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Quantum-mechanical rate equations are derived for semiconductor lasers (SL). Fluctuation operators
with shot-noise character describe the quantum nature of the transitions. These equations are treated in
the high-temperature limit for pure and highly doped III-V compound semiconductors. Numerical calcula-
tions are carried out for GaAs. From the mean rate equations we determine {a) the temperature depend-
ence of the threshold pump rate for pure bulk SL and the threshold current for SL junctions and (b) the
temperature and pump dependences of the mean light intensity and of the mean quasi-Fermi-level. By
linearizing the fluctuations around the mean values, the noise spectrum for the light intensity is obtained.
The general form of the noise spectrum is the same as that obtained by McCumber for a four-level laser
system. Above threshold a sharp resonance is found in the GHz region. The temperature and pump depend-
ences of the spectrum and especially of the resonance frequency are calculated in detail. The results from
the mean equations and from the noise calculations which are obtained for highly doped GaAs are compared
with experimental results for junction lasers, and good agreement is found. For pure SL the present numeri-
cal results are in good agreement with former analytical results of Haug and Haken for the mean intensity
and for the low-frequency part of the noise spectrum, which have been found for the regions below and
above threshold. The results for pure bulk SL are applicable to experiments with optical or electron-beam
excitation.

I. INTRODUCTION AND SUMMARY

HE noise spectrum for laser light was first calcu-
lated by McCumber' for a four-level laser system.

Using rate equations with noise sources, a sharp reso-
nance in the GHz region has been found. A quantum-
mechanical justi6cation of such an approach has been
given by Lax.' Recently, the noise spectrum of semicon-
ductor laser (SL) junctions has been studied experi-
mentally in the microwave region. Continuous oscilla-
tions with a frequency of a few GHz have been found
both in the light intensity and in the junction current.
The temperature and current dependences of this reso-
nance frequency have been measured.

A theory, which is intended to predict the tempera-
ture and current dependences of the properties of the
SL light output and current has to take into account
a detailed description of the electron states and the dis-
tribution of the electrons over these states. The basic
quantum-mechanical equations have already been de-
veloped4 for the SL and have been used for a calculation
of the low-frequency part of the noise spectrum both for
the light intensity' and the junction current. 6 This ap-
proach did not, however, cover the immediate threshold
region. The results for the intensity spectrum of SL light
agreed with the result of a Hanbury Brown —Twiss ex-
periment by Armstrong and Smith. ' Recently, the low-
requency spectrum for the junction current has also

* Supported by the National Science Foundation (GK-1656).' D. E. McCumber, Phys. Rev. 141, 306 (1966).' M. Lax, IEEE J. Quant. Electron. 3, 37 {1967).'L. A. D'Asaro, Sr., J. M. Cherlow, and T. L. Paoli, IEEE J.
Quant. Electron 4, 164 (1968).

4 H. Haug, Z. Physik 200, 57 (1967).' H. Haug and H. Haken, Z. Physik 204, 262 (1967).' H. Haug, Z. Physik 206, 163 {1967).
~ J. A. Armstrong and A. W. Smith, Phys. Rev. 140, A155

(1965).

been measured' and an increase in the absolute noise
spectrum was found at threshold, as predicted in Ref.
6. In this paper the rate-equation technique will be used
in order to cover the full pump and frequency ranges,
especially the immediate threshold region and the high-
frequency part of the intensity noise spectrum. Further-
more, the temperature and pump dependences of the
mean light output, of the mean population, and of the
noise spectrum for the SL light intensity will be given
a detailed numerical treatment. Recently, methods of
continuous optical excitation have been developed'
which allow a careful study of laser action in spatially
homogeneous and, if desired, pure semiconductor bulk
materials. In order to give predictions for such experi-
ments, 6rst optical band-to-band transitions in pure
semiconductors will be treated. Most experimental data
exist, however, for SL junctions with high doping levels.
It is well known that the temperature dependence of
the properties of these lasers is mainly determined by
the impurity states, '~" i.e., by the changed optical
matrix element and by the impurity bands or tails.
The following model will be used. (a) No 0-selection rule
for the optical transitions, the matrix element is taken
to be that for transitions between an acceptor level and
the conduction-band edge; (b) the conduction band has
an exponential tail in the density of states; (c) the ac-
ceptor band is a very narrow band (8 function for the
density of states); and (d) no spatial variations are
taken into account. This model gives simple analytical
expressions, but it has the shortcoming that one has to

8 G. Guekos and M. J.O. Strutt, Electron. Letters 4, 408 (1968).
9 M. R. Johnson and W'. Holonyak, Jr., J. Appl. Phys. 39, 3977

(1968).
~o G. Lasher and F. Stern, Phys. Rev. 133, 533 (1964);F. Stern,

iMd. 148, 186 (1966)."C. G. Dousmanis, H. Nelson, and D. L. Staebler, Appl. Phys.
Letters 5, 1/4 (1964).» K. Unger, Z. Physik 207, 332 (1967).
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cut off the integral for the total spontaneous emission
in the used high-temperature approximation. The nu-
merical analysis is carried out for the example of pure
and highly doped GaAs, but the techniques can readily
be applied to all III-V compounds with a direct band
gap. In II-IV compounds, laser action involves exciton
states. A theory for stimulated phonon-assisted exciton
recombination which describes the basic laser process in
II-IV compounds has been developed in Ref. 13.

The SL electron-electron scattering processes bring
the electrons in each band in a very short time into a
quasi-Fermi distribution and excludes any hole-burning
effects. As a direct consequence, only one single-laser
mode is stable. '4 Another consequence is that it is suRi-

cient to know the total number of electrons in one band.
The two resulting quantum-mechanical rate equations
for the number of photons X in the laser mode and for
the total number of electrons Eq in one band are non-
linear equations for E and Ez. Both quantities are still
operators. The quantum nature is contained in the Quc-
tuation operators which have shot-noise character. As
usual, a linearization procedure is used to solve the
equations. The photon number is split into a mean value
and the superimposed Quctuations. The Quctuations in
the total number of electrons are expressed by Quctua-
tions in the Fermi level. ' The mean equations can be
reduced in the high-temperature limit to two quadratic
equations for the quasi-Fermi level of the upper band
and for the photon number. These equations determine
the temperature and pump dependences of both quanti-
ties. Quadratic equations are the simplest type of equa-
tions which can describe the saturation of the Fermi
level and the typical strong change in the light intensity
at threshold. It is shown that the simple analytical re-
sults given in Ref. 14 for the SL light intensity is an
excellent approximation for P„&1.02, where P„ is the
normalized pump rate, i.e., P„=1 at threshold. The
threshold currents which are obtained for the high-
doping case are close in slope and magnitude to the curves
which have been observed for SL junctions. ' " The
noise spectrum has the structure which was first ob-
tained by Mccumber. ' The resonance in the GHz region
is very pronounced above threshold. The temperature
and current dependences of the spectrum and especially
of the resonance frequency are calculated. The shifts of
the resonance with temperature and current agree in
direction and order of magnitude with the experimental
findings. ' The present numerical results in the low-
frequency part of the noise spectrum agree in the ranges

"H. Haug and K. Grob, Phys. Letters 26A, 41 (1967);H. Haug,
J. Appl. Phys. 39, 4687 (1968).

'4 H. Haug, Z. Physik 195, 74 (1966).Based on these investiga-
tions, the multimode stabilization due to local inhomogeneities
have been discussed by I. A. Poluectov, Yu. M. Popov and N. N.
Shuikin, in Proceedings of the ninth International Conference on
the Physics of Semiconductors, edited by S. M. Ryvkin (Nauka
Publishing House, Leningrad, 1968) Vol. 1, p. 613; T. L. Paoli,
J. R. Ripper, and T. H. Zachos, IKKE J. Quant. Electron. (to
be published).

of common validity with former analytical resultss

which have been obtained for the regions below and
above threshold.

II. DERIVATION OF RATE EQUATIONS

The method of deriving the quantum-mechanical rate
equations from the basic equations of motion for the
system operators is well known. ' In the case of the SL,
the problem has already been solved for the number
operators of the electrons in a paper dealing with the
population and current noise. ' In this paper, therefore,
only a brief review of the assumptions and method will

be given.
The equations of motion for the system operators

contain unitary time-development terms and also ir-
reversible terms due to the coupling to the heat baths. "
These quantum-mechanical Langevin equations have
been derived for the SL previously. 4 The photon ampli-
tude b~ of the single-laser mode obeys the equation

( i(a+a—+d/dt)bt(t) =i Q gk, k,*ak,ctakkv+Ft(t), (2.1)

where co is the frequency of the empty cavity, ~ is the
loss constant, Iit is the Quctuation operator, and gI,Iq, is
the optical matrix element between the state k~C with
wave vector k~ in the upper band C (conduction band or
its impurity tail) and the state k& V of the lower band V
(valence band or impurity band due to acceptors).

The time derivative of the dipole-moment operator
a&,z c&,& is given by

( kkk|kk+'Ykzkk+d/dt)ak&c akkv

ib gk, k, (rtk, c—rtk, v)+~(t)—k,ck,v, (2 2)

where II' y =6k g KI, ~ is the frequency between k&C

and k2V and yI, I~, is the damping constant, which is de-
termined by all phase-destroying processes.

The time development of the number operator nj, g is
given by

(d/dt)rtk, c=+ (—ibg*k, k,ak, cuba v+kH c )

r,v, k, +pk, +Fk—,ck,c(t)+(d/dt)rkk, ct.k~k, (2.3)

where H.c. means the Hermitian conjugate of the pre-
ceding term.

r~y kk 2r& & I gkikk I
'pr Nkkc(I 'ktk, v)—

is the rate of spontaneous emission into the continuum
of all light modes (except the laser mode), where pr, is
the density of states for the light field. Pk, is the pump
rate. If one introduces pumping as a process which is
the inverse of spontaneous emission, one gets Pk,

Ig' The quantum-mechanical Langevin method has been de-
veloped by J. R. Senitzky, Phys. Rev. 119, 670 (1960); 124, 642
(1961);H. Haken, Z. Physik 190, 327 (1966); M. Lax, Phys. Rev.
145, 110 (1966).
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=2&rk P», )p», », ~'p,n», v(1 —
n»&c)& where p», », is the

matrix element and p„ is the density of states for the
pump Geld IiI,I+I,IQ is the Quctuation operator which is
related to pumping and spontaneous emission. The last
term describes the important electron-electron scatter-
ing processes. It also consists of a transition-rate term
and a Quctuating term. The scattering processes bring
the electron gas in very short time into quasiequilibrium,
so that one can make the simplifying assumption that
the electron gas is always nearly in a quasiequilibrium
state. This fact has already been used in deriving the
relaxation and tluctuation terms in (2.2) and (2.3). An
equation similar to (2.3) holds for n», v.

With the help of the Quctuation-dissipation theorem, '
the second moments of the Quctuation operators have
been calculated.

Using the identity (d/dt)N= [(d/dt)bt jb+bt(d/dt)b&
one can write down the equation for the number opera-
tor of the photons. Its right-hand side depends on the
dipole-moment operator ak, ~~@1„y.Because y which con-
tains all phase-destroying processes is normally very
large, one can solve (2.2) adiabatically. ' Inserting the
result in the equations of motion for X and n~g, 'one
finds equations which depend only upon number opera-
tors and Quctuation operators. If one splits the Quctua-
tion operators into their mean values and the Quctua-
tions around these mean values, the equation for the
photon number operator has the following form:

(d/dt)N= 2&:N+Ecv+—GN+F(t), (2.4)
where

Ecv + I g»&»» I 2V»&»»

X I (~»,», &)'+—y», »,'5 'n», c(1 n», v)—(2.5)

is the rate of spontaneous emission into the laser mode,
and 0 is the real laser frequency in the inverted crystal
resonator. The gain is G= Eqy —Eyg, where Eyg is ob-
tained from Ecv LKq. (2.5)] by interchanging C and V.
F(t) has shot-noise character, i.e.,
(F(t)F(s))

= b(t s) (2zN+ (Ecv)—(N+ 1)+(Evc)N) (2 6)

The averages ( ) in this paper are always averages over
all heat baths, which have been coupled to the system
to describe the nonunitary time development. As dis-
cussed in Ref. 4, one has to include for the semiconductor
averages over the electron system itself because of the
electron-electron relaxation process. In both (2.4) and
(2.6), the contributions of the thermal photons are
neglected.

Because of the assumption that the electrons in one
band are always in a quasiequilibrium, one does not
need the information about all individual occupation
numbers. It is suflicient to have one equation for the
total number of electrons in one band, Nc= P» n»c. If
one sums the equation of motion for nzz over all k
values, the electron-electron terms drop out because

they do not change the total number of electrons in one
band. The resulting equation is

(d/dt)Nc= P R.—v —GN —Ecv+Fc(t) & (2.7)

where P=P», p», and R,,=P», v,v, », are the rates of

pumping and spontaneous emission, respectively. The
Quctuation operator again has shot-noise character:

(Fc(t)Fc(s))
= b(t s)((P—+R,v+Ecv(N+1)+EvcN)) (2.8)

and

(F(t)Fc(s))= (Fc(t)F(s))
5(t s—)((E—cv(N+1)+EvcN)). (2.9)

IIL MEAN-RATE EQUATIONS

From the quantum-mechanical rate equations (2.4)
and (2.7), the noise spectrum will be calculated by the
usual linearization method. "One determines first the
mean values N, ni, q, and n~y and then takes small
Quctuations around these values into account. One de-
composes N=N+n(t). For the electrons, the expecta-
tion value of nA, & and n&& are the quasi-Fermi distribu-
tion functions f»c and f»v The flu. ctuations around
these values can be expressed by a Quctuating Fermi
level I'(t). Only one quasi-Fermi level is used, because
the quasi-Fermi levels in the upper and lower band are
related and can be expressed in terms of one another.

( /+Af (t)(~/~f)i . (3.1)
n»v(t)i &f»v) kf»v

2~= G or fu, =A+2kTs/e (3.8)

The two equations for the mean stationary rates can
then be written as

P—g,p
——2]8f, (3.2)

(2~ G)N =Ecv. — (3.3)

(The bars over all quantities in the following are omit ted
for convenience. )

The first task will be to determine the threshold and
the laser frequency. In both examples which will be
treated in the following sections, the functions Eg~,
Egg, and G have, in the high-temperature range

(~ f—5) (kT), the following form:

Ecv= e(A) L1+ (i —A)/2kT j, (3.4)

= a(A)L& 0 —~)!/2kTj (33)—
G= e(a) (i- t»)/k T, — (3.6)

where A=ko E, (E, is the ga—p energy) is used to
characterize the photon energy. The laser mode with
the maximum gain will start to oscillate first, i.e.,

(d/dA)G= 0 or I' » 6&= e/e' —(3.7).
Neglecting at threshold the spontaneous emission rate
into the laser mode, one obtains from (3.3)
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Combining the two last equations, one obtains

e'/e'= 2kT~, (3 9)

where Rj and R2 are determined by numerical integra-
tion for a given temperature. The same expansion is
used for the total number Xg of electrons in the upper
band:

Nc(f') =Ni(fth)+N20 'th)(f it~)/kT— (3 11)

Starting with Eq. (3.3) and inserting the expansions
(3.4)—(3.6), one gets

which determines the laser frequency 6 as a function
of T. Neglecting the term 2N:N in (3.2), which is still
very small at threshold, one can calculate the threshold
pump rate P&h(T)=R.~(|'e,) by making use of the re-
sults of (3.9) and (3.8).

The next problem is to determine the average values
N and i' as functions of the pump rate P and the tem-
perature T. The linear expansions (3.4)—(3.6) for Fcv,
Ey~, and 6 in the high-temperature limit have been pos-
sible because one needs their values only at a axed en-
ergy. But it is clear that such a linear expansion is not
allowed for the spontaneous emission rate R,~, which
includes all electron states in both bands. Therefore,
a diGerent expansion will be used. The Fermi level will
saturate above threshold in the case of spatial and en-
ergetic homogenization which is treated here. The
analysis will show that the Fermi level will asymptoti-
cally approach the value /th above threshold. As one is
interested mainly in the threshold and lasing regions, it
is a good approximation to use a linear expansion of the
spontaneous emission rate R,~ around the threshold
value /th.

R.~(f ) = R~(h~ )+R2(f'th)(f t'u)/k—T
~ (3 1o)

If R~ and R2 are known, one can calculate N(P, T) and

f(P,T) from these equations. A quadratic equation for
N and 1 is the simplest form which is still able to de-
scribe the pronounced changes within the threshoM
region.

In the limit below, threshold (P&R~ and N still
small) Eq. (3.15) gives

N= LR2/(Rg —P)j(/th —6+2kT)/kT —1. (3.16)

The approximate value of f' in this region can best be
obtained from (3.2) directly by neglecting 2~N:

f=fu, —(kT/R2)(Rg —P). (3.17)

These results show the increase of X and g below thresh-
old. One sees that the results have no validity far below
threshold, because the assumption (f f,h)/k—T& 1 does
not hold in this region. But in the range 0.5&P/Rq
&0.98 the limiting results are very good approximations.

~ell above threshold (P/Rq) 1.04), the limiting re-
sult for the photon number is N=(P R&)/2—~ From.
(3.12) one finds for 1 ith&&kT—, f = f'u, —L~/(P —Rq) j
X(2kT—LL). Because ~/R~~10 ', the slope of N(P)
above threshold is much larger than that below thresh-
old. Because of the same reason, one cannot see a differ-
ence between f and /th in a plot of f'(P) above threshold.
(See, for instance, Fig. 2.)

IV. NOISE

In the last section the mean stationary rate equations
were solved. Following the analysis of McCumber' one
now treats the fluctuations around the mean values.
Using (d/dt)N, = (d/dt)Nc(d/dt)g, one obtains the fol-
lowing linearized equations:

or

f= (2Nt u,+6 2kT)/(2N+ 1—),

N= (g —6+2kT)/(tg, —1).

(3.12)

(3 13) where

(4.1)

(4.2)

These equations show already that f&t&h, only for
N —+~ does f-+ f,h

Using these results and Eq. (3.2), one finds quadratic
equations for N and f'

p+2$$(Rg —P ~)kT/R2 —/th j-
= —f',h'+ (kT/R2) L2~(2kT —6)—t g, (P—Rg)] (3.14)

4~¹+2N(~+Rg —P)
=P —Rg —(R2/kT) O th+6 —2kT). (3.15)

Qr = (R2 kTA„r)/N2, —
Ar =kTG/Nm,

A r= —e(2N+1)/2kT,
h. =2x-G,

and Fr (kT/N2)Fc. ——No pump fluctuations have
been included. Introducing a Fourier transform
A (t) = J'A „e'"'da& for ht, n, F, and Fr, one gets a system
of two linear equa, tions for LLf'„and n„. Solving (4.1)
and (4.2) for the light field, one finds for the noise
spectrum

&IF I'&~rr' 2~rr~ r&IF—Fr I&+&IFr I'&~ r'+~'&IF I'&

(A„err Ar„A r ra~. )2+(u—'(c4 +A—rr)~
(4.3)



H. HAUG 184

Here the notation of Lax' is used:

(Iii I') = dt(n(0)ii(t))e'"'=S(io). (4.4)

elements is"'~
s-e' (Eg/AQ)(Ek+o)

(5.2)

(4.5)(IP„I
')= 2sN+ Ecv(N+ 1)+EveV )

(IPr- I'&= (kT/Nk)'

)&(P+Rlv+ Ecv(N+ 1)+EvcN), (4.6)

= —(k&/Nk)(Ecv(N+1)+EvcN) (4 &)

The spectrum is of the form

The relation (n„n„)=2sb(oi —o&')(In„l') holds. From
these definitions and (2.6), (2.8), and (2.9), one finds

where g is the index of refraction and 0 is the spin-orbit
splitting. The quasi-Fermi distributions are

f (1y—s(k r) elk-T) ia-nd f —(1+s(f k)ptk-r) i-
with a=~,/mc and P=m„/vlv.

The high-temperature approximation then gives the
form (3.4) with e(h) =xiAE'". From (3.9) and (3.8), one
gets 6= (4skT/A)' t' and f&k=36 Kno. wing I ih(T), one
can numerically determine the threshold pump rate:

Pik~Ri =2sh pip' IgI kfc(1 fv)dE—, (5.3)
0

A '+Boy'
x(~) =

(ak &gk)2+b2iok
(4 8) ~h~~~ pr, = V E,' i't/2s' k' c'. The variation of pz, with E

is neglected. Equation (5.3) can be written as

The structure of the denominator causes a sharp reso-
nance above threshold. Around the resonance frequency
coo= u, one can approximate the spectrum by where

Ri Apl. (kT)'t'
—3' jjt;T

J(x)dx, (5.4)

where

4(A '/oik'+B)
y(~)=

(~ ~o)'+(xs—b)'

oip= (tt Err Jtr A~r)'".—

(4.9) J(x)= (x+36/kT)'t'(e*+e~~+e~*+1) '. (5.5)

Similarly, R&= kT(d/dl, h)R& is given by

R.=Ai-. (kT)*t

The half-width is

2y= b= Ji„„+Qr (4.11)

—3'/kT

XI a(1+e "*)-'+P(1+e ~*) ']dx. (5.6)

The resonance frequency coo is in the 6Hz region. In
the following especially the pump and temperature
dependences of the spectrum and of the resonance fre-
quency will be discussed. Solving the Eqs. (4.1) and
(4.2) for DI'„, one finds for (Iht'„I') a result with the
same resonance denominator. This explains why the
resonances in the noise spectrum are observable simul-
taneously in the light 6eld and in the junction current of
a laser diode. '

The integrals are calculated using the following param-
eter values. '6 g =3.5, mg= 0.072m&, mT = 0.5m, E,= 1.437
eV, 0=0.33 eV, and f(:=10" sec '. The volume was
taken to be V=10 ' cm. '

E& is given in Fig. 1. The result can be represented by
Pik=Ri=PoT'44 wherePo=8. 8+10'4'K '4%ec. This
shows that the temperature dependence of the integral
in (5.4) is very weak. The approximate result P,k ~ T't'

V. NUMEMCAL CALCULATIONS
FOR PURE GIAS

In pure semiconductor materials with a direct band
gap, the k selection for band-to-band transitions is
valid, i.e., gk, k, = bk, k,g. For Ay((kT, I', 5, the expression
(2.5) for the rate of spontaneous emission into the laser
mode reduces to

Ie io

~ I IO

OT

f 5IO
I-

FIG. 1. Threshold pump rate
versus temperature for a pure
GaAs crystal with a volume of
10'cm '.

Ecv= A&'"fc(1 fv), —(5.1)

where A=2~hp'IgI'. The factor p' of the density of
states for parabolic bands is p'= V(2m, ')'"/(s'k')
where V is the volume, and m„ is the reduced mass
(vit, '= mc '+mv '). The ab-solute -square of the matrix

p'lop i » i I i ~ I

5O IOO 2OO MO
TEMPERATURE I Kj

"O. Madelung, Physics of III-V ComPounds Qohn Wiley R
Sons, Inc. , New York, 1964}.

'~ H. Haug, Z. Physik 194, 482 (1966).On the right-hand side of
formula (21) a factor of *is missing.
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was 6rst obtained by Hall' for pure semiconductors,
showing that the temperature dependence of the thresh-
old current of junction lasers has to be determined by
impurity states. Similar integrations are carried out to
obtain Rs(T), Xr(T), and Ez(T).

The mean rate equations can now be solved numeri-

cally. Figure 2 gives the pump dependence of the Fermi
level g. As discussed in Sec. IV, the change at threshold.
is not abrupt as it appears in the plot because of the
small ratio of «/Rr. From the Fermi level one can calcu-
late the gain function. The gain function saturates
above threshold, i.e., it approaches asymptotically the
value 2z (Fig. 3). The unsaturated gain G„„which is
obtained by extrapolating the gain from below threshold
into the region above threshold, has been used in former
formulations of the SL theory. ' '4

Figure 4 shows the photon number versus the pump
rate. The laser light output 2' PiQX changes in the thresh-
old region by Gve orders of magnitude. Experimental

io—

0E

UJ) 5

-IOIX

LL

300'K
40'K
00'K
60'K
20 K
00'K
80'K-
60'K

O.I 0$ I.O

NORMALIZED PUMP RATE

Fro. 2. Quasi-Fermi level versus normalized pump rate P„ for
pure GaAs at various temperatures.

curves for optically pumped homogeneous GaAs cry-
stals" show the same amount of increase in the thresh-
old region, but the slopes are normally not quite as steep
as the theory predicts.

In Ref. j.2 it was shown that above threshold the
photon number E in the laser mode is given by

2z =G„,/(1+a%) (5.7)

(Note that the definitions of the gain of this paper and
of Refs. 4, 5, and 12 diBer by a factor of 2.) Using the
unsaturated gain G, from Fig. 3 one can show that
(5.7) is an excellent approximation for P )1.02. The
saturation constant a is found to be
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'5
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O
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so'Kg'trrti+Ispvg ~ ~sopK~Ir r err
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O. I

I
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FIG. 3. Gain G=Ecv —Evc versus normalized pump rate P„
for pure GaAs at various temperatures. The unsaturated gain
G is obtained by extrapolation.
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the photon density X/V instead of S, the constant
aV= 3.85)&10 122 ' "cm"K'12 isvolume-independent.
The formula (5.8) holds very precisely in the range
60-300 K. The linearized version of (5.7) 2z= G
&((1—aS) fails, however, very early, i.e., for P )1.06,
because aE soon starts to become comparable to i.

The noise spectrum S(co) can now be calculated for
various pump levels and temperatures. In Fig. 5 the
relative noise spectrum S (ce) = S(co)/X' is plotted
versus the linear frequency f=&a/27r for 80'K. The
parameter values give the normalized pump rates for
the various curves. One sees that, starting at threshold,
a resonance in the 6Hz region buiMs up which becomes
very pronounced and sharp immediately above thresh-
old. The resonance frequency shifts toward higher fre-
quencies as the pump rate is increased at a constant
temperature (Fig. 6). An increase in temperature at

a—3 85)(' $(}-4~1.12 OK 1.12 (5.8)

for the used volume of V= 10 8 cm'. If one works with

IO—

IO '—
IOiv IOI4

PUMP RATE [sec '
]

IO"

'8 R. N. Hall, Solid-State Electron. 6, 405 (1963).
's N. G. Basov, A. Z. Grasynh V. F. Khfimhov, and Kamnlin,

Fiz. Tverd. Tela 9, 88 (1967} glish transL: Soviet Phys. —
Solid-State 9, 65 (I967)j.

FzG. 4. Photon number in the laser mode versus absolute pump
rate P for pure GaAs at various temperatures. The numbers 0.4
to 4 give the values of the normalized pump rate P„.
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mula equals that for a donor of group V inserted into
a material of group-IV atoms.

The energy b, is given by 6= AQ —E. Because the
density of the valence band which lies close to the ac-
ceptor level is a very rapidly rising function with energy,
the changes in I v will be small. As a simplifying assump-
tion, fv = ,'is —used. Then the high-temperature expres-
sions" have again the form (3.4)—(3.6), with s(h)
=Bee'~s, where B=—rss. hZt's~js~s, which is valid for

f—
~
(kT. The laser frequency is, according to (3.9),

A= &s ln(2&&T/BEp) and the threshold Fermi level
I.&h= &a+a Lace (3.g)].

The integra1 of the total spontaneous emission rate
can be written as

Rt —2Bpr dR e&Iso(1+a(& 1e)ls )
—t'(6.2)
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This integral converges only for Ep&AT, but not in the
high-temperature limit. The exponential density of
states, which does not include the bending over into a
square-root law, is an oversimpli6cation. Also the k

dependence of the matrix element which was neglected
would help to assure convergence of the integral. For
the pure exponential tail, one has to cut oG the integral
at E=fth+2kT. This is the energy at which the line-
arized Fermi distribution reaches zero. In the Appendix
it is shown that the integral Rt (as well as Rs, lV't, and
its) can be calculated explicitly by using an integral
representation" of the Fermi distribution. The result is

2+pL ppQfth(T) /Eo

sinvrx
e-sn( l)n)—xe'* P— (6.3)

(x—n)

where x=kT/Es. Similar expressions are obtained for
Rs, Ã&, and iV's LEq. (A9)j.The threshold pump rate is
Pth= R& and the threshold current in a junction laser is
i,&=eP,h/ri', where ri' is the quantum efficiency. The
following parameters have been used for the numerical
evaluations. ' ""

V= 1.2X10 cm'= 15X2X400X10 ' cm,
where 2X10—4 cm is the junction width. The volume is
typical for junctions with stripe geometry. " Ep=10
meV, except for Fig. 8 where Ep= 5, 10, 12, and 20 meV.
ps/V= 5X10ts cm ' eV '. The donor impurity concen-
tration is taken to be Z= 10's cm '. The static dielectric
constant is op= 12.5, and the mass of the acceptor elec-
tron is m*=0.39m; this gives an eGective Bohr radius

"This model has also been used by N. G. Basov, V. ¹ Morozov,
V. V. Nikitin and A. S. Semonov, Soviet Phys. —Semiconductors
1, 1305 (1968 .

's A. Wasserman, Phys. Letters 27A, 360 (1968), and references
therein."J. C. Dyment and L. A. D'Asaro, Appl. Phys. Letters 11,292
(1967).

FIG. 8.Threshold current density versus temperature for various
values of the characteristic energy Eo of the band tail. The dotted
and dashed lines are experimental curves given in Refs. 3 and 1i.
The right scale gives the values of the threshold current in mA.

for the acceptor of u*= 16.95X10—' cm. For the quan-
tum efficiency a value of g'=$ is assumed.

The rest of the parameters are the same as in Sec. V.
In Fig. 8 the threshold current versus temperature for
various values of Ep is given. The results conlrm earlier
qualitative discussions, " which assumed that an ex-
ponential density of states in the upper band would
result in an essentially exponential dependence of the
threshold current on temperature. Ep increases with
increasing n-type doping. Two experimental curves
which have been obtained by two research groups"'
are given for comparison. These curves have slopes
similar to the theoretical curves for Ep=10 or 12 meV.
In the following only Ep= 10 meV will be used. Figure
9 gives the photon number versus the normalized pump
rate, and Fig. 10 shows the pump dependence of the
Fermi level in the impurity band.
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FrG. 9. Photon numbers in the laser mode versus normalized pump
rate for highly doped GaAs at 120 and 200'K.
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The absolute noise spectrum S(co) is plotted in Fig. 11
for T= 120'K. The sharp resonances in the GHz region
reach a maximum at a normalized pump rate of
P ~1.65. There the maximum value is about 5/10'
times larger than the low-frequency plateau.

These resonances were erst found for SI in noise
measurements around pump values of P„&2 as con-
tinuous oscillations with a linewidth of approximately
10 MHz. 3 Recently the resonances have been observed
in the region 1.0&P„&2 as broader peaks. '4 It seems
that these Quctuations somehow trigger, for P„)2, a
process which gives rise to the observed continuous os-
cillations with the small linewidth of 10 MHz. (See note
added in proof. ) Using the approximate formula for the
linewidth LEq. (4.11)j one finds that at T=120'K the
full half-width in linear frequency is 2&/2a. =136, 270,
360, 590, and 820 MHz for P„=1.02, 1.6, 2, 3, and 4.

&4
tp I l t t I I I t 1 I I I I I

IO Ip Ip IO IO ION Ip 10
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The resonances have also been studied by modulating
the junction current in the microwave frequency range. "

The relative noise spectrum S~(rd) =S(tu)/X' is
plotted in Fig. 12 again for 120'K. The curves show the
rapid decrease of the relative intensity fluctuations
above thresholds. The shift of the resonance frequency
with pump rate is given for T=120, 160, and 200'K
(Fig. 13). The high-temperature approximation is only
valid for T&120'K. By extrapolating one obtains a
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FIG. 12. Relative noise spectrum S„(eu) versus linear frequency
f for highly doped GaAs at 120'K and various normalized pump
rates.
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FxG. 11. Absolute noise spectrum versus linear frequency f for
highly doped GaAs 120'K and various normalized pump rates.

"T. L. Paoli (private communication).

NORMALIZED PUMP RATE P„

FIG. 13.Resonance frequency f~ versus normalized pump rate
P for highly doped GaAs at 120, 160, and 200'K. The dashed line
for 80'K is obtained by extrapolation. The experimental curve is
taken at 77'K. (See Ref. 3.)

'~ T. Iiregami and Y. Suematsu, IREE J. Quant. Electron. 4,
148 (1968).
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APPENDIX

onductors the integrals EI, E1, f(.'&,

( )
6.2 E = 28 I,( = , ), hculated. According to (6.2), E)= pr, 1

dIe EE/Ep(1+E (E r) /kT) —1—(A1)

r is a= pk+2kT. Ek=2Bp+k is the
=kTB/Bf'I ~„„;f h

h t evaluate only I,.2. So one as o
kT ith —I )0, obtIntroducing e= (a E)/kT, wi—t a-

flo

ekT(Ep(1+E —e+(a r)(kT)—1—(A2)—I =kTe~~E' de e '~ l'~o 1+e—'
1

G

write t is asa contribution o a and
which is completely filled up to u, min
tion of the missing electrons.

Ii=Epe ' ' —kTe ' ' de

ekT/kp(1+Ec (a r)(—kT) 1(A3)—— —

entation of the Fermi distribu-Now an integral representation o
tion" is used:
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;„sin(prZ)27ri

IEO '+'" dZ~e
I, EGealEO
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it of the relative noise spectrum
do ed GaAs at 120'K Theh t number for highly dope aversus p oton n

ven.normalized pump rates are give .
ekT(EpE(e(a r) /kTI —(A4)--—e

—ekT



348 H. HAUG 184

where 0&e(1. After integrating over e, one finds for hand side of (A6) for ~~kTIEo «ncel Setting «=h»
the right-hand side one finds, with x=kT/Ee,

k Teof &o e+
ee(a—r)/kr (A$)2ni, ;„(sin(xZ)(Z+kT/Eo)]

p ~x (—1)"e-'"~
I,=E"r~r o] —xe" g ~. (A7)

'Es111xx "-& x—s

Because o—g)0, we close the contour integral by a Using (A6), one gets
circle to the left in the complex 2 plane. Summing up the
contributions of all residues, one gets

12—goef'th/&o
( 1)nge

—2a-
—xe'* P (A8)

xe(&—~) l~o

Ig —Eoe o =kTe
sin(mkT/Eo)

sin~x

which can also be written as

x—n

( 1)ee a(o r)—lkT-
(A6)

n 0 kT/Ep

One can easily see that the singularities on the right-

I* xI, =xEoe'—*+«'e'/(1+e'). (A9)

The formulas (A7) and (A9) are used in a computer
program to evaluate R1, E2, N1, and N2 as functions of
temperature.
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Ultraviolet-Absorption Spectra of Europium and
Ytterbium in Alkaline Earth Fluorides*

EVGENE LOB

Physical Sciences Department, McDonnel/ Dolglas Astronautics Company, 8'estern Division,
Santa Monica, California 90406

(Received 3 February 1969)

The ultraviolet-absorption spectra of europium and ytterbium ions in CaF& crystals have been measured
at room and liquid-nitrogen temperatures. Their spectra are similar to each other in the general location of
their absorption bands. Both spectra consist of: (i) 4f~ M bands, between about 24000 cm and about
50 (50 cm-k, due to isolated RE'+ with crystal field strength ~17 000 cm ' between e~ and t~~ bands; (ii)
4f -+ 5d bands, shifted 9 000 cm ' to higher energy, due to RE~ ions surrounded by RE'+ neighbors; (iii)
a 4f-+ 6p broad and weak band of Eu~ in CaF'with maximum at ~71 000 cm '; and (iv) 4f —+ 5d bands
above ~64 000 cm ' due to isolated REI+ and cluster-ion RE3+. The structure in the absorption spectra of
both isolated RE'+(4f"}and RE'+(4f") ions can be interpreted as formed through interaction between a M
electron having e~ or t'p crystal field symmetry and electrons in the ground multiplet of the 4f" ' core.

I. INTRODUCTION

S a direct approach to the study of intercon-
figurational transitions of rare-earth (RE) ions

in solids, we have previously presented the uv absorp-
tion spectra of two simple trivalent rare-earth ions,
Ce+(4f') (Rd. 1) and PF+(4f) (Ref. 2), in alkaline-
earth Ruorides. Their spectra show three types of transi-
tions in the order of increasing energy: (a) 4f~ 5d
bands, (b) abroadandweak4f~6sband, and(c) the
charge transfer of F (2P') ~RE'+ (6s) appearing as
the red shift of the absorption edge of the host crystal.

For comparison with the work on RE~+, we present
here the uv-absorption spectra of two common RE'+

~ Work partially supported by the McDonnell Douglas Astro-
nautics Company-Western Division under the Independent
Research and Development Program.

E. Loh, Phys. Rev. 154, 270 (1967).
~ E. Loh, Phys. Rev. 158, 273 (1967).

ions, Eu'+(4P) and Yb(4f"), in CaF&. Contrary to
most of RE ions in solids, europium and, to a lesser
extent, ytterbium are usually in the divalent rather
than trivalent state because of their tendency to com-
plete the half, Eu'+ (4P), and full, Yb~ (4P'), 4f shell,
respectively. Their spectra are stable and perhaps also
simple because no strenuous reduction process~'4 is
required to convert RE'+ to RE'+. Furthermore, the
energy gaps in the ground multiplet of 4f" ' are among
the narrowest for Eu'+, 4f~'=4/, and the widest
for Yb~, 4f '=4+'. The uv-absorption spectra of
Eu'+ and Yb'+, therefore, provide simple examples to
interpret the structure' of 4f"~4f" 'Sd bands and

g J. L. Merz and P, S. Pershan, Phys. Rev. 162, 217 (1967);
162, 235 (1967); J. L. Merz, Ph.D. thesis, Harvard University,
1966 (unpublished). Available as Technical Report No. 514,
OfBce of Naval Research, NR-372-012, and references therein.

4 D. S. McClure and Z. Kiss, J. Chem. Phys. 39, 3251 (1963).
o E. Loh, Phys. Rev. 175, 533 (1968).


