv=e(8)[1+ (5 —A)/2kT], (3.4)
Eyc=e(A)[1—(¢—A4)/2kT], 3.5)
G=¢(A)§—A)/RT, (3.6)

where A=7Q—E, (E, is the gap energy) is used to
characterize the photon energy. The laser mode with
the maximum gain will start to oscillate first, i.e.,

(@/dA)G=0 or (m—A=e/e. 3.7

Neglecting at threshold the spontaneous emission rate
into the laser mode, one obtains from (3.3)

2%k=G or ¢wm=A+2kTk/e. (3.8)
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Combining the two last equations, one obtains

e*/e =2kTx, (3.9)
which determines the laser frequency A as a function
of T. Neglecting the term 2«N in (3.2), which is still
very small at threshold, one can calculate the threshold
pump rate Pu(7)= Rsp($n) by making use of the re-
sults of (3.9) and (3.8).

The next problem is to determine the average values
N and ¢ as functions of the pump rate P and the tem-
perature 7. The linear expansions (3.4)-(3.6) for Ecv,
Eyc, and Gin the high-temperature limit have been pos-
sible because one needs their values only at a fixed en-
ergy. But it is clear that such a linear expansion is not
allowed for the spontaneous emission rate R,,, which
includes all electron states in both bands. Therefore,
a different expansion will be used. The Fermi level will
saturate above threshold in the case of spatial and en-
ergetic homogenization which is treated here. The
analysis will show that the Fermi level will asymptoti-
cally approach the value {u above threshold. As one is
interested mainly in the threshold and lasing regions, it
is a good approximation to use a linear expansion of the
spontaneous emission rate Ry, around the threshold
value ¢n.

Rp(§)= Ri(fen)+ Ro(twn) (¢ —tew) /ET,

where R; and R, are determined by numerical integra-
tion for a given temperature. The same expansion is
used for the total number N¢ of electrons in the upper
band:

(3.10)

Ne(©)=N1(tn)+No(Con)(C —En) /RT .

Starting with Eq. (3.3) and inserting the expansions
(3.4)-(3.6), one gets

¢=@2Niw+A—2kT)/(2N+1),

(3.11)

(3.12)
or

N=(—A+2kT)/(wu—5).
These equations show already that {<{w; only for
N — o does { — ¢
Using these results and Eq. (3.2), one finds quadratic
equations for N and ¢:
S+ 2 [(Ri—P—r)kT/Re—¢wm]
= —¢fm?+ (RT/Ro)[2¢(2kT —A) —{w(P—Ry)]  (3.14)

and

(3.13)

4k N>+ 2N (k+R,—P)

=P—Ri—(Ro/kT)(n+A—2kT). (3.15)
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If R, and R; are known, one can calculate N(P,T) and
¢(P,T) from these equations. A quadratic equation for
N and ¢ is the simplest form which is still able to de-
scribe the pronounced changes within the threshold
region.
In the limit below, threshold (P<R; and N still
small) Eq. (3.15) gives
N=[Ry/(Ri—P)](tm—A+2kT)/kT—1. (3.16)
The approximate value of { in this region can best be
obtained from (3.2) directly by neglecting 2«xN:
§=tm—(kT/Rs)(Ri—P). (3.17)
These results show the increase of N and ¢ below thresh-
old. One sees that the results have no validity far below
threshold, because the assumption (¢ —{w)/kT <1 does
not hold in this region. But in the range 0.5<P/R,
< 0.98 the limiting results are very good approximations.
Well above threshold (P/R;>1.04), the limiting re-
sult for the photon number is N=(P—R;)/2«. From
(3.12) one finds for {—tam<kT, ¢=tm—[k/(P—R1)]
X (2kT—A). Because k/Ri~10"7, the slope of N(P)
above threshold is much larger than that below thresh-
old. Because of the same reason, one cannot see a differ-
ence between { and ¢ in a plot of {(P) above threshold.
(See, for instance, Fig. 2.)

IV. NOISE

In the last section the mean stationary rate equations
were solved. Following the analysis of McCumber! one
now treats the fluctuations around the mean values.
Using (d/dt)N.=(d/d¢)Nc(d/di)¢, one obtains the fol-
lowing linearized equations:

(d/d0)As = — At AS — Agun+ F,
(d/dtyn= —AntAf —Anun+F,

(4.1)
(4.2)

where

Ast=(Ry—kTAn)/Na,
An=ETG/N,,

Ang= —e(2N+1)/2kT,
Ann=2—G,

and Fy=(kT/N;)F¢c. No pump fluctuations have
been included. Introducing a Fourier transform
A@)= S Ase*tdw for AL, n, F, and Fy, one gets a system
of two linear equations for Af, and #,. Solving (4.1)
and (4.2) for the light field, one finds for the noise
spectrum

(|nat])=

(Fu|DAts2—2850A (| FoFpo | ) (| Fra] HAn? 40| Ful?)

(4.3)

(AnnAgr—AgnAng—6?) 2w (AnntAg)?
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Here the notation of Lax? is used:

(]nw!2)=[dt(n(0)n(l))e““=$(w). (4.4)

The relation (n,n.)=2wd(w—e'){|7,|2) holds. From
these definitions and (2.6), (2.8), and (2.9), one finds

(}|Fo|?)=2kN+ Ecv(N+1)+EycN, (4.5)

(| Fro|?)=(RT/N,)*
X (P+Rop+ Ecv(N+1)+EyeN) ,

(IFi‘waD:(leFMI)
= —(kT/N:)(Ecv(N+1)+EycN).

The spectrum is of the form
A%+ Bw?

(a2 —w?)2+-bow? :

(4.6)

4.7)

yw)= (4.8)

The structure of the denominator causes a sharp reso-
nance above threshold. Around the resonance frequency
wo= @, one can approximate the spectrum by

4(A43/we?+B)

yw)y~—————, 4.9)
(w—wo)?+(30)*
where
wo= (A,mA“- —A;”Anr) 1/2 . (4 10)
The half-width is
2y=b=Ann+Ag:. (4.11)

The resonance frequency wy is in the GHz region. In
the following especially the pump and temperature
dependences of the spectrum and of the resonance fre-
quency will be discussed. Solving the Egs. (4.1) and
(4.2) for A{., one finds for {|A¢,|?) a result with the
same resonance denominator. This explains why the
resonances in the noise spectrum are observable simul-
taneously in the light field and in the junction current of
a laser diode.?

V. NUMERICAL CALCULATIONS
FOR PURE GaAs

In pure semiconductor materials with a direct band
gap, the k selection for band-to-band transitions is
valid, i.e., gryk,= ko8- For ay<KkT, ¢, A, the expression
(2.5) for the rate of spontaneous emission into the laser
mode reduces to

Ecy=AAYfc(1—fy), (5.1

where A=2n%p’|g|2. The factor p’ of the density of
states for parabolic bands is p'=V(2m,3)1/2/(x2h3),
where V is the volume, and m, is the reduced mass
(m,;~'=mc"+my™1). The absolute square of the matrix
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elements islé:17
me?  (Eo/hQ)(Egto)

lgl? )
6VnP*me E,+%0

where 7 is the index of refraction and ¢ is the spin-orbit
splitting. The quasi-Fermi distributions are

fo=(14e@Dalk)=1 and fi= (14 eC~DBIT)-1

with a=m,/mc and B=m,/my.

The high-temperature approximation then gives the
form (3.4) with e(A)=%4AY2. From (3.9) and (3.8), one
gets A= (4kkT/A)?"? and {w=3A. Knowing {m(7T), one
can numerically determine the threshold pump rate:

(5.2)

o0

Pua=Ry=2rh / puo 18| c(l—f)dE, (5.3)

where pr=VE, *3/2r%*#%?. The variation of py with E
is neglected. Equation (5.3) can be written as

00

Ry=Ap. (kT 3/2/ J(x)dx, (5.4)
—3A/RT
where
J(x)= (x+3A/kT) 2 (e=+e*s+€B=+1)~1.  (5.5)
Similarly, R,=kT(d/d¢w)R: is given by
Ry=At (RT)2 / J(x)
—3A/kT
X[e(14e=)"14+B(14+e =) ]dx. (5.6)

The integrals are calculated using the following param-
eter values.'® y=3.5, mc=0.072m, my=0.5m, E,= 1.437
eV, ¢=0.33 eV, and k=10" sec"l. The volume was
taken to be V=10"% cm.?

R, is given in Fig. 1. The result can be represented by
Pin=Ry= P T**, where Po=8.8X 1014 °K—1-44/sec. This
shows that the temperature dependence of the integral
in (5.4) is very weak. The approximate result Py, o< T%/2

m T T T
§ 4
—
EZ-IO"
a
g 110"°E 4 F16. 1. Threshold pump rate
a E {  versus temperature for a pure
S ]  GaAs crystal with a volume of
& 50" 1078 cm™3,
X
3 4
20" L1 1
50 100 200 300
TEMPERATURE [°K]

16 0. Madelung, Physics of I1I-V Compounds (John Wiley &
Sons, Inc., New York, 1964).

17 H. Haug, Z. Physik 194, 482 (1966). On the right-hand side of
formula (21) a factor of 5 is missing.
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was first obtained by Hall!8 for pure semiconductors,
showing that the temperature dependence of the thresh-
old current of junction lasers has to be determined by
impurity states. Similar integrations are carried out to
obtain Ro(T), Ni(T), and No(T).

The mean rate equations can now be solved numeri-
cally. Figure 2 gives the pump dependence of the Fermi
level ¢. As discussed in Sec. IV, the change at threshold
is not abrupt as it appears in the plot because of the
small ratio of k/R;. From the Fermi level one can calcu-
late the gain function. The gain function saturates
above threshold, i.e., it approaches asymptotically the
value 2« (Fig. 3). The unsaturated gain Gyns, which is
obtained by extrapolating the gain from below threshold
into the region above threshold, has been used in former
formulations of the SL theory.5:14

Figure 4 shows the photon number versus the pump
rate. The laser light output 2x%QN changes in the thresh-
old region by five orders of magnitude. Experimental

FERMI LEVEL [meV]

NORMALIZED PUMP RATE

F16. 2. Quasi-Fermi level versus normalized pump rate P, for
pure GaAs at various temperatures.

curves for optically pumped homogeneous GaAs cry-
stals!® show the same amount of increase in the thresh-
old region, but the slopes are normally not quite as steep
as the theory predicts.

In Ref. 12 it was shown that above threshold the
photon number N in the laser mode is given by

2k= Guns/ (14-aN) (5.7

(Note that the definitions of the gain of this paper and
of Refs. 4, 5, and 12 differ by a factor of 2.) Using the
unsaturated gain Guns from Fig. 3 one can show that
(5.7) is an excellent approximation for P,>1.02. The
saturation constant ¢ is found to be

a=3.85X10—47-1.12°K 1.12 (5.8)
for the used volume of V'=10"8 cm?. If one works with

18 R. N. Hall, Solid-State Electron. 6, 405 (1963).
1 N. G. Basov, A. Z. Grasy;.lk V. F. Ehfimkov, and Kamulin,

Fiz. Tverd. Tela 9, 88 (1967) [English transl.: Soviet Phys.—
Solid-State 9, 65 (1967)].
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2
NORMALIZED PUMP RATE

F16. 3. Gain G=E¢v—Ev¢ versus normalized pump rate Py,
for pure GaAs at various temperatures. The unsaturated gain
Guns is obtained by extrapolation.

the photon density N/V instead of N, the constant
aV=23.85X10"12T-1-12 c;n3 °K!-12 isvolume-independent.
The formula (5.8) holds very precisely in the range
60-300°K. The linearized version of (5.7) 2x=Gyns
X (1—aN) fails, however, very early, i.e., for P,>1.06,
because aN soon starts to become comparable to 1.
The noise spectrum S(w) can now be calculated for
various pump levels and temperatures. In Fig. 5 the
relative noise spectrum S,(w)=S(w)/N? is plotted
versus the linear frequency f=w/27 for 80°K. The
parameter values give the normalized pump rates for
the various curves. One sees that, starting at threshold,
a resonance in the GHz region builds up which becomes
very pronounced and sharp immediately above thresh-
old. The resonance frequency shifts toward higher fre-
quencies as the pump rate is increased at a constant
temperature (Fig. 6). An increase in temperature at
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F16. 4. Photon number in the laser mode versus absolute pump
rate P for pure GaAs at various temperatures. The numbers 0.4
to 4 give the values of the normalized pump rate Pq.
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F1c. 5. Relative noise spectrum S, (w) versus linear frequency f for
pure GaAs at 80°K and various normalized pump rates.

constant pump rate decreases the resonance frequency.
The noise spectrum and especially the GHz resonances
have not yet been studied experimentally in pure homo-
geneous semiconductors. In Fig. 7 the relative noise
spectrum for zero frequency is plotted versus the photon
number N. The dashed lines give the results of Ref. 5,
which have been obtained by quasilinearization pro-
cedures directly from the amplitude equations (2.1)-
(2.3). The result for the noise spectrum below threshold
was Sp(w=0)=(k—3G)"Y, and above threshold,
Sa(w=0)=[(14aN)?/a?N3]Ecv/2«%). But the lineari-
zation procedure did not allow coverage of the threshold
region 0.99< P,<1.01. The difference far below thresh-
old exists because the present method fails in that
region; the difference far above threshold arises because
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F16. 6. Resonance frequency fmax versus absolute pump rate
for pure GaAs at various temperatures. The values of relative
pump values P, are also given.
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in Ref. 5 the electron population fluctuations have not
been included.

VI. NUMERICAL CALCULATIONS
FOR HIGHLY DOPED GaAs

In p-n junctions high doping levels are used. To com-
pare the theory with experimental data taken with
junction lasers, one has to treat transitions between im-
purity bands. To keep the numerical work at a reason-
able level, the following model will be used. IFor the
upper band an exponential density of states pc= poeZ/£
is assumed, where one takes both for po and Ey numbers
which have been found experimentally.’! The lower
band is assumed to be a sharp acceptor level with a den-
sity of states py=Z3(Ey—E). The origin of the energy
coordinate is in the upper band at E¢= 0. For the matrix

107

RELATIVE NOISE SPECTRUM S (w=0) [sec]

PHOTON NUMBER

F1c. 7. Low-frequency limit of the relative noise spectrum
versus photon number for pure GaAs at 80°K. The parameters
along the curve give the normalized pump rate P,. The dashed
curves are analytical results of Ref. 5.

element the result of Ref. 20 is used, which has been
calculated for a donor-to-conduction-band transition.
As in the calculations of Lasher and Stern,!® any de-
pendence on k is neglected, i.e., gix,=Fk, where |k|2
= (647a*3/V)|g|? with a*= eo(m/m*)a,, ao is the Bohr
radius of a hydrogen atom, ¢ is the static dielectric
constant, m* is the effective mass of the acceptor elec-
tron, and g is the band-to-band matrix element (5.2).
For this model the rate of spontaneous emission into the
laser mode is

Ecv=|h|2xhZpoer o fo(1— fv),
where fo= (14 ¢@—/kT)~1 gnd
fr=(1+431eE)ikT)—1,

Note that the Fermi distribution fv holdsif an acceptor
atom of the group II (e.g., Zn) replaces Gat3. The for-

# 0. M. Eagles, Phys. Chem. Solids 16, 76 (1960).

(6.1)



184

mula equals that for a donor of group V inserted into
a material of group-IV atoms. _

The energy A is given by A=#Q—E. Because the
density of the valence band which lies close to the ac-
ceptor level is a very rapidly rising function with energy,
the changes in ¢y will be small. As a simplifying assump-
tion, fy=% is used. Then the high-temperature expres-
sions?! have again the form (3.4)-(3.6), with e(A)
= BeAlEo, where B=31rhZto|h|?, which is valid for
| A—¢| <ET. The laser frequency is, according to (3.9),
A= E, In(2kkT/BE;) and the threshold Fermi level
to= Eo+A [see (3.8)].

The integral of the total spontaneous emission rate
can be written as

&=wm/dEﬁ%wﬂ%MWW% (6.2)

This integral converges only for Eo> kT, but not in the
high-temperature limit. The exponential density of
states, which does not include the bending over into a
square-root law, is an oversimplification. Also the %
dependence of the matrix element which was neglected
would help to assure convergence of the integral. For
the pure exponential tail, one has to cut off the integral
at E={wm+2kT. This is the energy at which the line-
arized Fermi distribution reaches zero. In the Appendix
it is shown that the integral R; (as well as R, N1, and
N») can be calculated explicitly by using an integral
representation?? of the Fermi distribution. The result is

T
Ri= ZBpLEOe{zh(T)/E0<
sinmx
o e——2n( — 1),,
ﬂﬁz*———ﬁ,ma

n=1 (x—n)

where x=kT/E,. Similar expressions are obtained for
Ry, Ny, and N; [Eq. (A9)]. The threshold pump rateis
Puw=R; and the threshold current in a junction laser is
im=ePw/n’, where n’ is the quantum efficiency. The
following parameters have been used for the numerical
evaluations.?0:11.16

V=1.2X10"8 cm3=15X2X400X 1012 cm?,

where 2X10~* cm is the junction width. The volume is
typical for junctions with stripe geometry.?® E,=10
meV, except for Fig. 8 where Ey=35, 10, 12, and 20 meV.
po/V=5%X108 cm—3 eV~ The donor impurity concen-
tration is taken to be Z=10'8 cm™3. The static dielectric
constant is ep=12.5, and the mass of the acceptor elec-
tron is m*=0.39m; this gives an effective Bohr radius

21 This model has also been used by N. G. Basov, V. N. Morozov,
V. V. Nikitin, and A. S. Semonov, Soviet Phys.—Semiconductors
1, 1305 (1968).

h” A. Wasserman, Phys. Letters 27A, 360 (1968), and references
therein.
(19236 _;) C. Dyment and L. A. D’Asaro, Appl. Phys. Letters 11, 292
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Fic. 8. Threshold current density versus temperature for various
values of the characteristic energy Ep of the band tail. The dotted
and dashed lines are experimental curves given in Refs. 3 and 11.
The right scale gives the values of the threshold current in mA.

for the acceptor of ¢*=16.95X10~8 cm. For the quan-
tum efficiency a value of #'=4% is assumed.

The rest of the parameters are the same as in Sec. V.
In Fig. 8 the threshold current versus temperature for
various values of E, is given. The results confirm earlier
qualitative discussions,!! which assumed that an ex-
ponential density of states in the upper band would
result in an essentially exponential dependence of the
threshold current on temperature. E, increases with
increasing #-type doping. Two experimental curves
which have been obtained by two research groups?:!’
are given for comparison. These curves have slopes
similar to the theoretical curves for Ey=10 or 12 meV.
In the following only Eo=10 meV will be used. Figure
9 gives the photon number versus the normalized pump
rate, and Fig. 10 shows the pump dependence of the
Fermi level in the impurity band.
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Fi16. 9. Photon numbers in the laser mode versus normalized pump
rate for highly doped GaAs at 120 and 200°K.
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Fi1G. 10. Quasi-Fermi level versus normalized pump rate for highly
doped GaAs at 120, 160, and 200°K.

The absolute noise spectrum S(w) is plotted in Fig. 11
for T=120°K. The sharp resonances in the GHz region
reach a maximum at a normalized pump rate of
P,~1.65. There the maximum value is about 5X103
times Jarger than the low-frequency plateau.

These resonances were first found for SL in noise
measurements around pump values of P,2>2 as con-
tinuous oscillations with a linewidth of approximately
10 MHz.? Recently the resonances have been observed
in the region 1.0<P,<2 as broader peaks.?* It seems
that these fluctuations somehow trigger, for P,>2, a
process which gives rise to the observed continuous os-
cillations with the small linewidth of 10 MHz. (See note
added in proof.) Using the approximate formula for the
linewidth [Eq. (4.11)] one finds that at 7=120°K the
full half-width in linear frequency is 2v/27r =136, 270,
360, 590, and 820 MHz for P,=1.02, 1.6, 2, 3, and 4.

T
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F16. 11. Absolute noise spectrum versus linear frequency f for
highly doped GaAs 120°K and various normalized pump rates.

2 T. L. Paoli (private communication).
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Fic. 12. Relative noise spectrum S,(w) versus linear frequency
f for highly doped GaAs at 120°K and various normalized pump
rates.

The resonances have also been studied by modulating
the junction current in the microwave frequency range.2?

The relative noise spectrum S,(w)=S(w)/N? is
plotted in Fig. 12 again for 120°K. The curves show the
rapid decrease of the relative intensity fluctuations
above thresholds. The shift of the resonance frequency
with pump rate is given for 7=120, 160, and 200°K
(Fig. 13). The high-temperature approximation is only
valid for 7>120°K. By extrapolating one obtains a

L T=200%
50+ T=160°K
o
40 Z T=120°K
T= 80°K
f:l 30+ (extmpolo'ed)J
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Fi16. 13. Resonance frequency fmax versus normalized pump rate
P, for highly doped GaAs at 120, 160, and 200°K. The dashed line
for 80°K is obtained by extrapolation. The experimental curve is
taken at 77°K. (See Ref. 3.)

% T, Ikegami and Y. Suematsu, IEEE J. Quant. Electron. 4,
148 (1968). '
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F16. 14. Resonance frequency fmax versus current density and
temperature for highly doped GaAs. The various curves are ob-
tained by keeping one of the three quantities constant.

curve for 80°K which is, in slope and magnitude, very
close to the curve obtained at 77°K by d’Asaro,
Cherlow, and Paoli.® The dependence of the resonance
frequency on both the temperature and the current can
clearly be seen in a three-dimensional plot (Fig. 14).
At a constant temperature of 120°K, the plot shows an
increase of approximately 9 MHz/mA with increasing
current, while for constant currents the curves decrease
with increasing temperature with roughly 50 MHz/°K.
Experimentally? one finds an increase of 15 MHz/mA at
constant temperature and a decrease of 150 MHz/°K
at constant current.

T=120°K

RELATIVE NOISE SPECTRUM S (w =0) [sec]
3 3 § 9 3

g
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Fic. 15. Low-frequency limit of the relative noise spectrum
versus photon number for highly doped GaAs at 120°K. The
normalized pump rates are given.
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In Fig. 15 the relative noise spectrum at zero fre-
quency Sa(w=0) is given for T=120°K. The slopes of
the curve on both sides near the maximum at threshold
agree with the slopes of the experimental curve which
has been obtained by Armstrong and Smith in a Han-
bury Brown-Twiss experiment at 4°K.7 Recently,
Gukeos and Strutt?® reported similar measurements over
a larger pump range. They observed a series of noise
maxima with increasing pump rate which can be inter-
preted as being the noise maxima of the successive
thresholds of various lasing filaments.

Note added in proof. In the meantime T. L. Paoli and
J. E. Ripper (to be published) proposed that the noise
peak drives an oscillation with a frequency which corre-
sponds to the difference in frequency separation between
three adjacent longitudinal modes.

ACKNOWLEDGMENT

The author appreciates a discussion with Dr. Paoli
(Bell Telephone Laboratories, Murray Hill, N. J.) about
the connections between the results of this paper and
his experimental findings.

APPENDIX

For doped semiconductors the integrals Ry, Ni, Ry,
N, which are defined in (3.10) and (3.11), will be cal-
culated. According to (6.2), Ri=2Bprl1({={wm), where

= / dEeE!Eo(1+¢E-DIFT)-1 (A1)

The cutoff energy is a={wm+2kT. Ry=2Bp.I, is the
derivative of Ry, or I;=kT93/3¢I1|;=t,; furthermore
N1=pol1 and Ny=pols. So one has to evaluate only I,.

Introducing e=(e—E)/kT, with a—{>0, one obtains
from

00

Iy =kTee/%o / de e~ FTIEo(1 4@ D)1 (A2)
0

It is convenient to write this as a contribution of a band
which is completely filled up to e, minus the contribu-
tion of the missing electrons.

00

I, =Ee* o —-kTe"/E"[ de
[}
Xe——ekTIE’o(l_l_ee—(a—f)/kT)—l. (A3)

Now an integral representation of the Fermi distribu-
tion?? is used:

kTet! B0 petio  d7p
271 /;_ioo sin(wZ)

X / de e~ kTIB2l—(@—DIRT] | (A4)
°

I, —E e/ Eo=
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where 0<c¢<1. After integrating over ¢, one finds for
the right-hand side

ETes/Eo potio dZ
2mi /:_.-w [sin(rZ)(Z-+4T/Eo)]

eZ(@DIT | (AS)

Because a—{>0, we close the contour integral by a
circle to the left in the complex Z plane. Summing up the
contributions of all residues, one gets

,"-e(f—a)/Ea
Il—Eoe“/E°=kTe"/E°(————————
sin(rkT/Eo)
© (_l)ne—n(a—r)lkT
L5 R
n=0 kT/Eo—n

One can easily see that the singularities on the right-
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hand side of (A6) for n — kT/E, cancel. Setting {= {'wn,
one finds, with x=,T/E,,

™ © (_1)ne—2n
Il =Eoefth/Eo( - —xe?® Z _.._____) . (A7)
sinmx n=l x—n
Using (A6), one gets
Tx? w (—1)*ne 2"
Iz=EoeW”°[ —xe* 3 —-———], (A8)
sinrx n=l  xX—n

which can also be written as
Iy=xl—xEoe2=ttlBo/ (14 ¢?), (A9)

The formulas (A7) and (A9) are used in a computer
program to evaluate Ry, R,, N3, and N, as functions of
temperature.
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The ultraviolet-absorption spectra of europium and ytterbium ions in CaF; crystals have been measured
at room and liquid-nitrogen temperatures. Their spectra are similar to each other in the general location of
their absorption bands. Both spectra consist of: (i) 4/ — 5d bands, between about 24 000 cm™ and about
50 000 cm™, due to isolated RE?** with crystal field strength ~17 000 cm™ between ¢, and #s, bands; (ii)
4f — 5d bands, shifted ~9 000 cm™ to higher energy, due to RE?* jons surrounded by RE3*+ neighbors; (iii)
a 4f — 6p broad and weak band of Eu** in CaF; with maximum at ~71 000 cm™; and (iv) 4/ — 5d bands
above ~64 000 cm™ due to isolated RE** and cluster-ion RE3*. The structure in the absorption spectra of
both isolated RE**(4f") and RE3*(4f") ions can be interpreted as formed through interaction between a 5d
electron having e, or ¢, crystal field symmetry and electrons in the ground multiplet of the 4/"~1 core.

I. INTRODUCTION

AS a direct approach to the study of intercon-
figurational transitions of rare-earth (RE) ions
in solids, we have previously presented the uv absorp-
tion spectra of two simple trivalent rare-earth ions,
Cett(4f1) (Ref. 1) and Pr*+(4f%) (Ref. 2), in alkaline-
earth fluorides. Their spectra show three types of transi-
tions in the order of increasing energy: (a) 4f— 5d
bands, (b) a broad and weak 4f— 6s band, and (c) the
charge transfer of F~ (2p% — RE?* (6s) appearing as
the red shift of the absorption edge of the host crystal.

For comparison with the work on RE**, we present
here the uv-absorption spectra of two common RE*

* Work partially supported by the McDonnell Douglas Astro-
nautics Company-Western Division under the Independent
Research and Development Program.

1E. Loh, Phys. Rev. 154, 270 (1967).

? E. Loh, Phys. Rev. 158, 273 (1967).

ions, Eu**(4f") and Yb(4f4), in CaF,. Contrary to
most of RE ions in solids, europium and, to a lesser
extent, ytterbium are usually in the divalent rather
than trivalent state because of their tendency to com-
plete the half, Eu?* (4f7), and full, Yb?+ (4f4), 4f shell,
respectively. Their spectra are stable and perhaps also
simple because no strenuous reduction process®* is
required to convert RE¥* to RE*". Furthermore, the
energy gaps in the ground multiplet of 4 f*! are among
the narrowest for Eu?*, 4f*'=4f% and the widest
for Yb*, 4f~1=4f18 The uv-absorption spectra of
Eu* and Yb?*, therefore, provide simple examples to
interpret the structure® of 4f*— 4f*'5d bands and

3J. L. Merz and P. S. Pershan, Phys. Rev. 162, 217 (1967);
162, 235 (1967); J. L. Merz, Ph.D. thesis, Harvard University,
1966 (unpublished). Available as Technical Report No. 514,
Office of Naval Research, NR-372-012, and references therein.

4¢D. S. McClure and Z. Kiss, J. Chem. Phys. 39, 3251 (1963).

§ E. Loh, Phys. Rev. 175, 533 (1968).



