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Transient ESects in Resonance Fluorescence and Spontaneous
Emission by a System of Identical Atoms
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A simple theoretical model is formulated which describes dynamical features of the interaction of two-level
atoms with a continuum of radiation oscillators. In particular, this paper is concerned with resonance scatter-
ing by single atoms in the presence of an external classical field, and spontaneous emission by a system of
identical atoms. In the case of resonance scattering, the response of an atom to rapid changes of the ampli-
tude of the external field is studied. The model for spontaneous emission by a system of atoms is based on the
assumptions that all atoms have the same resonance frequency, and that the atoms are contained in a volume
whose extension is small compared with the wavelength of the emitted radiation. The complete evolution of a
system of m atoms is determined by a set of coupled first-order linear differential equations, and explicit
solutions are presented for the values m = 1, 2, 3, 4, and 8. Pair correlations of the atoms and photon-number
fluctuations are discussed. An approximation for resonance fluorescence by a system of atoms with a broad
distribution of resonance frequencies is included in an Appendix.

I. INTRODUCTION

HE experimental feasibility of stimulating atomic
transitions at optical frequencies in a time which

is short compared with the lifetime of the excited state
for spontaneous emission has been demonstrated by the
observation of photon echos' and self-induced trans-
parency. 2 In this paper it will be assumed that various
pulse shapes for the generation of such fast transitions
are available. On the other hand, while photon echos
and self-induced transparency can be explained in terms
of classical properties of the electromagnetic field, this
paper is concerned with phenomena which require a
completely quantum-mechanical description of the
radiation field.

A simple theoretical model is formulated which pre-
dicts transient sects in resonance Quorescence, and
describes spontaneous emission by a system of identical
atoms. If one considers incoherent scattering by
individual atoms or coherent spontaneous emission by
several atoms which are contained in a volume whose
linear dimensions are small compared with the wave-
length corresponding to the resonance frequency of the
atoms, the spatial dependence of the radiation field can
be ignored.

Each mode of the electromagnetic field is represented
by one quantum oscillator. Di6erent quantum oscilla-
tors with the same frequency co will be distinguished by
a second subscript P.The occupation number states

~
n s)

form the orthonormal set (N .s ~n "s")=h ~ -bp. s .

» Present address: Physics Department, University of North
Carolina, Chapel Hill, N. C.

~ N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev.
Letters 13, 567 (1.964).'S. L. McCall and E. L. Hahn, Phys. Rev. Letters 18, 908
{1967).

Transitions between occupation number states are
described by annihilation and creation operators with
the well-known properties a s(n p) =n p"'~m~s I)—
and a s~~m s)=(n s+&)'"~~ s+&), or a~~~a~s~eos)
=n s~m s). These operators obey the commutation
relations La .p. ,a "p" ~ ——5 ~ -b~.~".

For the present purpose it will be assumed that all
atoms have the same resonance frequency coo between
a ground state with energy E, and an excited state with
energy E„such that E.—Eg =Au)0. If ~lP„') denotes the
ground state of an atom labeled by the subscript p,
and

~
f„') is the excited state, normalization and orthog-

onality require Q„'~f„')=(P '~f„')=I, Q„~g„g')=0,
while scalar products involving diGerent atoms such as
(P„~gg') are zero. In order to describe transitions
between ground state and excited state we introduce
pairs of Hermitian adjoint operators c„and c„with the
properties c„)P„')= )P„), c„(iP„)=0, c„~)f„')=0,
c„t

~
f„')=

~
f„'). Consequently, c„"c„~f„')=0 and

c„c„t~P„')= ~f„'). Since the most general state of any
atom is a linear superposition of ground state and
excited state, the condition c„c„~+c„~c„=1must be
satisfied. It is also required that operators representing
diiferent atoms commute, for example Lc„,F5
=Lc„,cqt5 =0 for @&X.The excitation operators c„t and
the deexcitation operators c„are related to the Pauli
spin operators. If $0;,o;5=2ioq, 0;0;+0;o,=26,;, and
0 = I, then c =0+ ,'(0,+io——,)—and c=a= 2(a~ .i02)-, —
so that etc=0+0 =q(i+03). All atomic operators c„
and c„~ commute with all oscillator operators a p and
u p~. Throughout this paper it will be assumed that the
wave functions of different atoms do not overlap, so
that the atoms are distinguishable.

The most general Hamiltonian that is of interest in
312
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this context has the form

na

P=kcpp P c &cp+fc P cp g (cl c&&a p+-,')
a P~l

fcg Z Z (o~ptcp+cp el~&&)

a, p

—&&IG(c) g (c„&c ' "+c„p+'"cc). (1.1)

At this stage the quantum oscillators are separated into
groups with frequencies eu . The first and second term in
the Hamiltonian represent the energy of the atoms and
the energy of the oscillators, respectively. The third
term describes the dipole interaction of the quantum
oscillators with the two-level atoms. ' The real coupling
constant g represents an average over modes with dif-
ferent directions of propagation and polarization. For
reasons of convergence of integrals it will be assumed
that the interaction is confined to some frequency range
p —p~~ ~~Mp+p, where p&(tIop. It appears reasonable
to assume that atomic transitions are not strongly
affected by radiation oscillators whose frequency is far
from the resonance frequency of the atoms. Within the
framework of a simplified model one may therefore
postulate a convenient frequency dependence of the
coupling constant or the density of modes without
the risk of unrealistic results. In the absence of any
interaction the time dependence of the operators
in the Heisenberg picture is c„(C)=c„(tp)e '"'&' "&,

cp (C)=c„(Cp)c+c"p" "&, 8 p(C)=a c&(Cp)8
'" &' "' slid

a,pt(t)=a pt(tp)e+'" &' "& High-freq. uency components
in the solution of the equations of motion would be
produced by additional terms of the form a ptc„~+c„u p,
which are not included in the Hamiltonian. The last
term in the Hamiltonian describes the interaction of
the atoms with an external field whose frequency is col

and whose amplitude G(t) may be a slowly varying
function of time. The simple form of this interaction
term is justified if col=cop. Under these conditions we
have omitted terms of the form c„te+c"cc+c„p-c"".

In the Heisenberg picture the operators are time-
dependent. Let q(t) stand for any one of the operators
such as c„or a I&, then ihcf'= Lcf,H1. In this paper we will
frequently use the abbreviation q for q(t), but clearly
identify the initial value of q at time cp by g(cp). Since

all operators which describe the evolution of the com-

plete system in the Heisenberg picture are generated

by the same unitary transformation, it follows that
all commutation relations, and identities such as
c„c„~+c„tc„=T, do not change with time. Inspection of
the expectation values in the Schrodinger picture also
shows that their physical interpretation in terms of
ensemble averages of certain variables remains un-

changed. For example, the expectation value of
a pt(t)a p(t) de6nes the occupation number of a speci6c
mode at time t.

We will now derive a solution for P P a p which will

be used in Secs. II and III. Heisenberg's equations of
motion for a p and a pt are

By means of

a.p+ccp.a I&
——pg P c„,

d pt ccp,a —p' ig—P——c„t.

na

~
—scop(t—tp)

ap a
P~l

(1.2a)

(1.2b)

(1.3a)

C~
—scop (t—tp)

ac~1

it follows from Kq. (1.2a) that

A, +i(cp —p&p)A =ign, C,

(1.3b)

(1.4)

+ig P n. dC'C(C')pc&" "»&' I& (1.5-).

In the limit

P n +dcp, —p(cp ),

which involves the density of radiation oscillators per
unit frequency range p(cp ),

g A (t)=g e '&" "'&&' 'p&A (cp)+igF(t), (1.6)

where C is a slowly varying operator, since in the
absence of an interaction it is constant. The formal
solution of this differential equation implies

P A (t)=P e '«" ""' "'A (tp)

~ This type of interaction is well known in quantum electronics.
Simple laser models describe the interaction of many atoms with
a single mode of the radiation 6eld. Our special form of the inter-
action term has been used, for example, by E. Abate and H.
Haken, Z. Naturforsch. 19a, 875 (1964).The theory of dissipation
or damping, and thermal noise, is based on the interaction of one
particular quantum oscillator or a system of atoms with an in6nite
number of quantum oscillators. See, for example, E. R. Senitzky,
Phys. Rev. 119, 670 (1960); 131, 2827 (1963);%.H. Louisell and
L. R. Walker, Phys. Rev. 137, 3204 (1965); %. H. Louisell, in
Proceedings of the Third Isteeational Congress of Quarts Me-
chanics, edited by P. Grivet and N. Bloembergen (Columbia Uni-
versity Press, New York, 1964), p. 65; H. Sauermann, Z. Physik
188, 480 (1965); 189, 312 (1965);and M. Lax, Phys. Rev. 145, 110
(1966).

where

F(t) = dt'C(t') dcp, p(cp )e'& '&&' '&. (1.7)
to 6

F(c) =p(cpp)C(t)

+00 t

dcp e '"' dt' ec~' (1.8).

If one assumes that the main contribution to F(t)
originates in values of t' almost equal to t, and in values
of ~ almost equal to tdp, then
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Since

(1.9)

because ctLc,ct]=ct, and [c,ct]c=c.Next, we substitute

(1.11) and the corresponding equation for P P cr cct

in (1.15). This leads to

for toto, one obtains the approximate solution

E ~-(i) =r. c ""-""""'~-(i )+i~gp(~o)C(t) (1.10)

d
(etc) =ig{ctp e '" c' cp& p cr,p(tp)

dt

—Z c'*" " "'2 c p'(ip) c) 2~—g'p(~ )p( c')c (116)

or, in view of Eqs. (13a) and (1.3b), again for tWtp,

& & c-p=& c " " "' Z c-p(ip)
a P a

+irrgp(cpp) g c„. (1.11)

The same result is obtained if we require that
the interaction is con6ned to a frequency range
cpp —y~&cp &cpp+y. With the assumption &&&cdp Eq. (1.7)
can be replaced by

If there are no photons present in the initial state,
cr cc(tp) ~

0) =0 and (0 ~
cc cr (tp) =0, so thatP

—(ctc) = —2p.grp(cpp)(etc) .

Since (ctc) is the probability p(i) of the atom being in
the excited state, (1.17) describes exponential decay
p(i) =p(0)e ', where

tc =2&g p(cpp) (1.18)
I'(t) =p (cpp) dt' C(t') cc(rua rap)(t'——t} (1 12)

ol
sing(t —t')

F(i) =p(~,)2 dh'C(t')
p

(1.13)

We are concerned with a time interval from to to t during
which an observable transition and corresponding
change of C(t') occurs. If y is much larger than the
transition rate we can choose a time t~ in the range
tp(ir(t so that y(t —tr)))1 while C(t') remains almost
constant between t& and t If y(t —.tr)))1 the contribution
of C(t') to the integral is negligible in the range tp(t'( tt,
and we obtain the approximation F(t) =prp(cdp)C(t),
which agrees with Eqs. (1.8) and (1.9). For atomic
transitions at optical frequencies all the previous
assumptions can be satis6ed. 4

Equation (1.11) can be applied immediately to
spontaneous emission by one isolated atom. If we drop
the subscript p, , it follows from the Hamiltonian in
Eq. (1.1) that

c+ipppc=ig(c, ct] P P cr p, (1.14a)

ct icppct =—ig P P—cc.cctPc,ct]. (1.14b)

By multiplication of (1.13a) with ct from the left,
multiplication of (1.13b) with c from the right, and
addition, we obtain

—(ctc)=ig( tZZc- —ZZc- t) (1.»)
dt

'Following the general method described by G. Kallen Iin
EecyclopeCha of Physics (Springer-Verlag, Berlin, 1958), Vol. V/1,
p. 2N), the problem of the interaction of one two-level atom with
the electromagnetic field can be solved exactly if the interaction
is restricted to a finite frequency range from cop-y to cop+ad. It
can be shown that an exponential decrease of the probability of
the excited state requires that the decay constant is much smaller
than y. Otherwise, the excited state is stable t Dr. D. Dialetis
(private communication) j.

is the transition probability per unit time for spon-
taneous emission by one isolated atom in the excited
state. We regard this result as a strong support of the
previous assumptions. It should be pointed out, how-

ever, that our model does not describe the frequency
shift which is predicted by the Weisskopf —Wigner
approximation. 6

In order to establish the physical meaning of the
amplitude G(t) in Eq. (1.1), i.e., for a definition of this
quantity in terms of fundamental constants and matrix
elements, consider the simplified Hamiltonian

H =heep P c„tc„AGP (—c„te ' "+c„ec") (1.19)
p~l

where 6 is constant. This Hamiltonian describes forced
transitions which are very fast compared with spon-
taneous emission. We note that the equations of motion
c„+icppc„=iG(c»c„t]e '"" for the individual atoms are
decoupled. Consequently, the external 6eld will not
introduce statistical correlations of the atoms. In
particular, if the initial state is uncorrelated and de6ned
by the state vector ~cpt) ~cpr)

. ~cp„) . . (cp ), then
(c„tc„)=(cp„~c„tc„~cp„).An exact solution for the more
general case of different resonance frequencies is derived
in the Appendix. If the atoms are in the ground state
at time t=0, one obtains for the probability of the ex-
cited state (cP„P~c„t(t)c„(t)~P„P)=P(t) the well-known
resonance formula p(t) = (4G'jQ') sin'(-'Qt), where

I Since the density of states p(cup) is proportional to the nor-
malization volume V, and g p(cop) is independent of V, the coupling
constant g approaches zero as V-+ . Consequently, a finite
number of photons in the initial state has no e6ect in this case.
No obvious conclusion can be drawn from Eq. (1.16) if the
occupation numbers are di6erent from zero in an infinite number
of modes. This is the case for thermal equilibrium radiation.
However, unless the temperature is very high, the average number
of photons per mode is so small that the e6'ect is negligible for
our purpose.

V. F. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930).
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fl=L((oz —(ap)'+4GP]'" Obviously, if in the case of
exact resonance co~=aro the interaction is turned off at
time tp=s/G, each atom is completely excited. In the
Schrodinger picture this ~ould correspond to a state
vector lf(tp)&= ltt'i'(tp)&l|t'p (t,)& l|t'. (t,)&

. . If-'(tp)&
for the complete system. Tn Sec. III this is the initial
state of a system of identical atoms prior to the onset
of spontaneous emission.

At the conclusion of this introduction we return to
the general Hamiltonian in Eq. (1.1) and the corre-
sponding equations of motion (1.2a) and (1.2b). By
multiplication of (1.2a) with a et from the left, and
multiplication of (1.2b) with a e from the right, we
obtain after addition of the equations, and summation,

—2 2 a-e'a-e
dt

=ig(P P a.et E c„Zc„t—2 2 a.e). (1.20)

Substitution of the approximate solution (1.11) and
the corresponding expression for P P a er leads to

d—Z Z a-e'a-e= pg( Z e"" "' Z a-e'(t p) E c.
dt a

By comparison of (1.24) with (1.20) we see that in the
absence of an external field the operators P c„tc„=M(t)
and P P a era e N(——t) satisfy the conservation law

M(t)+N(t) =0, (1.25)

which implies that the sum of the probabilities of
excited states, or the total number of excited atoms
plus the total number of photons, is constant.

11. RESONANCE FLUORESCENCE

In this section we will apply the basic approximation
in Eq. (1.11) to a description of transient effects in
resonance scattering. We will not be concerned with the
line shape of the scattered radiation which has been the
subject of other recent publications. ~ Our approach is
consistent with the fact that the spectral resolution is
limited by her 1/r if the observation of the transient
eR'ects requires a time resolution v. We consider a
system which consists of a single atom with resonance
frequency coo, a continuum of radiation oscillators, and
an external field with frequency co~ and amplitude G(t).
For this problem, the subscript p in the Hamiltonian
(1.1) can be omitted, and Eq. (1.11) assumes the
simpler form

—Z c"Z e '"" "' 2 a e(tp) )
a

X=1 alt= 1 a P

Q Q a.e ——Q e
—*"'—"' P a.e(tp)+irrgp(cop)c,

a

+2xg p(cop) P c~t P c„. (1.21) P P a~et=P e+' ~' ' P a et(tp) iprgp(m—p)ct (2.1b).

The expectation value of the expression in curly Heisenberg's equations of motion for the operators c
brackets vanishes if no photons are present in the initial »d ct are
state. For these initial conditions

c+ipppc=i[c, ct](g P g a e+G(t)e-*"&'), (2.2a)

cr uopct = —i(g p—p a et+G(t)e'"") fc,ct] (2.2b).

where according to Eq. (1.18) w=2s.gpp(~p). This result
is completely independent of the presence of an external
field. For a single atom, Eq. (1.22) reduces to

W(t) =wp(t), (1.23)

where p(t) is the probability of the atom to be in the
excited state, and W(t) =(d/dt)(P P a era, e& is the
total rate of emission of photons. Since the maximum
value of p(t) is 1, it follows that the emission rate of
one isolated atom cannot exceed ze, even if the ampli-
tude of the external field is very large. This is an
important consequence of our model.

In the absence of an external field, the last term in
the Hamiltonian (1.1) can be removed. From the
equations of motion for c„and c„~ it follows in analogy
with Eq. (1.15) that

By multiplication of (2.2a) with ct from the left, and
multiplication of (2.2b) with c from the right we obtain

—(ctc)+w(ctc) =iG(t)(cte '""—ce'"")
dt

+ig(ct Z e '"" "' Z a (tp)
Cg

—Q e'" " "' Q a e (tp)c), (2.3)
a

where we have introduced the transition rate for
spontaneous emission by an excited atom, w =2prgsp(alp).
It will be assumed again that the initial state is the
vacuum state for which a e(tp) l 0)=0 and (0 l

a et(t p) =0.
For any initial state of the atom the expectation value
(ctc& =p(t) is the probability of finding the atom in the
excited state at time t. Consequently,

Qc tcp
dt

=ig( Q c„tg P a e—g g a et Q c„). (1.24)

p(t)+wP(t) =iG(t)(cte '~'~ ce'""&—

~ Maurice C. Newstein, Phys. Rev. 167, 89 (1968).

(2.4)
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Differentiating again and using (2.1a), (2.1b), (2.2a),
and (2.2b), we find

P(t)+wp(t) =26'(Lc,ct))
+i(g wg)(cte /Gll/ ce/Gift)

+6(&lp —cg )(cte '»'+ce'"&') (2 5)

By means of Eq. (2.4) and the identity (Lc,ct)) = 1—2p,
this can be expressed in the form

P(t) +(2w —6/6) p(t)+ (-,'w'+46' —wC/6) p(t)
=26 +6(/d —&eo)(cte /"&'+ce'»/) (2.6)

At exact resonance co~ =coo,

P(t)+ (-', w —6/6) p(t)
+(4G'+ ', w' wG/G-)p(—t) =26'. (2.7)

We will consider two specializations of this equation
which appear to be of practical interest. First, suppose
6(t) is zero for t(0, and equal to the constant value 6
for t) 0. In this case

p" (» )+2p'(p)+(4y+2) p(v) =27 (2 8)

where the primes denote derivatives with respect to the
variable /t/=wt, and y=(6/w)'. The solution of this
equation for y) 1/64 is

27
p(rp) = 1 e&'"—'~ cos4i(64y 1)'"p-

4y+k

Numerical solutions for y=1, ~, and ~'~ are shown in

Fig. 1. According to Eq. (1.28) the rate of emission is
determined by W(t) wp(t).

For a second specialization of Eq. (2.7) let us assume
that the amplitude G(t) has a time dependence of the
form

G(t) =E/cosh(Qt) . (2.13)

where X=w/0, and /J=IC/D. The initial condition for
p($) is p( —1)=0. Since p(t) =(1—P)p'($), it follows
from Eq. (2.4) that

p($) (c/e /Qll/ col/l )/
p'(~) = —X +i~ . (2.13)

(1-e) (] ~2)//2

In principle, this pulse shape could be obtained experi-
mentally in an active medium under conditions where
spontaneous emission is negligible, i.e., for m&(Q, and
the frequency could be shifted in a tunable device to
the resonance frequency coo of atoms which have a
spontaneous emission rate m Q. Experimental varia-
tions of the ratio X/0 can be achieved with lenses.

The initial state is now at time ]0= —~.This requires
no changes of the derivations. It is convenient, however,
to introduce the new variable P=tanh(Qt). In terms of
this new variable Eq. (2.7) can be written in the form

(1-~')p"(~)+(-'~-~)p'(~)

+ t 4n'+(-'X'+X/)/(1 —$'))p($) =2e' (2.14)

3
sin 4 (64' —1'i'/2i/ . (2.9)

1 i/2
' ' ' ' ' ' Applying l'Hospital's rule to the 6rst term on the right-

hand side, we 6nd
For p)&1 this can be approximated by

p(&/)=2i (1—e ""'"cos(2(6/w) e)) (2 10)

(cte /col/ ce/Gll/)

(1+-',X)p'( —1)=i&r lim . (2.16)
i (1 (2) 1/2

We note that p(&/) approaches —,
' as t +~. It may b—e

surprising that the probability of the excited state can
approach a constant value in spite of the fact that an
external ield with a large amplitude continues to act
on the atom. This is due to spontaneous emission which
changes the relative phase of the dipole moment with
respect to the external field in a random way, so that
the statistical average of the probability of the atom to
be in the excited state eventually becomes independent
of time. For y = 1/64 the solution is

P(&/) =(1/18)(1—e &e/4&~(1 —f«)) . (2.11)

Finally, for y(1/64,

27 2
p(~) — 1+ e

—&3/4iy

4y+-,' (1—64y) "'

0.6

0.5

0.4

P
0.5

0.2

O, l

0.0

y=l

Iy= I6

&&i-'(3-(1-64y)'") e p(--'(1-647)'" )

—-'(3+(1—647)'") e p(l(1 —647)'"p)] (2.12)

Fxo. i. Probability of the excited state of an atom in the
presence of an external field witb resonance frequency and constant
amplitude as a function of cp=cet, where m is the transition rate
for spontaneous emission in the excited state. The parameter y is
proportional to the square of the amplitude of the external 6eld.
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By means of

d
(cue tfdli ce'lktii)

dt
= ——,'w(cte '""—ce'"")—2iG(t) L1—2p(t) j, (2.17)

which follows from Eqs. (2.1), (2.2), and Lc,et' =1—2ctc,
and by repeated applications of 1'Hospital's rule we
obtain

(cte (id)i ce (dili)

(1+-,'X)p'( —1)=2o' 'X—io-lim . (2.18)
1 (1 (2) 1/2

The limit on the right-hand side can be eliminated by
means of Eq. (2.16). The result is

IO

0.5

0.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0,8 1.0

tanhQt

FIG. 2. Probability of the excited state of an atom in the
presence of an external field which has the exact resonance fre-
quency and whose amplitude varies as E/coshot. The parameter v

is proportional to E/O. It is assumed that 0 is much larger than
the transition rate for spontaneous emission.

p'(-1) =2 '/(1+-.'l )'. (2.19)

It should be pointed out that repeated applications of
1'Hospital's rule give

(I+p ~)p'( —1)
=2o'I 1 —(p'X)+(~X)' —(—'X)P+. ]. (2.20)

In view of the restricted convergence of this series,
Eq. (2.19) holds only for X(2. Numerical solutions of
(2.14) also require the second derivative

2 —(-,'Z) —(-'~)' —ge
P"(—1)=P'( —1), , (2.21)

6+5(-,'X)+(-,'X)'

Spontaneous emission is negligible if X=w/Q((1.
For X =0, Eq. (2.14) is replaced by

(1—t')p"(t) —tp'(t)+v'p(k) = pv' (2 22)

where v =2e. If v is an integer, the solution of (2.22) can
be expressed in terms of the Chebyshev polynomials
T.(f):

p(~) =2LI+(-1) +'T (&)j (2.»)
This solution satis6es the initial conditions p( —1)=0
and p'( —1)=2e'=-,'v'. If v is not an integer, (2.22) may
be solved by the change of variable )=sing. Then

~'p/dp '+v'p(p ) =pv' (2.24)

The initial conditions are p( ——,'s) =0 and p'( ——,'pr) =0.
The corresponding solution is

In order to obtain an equation for p(/) when ip&Wipp,

we differentiate both sides of Eq. (2.6). Since

d
(cue ie&i+c—eire&t) — 1

w(
cteiw&t+ cia!i)

dt
—i(cps —cdp)(c~e '»' —ce'~") (2.26)

it follows that

p"'+(pw GIG)p"'—
d

+ —,'w'+4G' —wG/G —(G/G) p &'&

dt

d
+ SGG —w (0/G) p

=4GG —(-', w —G/G)G(pu —idp)(cte '"'+ce' ')

—(ppy ipp) iG(—c te '~"—ce'~") . (2.27)

The remaining expectation values are eliminated by
means of Eqs. (2.4) and (2.6). The resulting third-order
linear and inhomogeneous differential equation is
greatly simplified if the amplitude 6 is constant. In
terms of the variable mt=@, and the abbreviations

I.Q

p(v) =-'L1 —cos (p+-' )j. (2.25)

Some plots for various values of v are shown in Fig. 2.
These results are related to those of McCall and Hahn. '
Their 80 is defined by 80=xv=2mo.

In general, when X is diGerent from zero, i.e., if
spontaneous emission must be taken into account,
Eq. (2.14) must be solved numerically. Some computer
results are shown in Fig. 3 for v=2 and several values
of X=w/Q. The rate of emission is determined by
Eq. (1.23).

P
0.5

0.0
-1,0 -0.8 -0.6 -0.4 -0.2 0.0 0,2 0.4 0.6 0$ 1.0

tanhQt

Fj:G.3. Probability of the excited state as in Fig. 2, in the special
case v =2, for several values of the parameter X=m/0, where m is
the transition rate for spontaneous emission in the excited state.
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6'/w'=y (~,—~,)'/w'=a, we obtain

p'"(v»+2p" (» )+(5/4+47+~) p'(~ )
+(4+27+~)p(v) =V. (2 2g)

In the limit y —+~, the solution approaches the
equilibrium value

p(~) =6'L(~ —~o)'+26'+-'rc'3 ' (2.29)

The corresponding rate of emission or scattering is
wp(~). This can be compared with the result of time-
dependent perturbation theory. Agreement is achieved
if in the denominator of Eq. (2.29) the term 26' is
negligible compared with 4m'. If 6' is very large com-
pared with (co& —cok)' and w', the probability of the
excited state approaches the value ~, so that the Gnal
emission rate is 2e.

On the other hand, for C=O and w=0, Eq. (2.27)
implies

p(j)+[(~, ~,)'+—46']p(j) =C, (2.30)

where C is a constant of integration. The initial values
are p(0) =0 and p(0) =0, according to (2.3). Further-
more, in view of (2.6) the initial value of the second
derivative is determined by P(0) =26', so that C=26k.
In terms of the abbreviation L(cok —~o)'+46')'"=&
the solution is p(t)=(46'/0') sin'(k20t). This special
result has already been mentioned in Sec. I.

GI. SPONTANEOUS EMISSION BY A
SYSTEM OF IDENTICAL ATOMS

The mutual interaction of a system of atoms through
the radiation Geld has been studied by several investi-
gators. The original concept of coherent spontaneous
emission is due to Dicke. s In order to explain the onset
of laser oscillations, completely quantum-mechanical
models were proposed which describe the interaction of
many atoms with a single mode or discrete set of modes
of the radiation Geld. Among the Grst dynamical
solutions which are not based on perturbation theory
are those obtained by Buley and Currunings. ' Other
investigations by Schwabl and Thirring, ' and by Ernst
and. Stehle" are concerned with spontaneous emission
into a continuum of modes for various geometries of a
macroscopic body which contains the radiating atoms.

In this section we consider the interaction of a con-
tinuum of radiation oscillators with several identical
atoms which are contained in a volume whose linear
dimensions are much smaller than the wavelength of
the emitted radiation. The objective is a description of
the evolution of the system from an initial state in
which all atoms are excited and no photons are present.
We formulate the problem for an arbitrary number of

8 R. H. Dicke, Phys. Rev. 93, 99 (1954).I E. R. Buley and F. %. Cummings, Phys. Rev. 134, A1454
(1964).' F. Schwabl and W. Thirring, Ergeb. Exit. Natu'. 36, 219
(1964)."P.Ernst and P. Stehle, Phys. Rev. 176, 1456 (1968).

atoms ns, and present explicit solutions for small values
of m.

The model is based on the assumption that all atoms
are contained in a volume which is so small that the
phase of a radiation oscillator with the resonance fre-
quency coo is the same at the position of each atom. We
assume that the atoms are distinguishable, i.e., that
their wave functions do not overlap. These requirements
could be satisGed by several identical atoms in a single
molecule, or by clusters of identical atoms in a crystal
lattice. The existence of a statistical dependence of
different atoms will be demonstrated For example, the
probability of a simultaneous observation of two atoms
in the excited state is different from the squared proba-
bility of one particular atom in the excited state, at the
same time.

The Hamiltonian for this problem is obtained from
Eq. (1.1) by omission of the last term:

For the radiation oscillators we adopt the approximate
solution (1.11). We consider the following set of
operators: P~=c~ c~, P~=cj c~c2c2, and, in general,
for n&ns,

Pn = (ck cl)(ck ck) ' ' ' (cs ca) . (3.2)

Also, we define Q~ =c~ ck, Qk =cktc2 ckck, and, in general,
for 2n~&m,

Q~ = (cy c2 ' ' 'cn )(ca+lcm+2 ' ' 'c2a) ~ (3.3)

Finally, we introduce for j+2k ~& jn

R;.k =Pj(cj+1 cj+k ''cj+k )(cj+k'+1cj+k+2' ' 'cjykk) . (3.4)

This definition of R;.k implies Rk.k=Qk and R, ,o P;. ——

By means of the equations of motion for these operators
one can derive a system of coupled Grst-order linear
differential equations for the expectation values
Q(0) P-(j) I4(0)&=P-(j), (4(0) IQ-(j)14(o)&=V-(j), and
Q(0) Rj,k(j) l f(0))=rj,k(j), where the initial state

(3.5)

is a product of the ground-state vectors l0) c of the
radiation oscillators and the excited-state vectors

l g„'&
of the atoms. The procedure is based on the fact that
the atoms which are represented by the operators can
be relabeled without changing the expectation values.
Only the expectation values p„(t) have a simple physical
meaning: They determine the probability of a simul-
taneous observation of n selected atoms in the excited
state, irrespective of the state of the other atoms and
the radiation oscillators. In particular, Pk(t) is the proba-
bility of observing one atom in the excited state,

na

H=hcoog c„tc„+hQ a), g (a sta.p+-', )
a P 1

—Ag Q P (a stc„+c„ta p). (3.1)
a, P
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provided no observation is made of the state of other
atoms and the radiation 6eld. The remaining functions

q (t) and r, ,~(t) are required to determine p~(t).
The total emission rate follows from the conservation

law (1.25):

(3.6)

or, in view of the fact that all atoms are equivalent,

tY„(t)= —m7i, (t) . (3.7)

-()='g(z[ - 'j& -+z -'E[ - .3) (

On the other hand, according to Eq. (1.22),

kV (t) =u[mp, (t)+m(m —1)qg(t)$. (3.8)

It will be shown that (3.7) and (3.8) are equivalent.
As a consequence of the equations of motion

iVP„=[P„,e~,

provided pQv, and no X is equal to p, or v. We note that
for n=m Eq. (3.12) implies p '()t)) = m—p ()t)). For
the initial value p(0) =1, the solution of this equation
is p (y) =c- ",so that the probability of an observation
of all atoms in the excited state decreases exponentially.
In general, the solution of (3.12) requires additional
sets of equations for the functions r;,& and q .

Consider the equations of motion of the operators Q
which are defined in Eq. (3.2). The commutator of Q„
with the first term in the Hamiltonian is zero, as can
be seen by inspection of the equation

P [g.,c„tc„7= —P (c~t c.t c )(c~~ c2.)
y=l v~1

+(ci~ c.t) Q (c.+i. . ci c2.). (3.13)

Consequently,

where we have used the fact that P„commutes with c„
and c„t for p, &n. From the expectation values of
P P a p and g P a p~ from Eq. (1;11) for an initial
state with no photons present, it follows that

7.(t) = —~g'p(~0)

or

Q.(t) =ig((c~t cJ)

+Z E a-p' Z [Q. c~)) (3 14)
a P X~1

y~1 ttt~1 v l

First, we recall that 2)rg2p(coo) =20 is the transition
probability per unit time for spontaneous emission by
one isolated atom in the excited state. We again use
the variable zest'=p and denote the derivative with
respect to q by a prime. Next we use the identity

[P„)c„jcv c„[P„)c)—)= (c& cx) ~ c ~
~ (c„c~)c„

+c„t(cztci) c.. (c tc ) (3.11)

for p=v or p&n, and zero otherwise. Since the double
sums in (3.10) have rt terms with t)=v and rt(m n)—
terms with p, &n, we obtain

p~'(q)+rtp ()t)) = —rt(m —n)r~ &,&(y) . (3.12)

Bere we have used the fact that the expectation value
of a product of I different factors cq cq is p„, and that
the expectation value of a product of n —1 diferent
factors cq~cq with an additional factor c„tc„ is r„ l, l,

X p (c.+g [cg)cd) c2.) p p a~p
X n+1

n—g P a pt P (c~t' ' ' [c c t] 'c t)

X(c +g c2 )). (3.15)

By means of Eq. (1.11) for P P a,p and the corre-
sponding equation for P P a,pt we obtain for an
initial state with no photons

V-'(~) = —l((ci' c-')

X P (c +i. [c~,c&,tj c2~) Q c&

+Bc'Z(c~'"[c c'j" c-')
y,~l v=1

X(c~g .c2.)). (3.16)

In view of c„tc„t=c„c„=0 and [c„,c„tj=1—2c„tc„,
Eq. (3.16) can be written in the form

t ('p)++7 (P) 2( 2 (cl 'c c ' 'c ) g (c +z (1—2c&tc&) . c2 )v~1 X~n+1

2n m

+(«t c t) Q (c~+y (1—2cdcx) c2 ) Q c„
) =n+1 pc=2n jl

n 2n n+ Z (« ' ' '(1—2c. c)) . ca") Z (ca+i' ' 'c) tc) ' c2a)+ Q fcit. (1 2c.tc„) c„t)—(c„+g .c2„)). (3.17)v~1 ) ~n+1
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Since expectation values with the same number of factors c„and c„representing diferent atoms are equal, it
follows that

g '(e)+n(m+1 —2n)g (rp) = —q~( P (c~& c,tc„c.t) P (c +q (1—2cqtcq) c„)

—2(cqt. ~ c t) P (c q c&,tcg c2 ) P c —2 P c tg (cqt c„tc c ")(c+q c2 )
p~2n+1 p~S%+l p~l

+g {c~t . (1—2c.tc.) c„t) P (c +~ cqtcq c2 )). (3.18)
v 1 ) =n+1

By evaluating the expectation values of those terms which contain the factor 1, and using the definition (3.4),
we obtain

2tl

g '(p)+n(m+1 2n)—q (rp) = —n rq, „~(q)+((c~t c t) P (c +q c&,~cq c~ ) P c„

+2 P (c&t . .c.tc„c~t) P (cay'' ' 'cg cg' ' 'c2~)+ P c„tg (cqt . .c„tc.„c~t)(en+/' ' 'c2„)). (3.19)

The remaining expectation values can be expressed in
terms of rl, f, and r2, „ l. The final result is

q„'(y)+n (m+ 1 —2n) q„(&p) =2n'rq„q (rp),

+2n(m —2n)rq, (qr) —n'rq, ~ &(y) . (3.20)

An application of the same method to the equations of
motion of the operators E;,~ leads after lengthy manipu-
lations to the differential equation

rJ.~'(e)+Lj+k(m+1 —2k)jri,.(9»
k'Lr~—~ ~ ~(e') 2r~+I—~ ~(»))

+(m —j—2k)L2kr, +i,q(q) —jr; i,q+i(y) j. (3.21)

The set of Eqs. (3.12), (3.20), and (3.21) is sufficient
for the determination of p~(q). It should be pointed out
that (3.12) is defined for 1~&num. Equation (3.20)
holds for 2~& 2n~&m, and in Eq. (3.21) 1~&j, 1~&k subject
to the condition j+2k~& m. Furthermore, we recall that
r q elk, and r, ,e—=—p;. The total number of equations is

I.O

p(m, y)
0.5

0

(3.22)

(3.23)

(3.24)

(3.25)

p(3, e) =e '"(4y —1+2e "),
p(4, y) =e-'r)9y $+(3—e+2)e '"j, —

P(8, y) =e srL(49@ 323/20
+(175@—147/4)e 'r
+(189'—147/20)e ' r

+(35rp+245/4)e "rj (3.26)

These results are shown in Fig. 4. The initial slope
p'(m, 0) = —1 is independent of m, and p"(m, 0) =2—m.

It follows from Eqs. (3.12) and (3.20) that g&'(e)
+p,'(e)=p, '(q), or g,(e)=p, (&)—p, (&). If this ex
pression for q&(y) is substituted in Eq. (3.12) with n=1,
i.e., p~'(e)+p~(e) =—(m —1)re,&(q) = —(m —1)q,(q),
one obtains

m+&~(m' —1) if m is an odd number, and m+~~m' if m
is even.

The initial values for completely excited atoms are
p (0) =1, q„(0)=0, and r;,q(0) =0. Explicit solutions
have been obtained for m=1, 2, 3, 4, and 8. In order to
distinguish between diferent values of the number of
atoms m, let p&(p) =p(m, p) denote the probability of
the observation of one particular atom in the excited
state. The corresponding solutions for m=1 to 4 and
m=8, are

0.5 l.0 l.5

p~'(v)+mph(e) =(m —1)p2(e). (3.27)

Pro. 4. Probability p(es, q) of the observation of one particular
atom in the excited state as a function of the variable ~=mt
where er is the transition rate for spontaneous emission by one
isolated atom in the excited state, for several values of the number
of atoms m. The total emission rate is 8' (t) = -mm(d/dy) p(m, y).
The dashed curve corresponds to the approximation in Eq. (3.28)
for m~8.

This result is exact. It should be noted, however,
that p2(y)Wpq'(p) For examp. le, in the case of m=2,
one finds p2(e) =e 'r=1 —2q+ . while pp(q)
=e '+(1+@)'=(1+y)'=1—2y+ . If the probability
correlations are ignored and p2(e) is replaced by pp(p),
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the corresponding solution of Eq. (3.27) is

P(rw, y) =[1+m '(e~s —1))-' (3.28)

In Fig. 4 this approximation is shown for vs=8 by a
dashed curve. For any value of m& 1 the exact solution
decreases more slowly than the approximate solution
(3.28). An inspection of Eq. (3.28) shows, however, that
the derivatives p'(m, 0) and p"(m, 0) are correct.

It has been pointed out that Eqs. (3.7) and (3.8) for
the total emission rate are equivalent. This statement
can now be conGrmed. By means of the identity
q&(p) =p&(qr) —p2(y), Eq. (3.8) can be written in the
form W (r) =mm[mp~ —(m —1)p2], or in view of (3.27)
W (/) = —mli~(f), in agreement with Eq. (3.7).

If the atoms are initially in a superposition of ground
state and excited state, the differential equations (3.12),
(3.20), and (3.21) are still valid, provided the state
vector of the complete system is a direct product of the
state vectors of the individual atoms, and the ampli-
tudes of the ground state and the excited state are the
same for all atoms. This condition implies that the
atoms are initially uncorrelated and that the dipole
moments of all atoms are in phase and have the
same magnitude. The initial values of p„, q„, and r;,q

can be expressed in terms of p~(0). In general, p„(0)
=pz" (0), q„(0)=pz" (0)[1—p&(0))", and r, ,k(0) =p&~~(0)
X[1—P~(0))~. From Eq. (3.27) it follows that p&'(0)
= —Pz(0) —(rm —1)Pq(0)[1—pq(0)). The preparation of
initially uncorrelated states by means of a strong
external field has already been discussed in Sec. I.

The original requirement that all atoms have exactly
the same resonance frequency can be re1axed. If I' is
the actual spread of resonance frequencies, and r is the
time scale for return of the atoms to the ground state,
the condition Fv&(j. will ensure that the dipole moments
remain in phase. For a rough estimate, we may use the
approximation (3.28) which predicts for p(r)=x2 the
value r =in(m+1)/wm.

The following remarks are concerned with photon-
number Quctuations. The operator which represents the
total number of photons at time( is N(t) =P P a s~a s.
According to Eq. (1.25), N(t) =M(0)+N(0) —3E(t),
where 3f(r) =p c„~c„represents the total number of
excited atoms. Let us assume that in the initial state
all atoms are excited and no photons are present, so that
(M(0)) =m and (N(0)) =0. Then, (N2(t)) —(N(t))'
=(3P(t))—(3f'(i))'. Since (M(t)) =mph(t) and (M'(/))
=mP&(t)+~(~ —1)p2($), we conclude that

Obviously, the mean-square Quctuation of the photon
number is zero at time t=0, and approaches zero as
t~~. In the special case of a single atom (N'(r))—(N(t))2 =e "'(1—e "'). In the general case raW 1, one
can eliminate m(m —1)p,(t) from Eq. (3.29) by means
of Eq. (3.27).

Our theoretical model is based on the assumption
that m identical atoms are contained in a volume whose
extension is much smaller than the wavelength of the
emitted radiation. In a real experiment it will be
dificult to observe the emission from a single system
or "cluster" of m atoms in a sufliciently small volume.
It may be possible, however, to study the emission from
a macroscopic sample which contains a large number of
similar systems, for example, pairs of atoms, under
conditions where the distance between the clusters is
very large compared with the wavelength. It is only
required that the clusters do not form a regular lattice
with spacings exactly equal to a small integer number
of wavelengths. If these conditions can be realized, it
should be expected that Z identical clusters will con-
tribute to the total emission rate W(r) =ZW (t).
Assuming statistical independence of the emission from
di6'erent clusters, the mean-square Quctuation of the
total number of photons emitted in the time interval
from zero to t, i.e., the total number of photons present
at time i is Z times the expression in Eq. (3.29).

H =h p o)g g c),„~cg„+hp co p (a p~a s+x2)
a P 1

Ag Q Q (a~s cyp+cgp a~s)

which represents two-level atoms with various resonance
frequencies ~ in the presence of an external Geld with
frequency co& and constant amplitude O'. The simple
form of this Hamiltonian is justified if for aH resonance
frequencies (co&—co&)/co&((1 and if the corresponding
wavelengths are very large compared with the dimen-
sions of the volume which contains all atoms.

The equations of motion of the operators a p and cq„
are

aggp+Ro(ga~s ~zg Q cxg q

X,y
(A2)

c),„+ice),c),„=i[ex„,cx„t){gQ a p+gc '"&'). (A3)
a,P

From (A2) and the corresponding equation for a s~ it

APPENDIX

It is instructive to derive an approximate solution
for scattering by a very large number of atoms with a
broad distribution of resonance frequencies. In contrast
with the methods described in Secs. II and III, the
reaction of the radiation osci11ators on the atoms will
now be neglected. For this purpose we consider the
Hamiltonian
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follows that initial state of the whole system is 14'(0)) =II& ) I Ar '))
then

a, p a, p

In analogy with Eq. (1.11),

Z -=Z '""Z -(o)+ ( )2 ., ( )
a,p a p

provided the density of sta, tes p(co) is essentially con-
stant over the whole range of resonance frequencies,
and all resonance frequencies are approximately equal
to Gop. If no photons are present in the initial state

—P (kk.kkta )2)
dt a.p

=ig{ p kc st g c&,„—p cq„t p a p). (A4)

&4(0) I Z ~~.'Z ~-14(0)&

=2 m.{I g (0 1'+ Ii.(&) I')

+p m,h„*(k.) p m.h.(t), (A14)

where mq denotes the number of atoms with resonance
frequency co&. In terms of a normalized frequency
distribution x(coq) for the total number of atoms m, one
obtains in the limit

g mg —) m dcog x(ko),)

d

for the total emission rate in (A6):dt ap Xp ev

For a large amplitude 6 one can solve (A3) with g =0
and substitute the approximate solutions for c» and c
in (A6). Radiation damping is thereby neglected. For
g=0 the equations of motion are

+))+2k)s)Cy)) f6$Cy~ C2.)) $8

by means of k:q„(t) =@„(t)e ' )' one obtains

q +2))z(MK
—Ml)qx, 261 qk), )qx,')—)

q2)) 2(ko2 co&)q&~ = 2%v&)))q&o ) )

(A7)

(Agb)

and it follows immediately that

q)„+i(~~—~2)qx, =262(q2, ' —q~,), (A9a)

qx, ' 2(~), ~2—)qx.'=26'(qx. qx, ') —(A9b.)

From the last two equations one obtains two coupled
differential equations for S»=~„+y,„t and D~„
=y „—y,„~.The 6nal solution can be written in the form

k:~,(&) =o *""{f~(&)k:2„(0)

+g),(r)k;g„(0)+h (i)Lk: „(0),k: „2(0))), (A10)

where
G2

fq(t) =cosQqt+2 (1—cosQ&,t)
Q),~

Z——(cog —kok) sinQqt, (A11)
0),

g2(t) = (62jQq2)2(1 —cosQqt),

sin'~~ Q),t
W„(t) =2k m462 dcog X(ko))

0 Qg'

+em'G' Ckoq x(coi) (1—cosQqt)
Qg2

+zen&'G'
sinQqt 2

dko), x(ko),), (A15)
0),

where 2k)=22rg2p(koo) is the transition probability per
unit time for spontaneous emission by one completely
excited atom. The 6rst integral in (A15) times 462
represents an average over all resonance frequencies of
the probability of the excited state. The additional
factor zm determines the incoherent contribution to
the emission by all atoms. If the width of the frequency
distribution x(cd) is large compared with 6, one can
replace X(co&) by the constant value X(ko&) and integrate
over the variable co~ —co~=ro from —~ to +~. The
second integral in (A15) vanishes in this approximation,
so that

where IC=m)rX(co, )6 is a dimensionless constant. Since

2 + sin'-', t(ko2+462)'"
W (t) =2c) E26kfco-

7f oo co +4G
+~ sin~(ko +46')"

+E2 — dk. , (A16)
)r „(co'+46')'"

kO&,
—cd 1

h2(t) =— (1—cosQgt)+i sinQqt
Q, I Q„

(A13) 2 d ~ Sin2'2i(co2+462)'"
cko

x dt
with Qi =L(cd —cor) 2+462)'k2. This solution satis6es the
requirement cq„2(t) =0, and cq„(t)cz„t(t)+cq„t(&)c&,„(&)= 1.
If all atoms are initially in the ground state so that the

1 +" sint(co2+462) '"
dko =Jo(26t), (A17}

(~2+462) 1/2
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one obtains in terms of zero-order Bessel functions

26'

Jo(&)dx+E'Jo'(2Gt) . (A18)

This result includes the incoherent and coherent con-
tributions of emission. In the limit t —+~, the total

emission rate approaches the value W (~)=reK. In
the special case of a Lorentzian frequency distribution

X(oo) = (F/n. )L(~—coo)'+F'J ', X has the value

I{'=oaGFL(~r —~o)'+Fsj-',

and in particular, X=m(G/F) for oo~ =coo. The conditions

for the validity of the approximation are co&&6«F, and

esw&&F.
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The effect of pressure on the Noel temperature of Coo powder samples is measured up to 150 kbar by
the thermal scanning of Mossbauer absorption. The hyperGne Geld H, which is known at room temperature
as a function of pressure and at 1 atm as a function of temperature, is represented as a function of
~=1—TjT~. The constant-temperature data follow the theoretical law H e»3 over a larger range of ~

than the constant-pressure data. This result is discussed within the present model for the magnetic proper-
ties of Coo.

I. INTRODUCTION

'MOSSBAUER measurements of the hyperfine field
- ~ on Fe'~ in CoO at room temperature and pres-

~ ~

sures up to 250 kbar ' indicated a marked increase of
the Neel temperature in agreement with earlier pressure
studies on CoO in the range 0—6 kbar. ' This agreement
seemed surprising, since the hyperfine field studies used
powder samples and it is known' that the Neel tempera-
ture in CoO at atmospheric pressure depends sensitively
on grain size, stress, and imperfections. In addition to
this question, direct measurements of the Neel tempera-
ture in CoO over a larger pressure range were expected
to show how far the hyperfine H at constant tempera-
ture and high pressures follows the theoretical 3-power
law ' H oo L1—T/Tpr(P))'" and how the high-pressure
results compare with studies at 1 atm and lower
temperatures. '
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II. EXPERIMENT

The change of the Neel temperature in CoO under

high pressures was measured by thermal scanning of
Mossbauer absorption. ' Using the values of the isomer
shift and linewidth measured previously by the high-

pressure Mossbauer technique, ' the thermal scanning
curves indicate that the transition is broadened because
of a spread of local Neel temperatures in the powder
samples, which were prepared for consistency according
to the earlier procedure, and exhibit a single-line spec-
trum at 1 atm, identical with the atmospheric spectrum
exhibited in Fig. 2 of Ref. i. The mean value of the
Neel temperature in these samples at atmospheric pres-
sure was (264&6)'K. Despite this rather large un-

certainty, the changes of the Noel temperature under
pressure are determined by the thermal scanning
method with more accuracy, 8 and the uncertainty is
still small compared with the eGect of pressures in the
range 0—150 kbar.

Furthermore, the hyperfine field data at 20 kbar, '

which correspond to Tto (20 kbar) = (245&3)'K, relate
the measured changes to an absolute scale and allow a
direct comparison with the earlier results on bulk
material at lower pressures' (see Fig. 1).
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