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Reduced Green's Function for the Ground State of the Hydrogen Atom
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The reduced Coulomb Green's function for the ground state of the one-electron atom is ob-
tained in closed form by direct solution of the relevant differential equation.

Recently, there has been some interest in the
reduced Coulomb Green's function for the ground
state of the one-electron atom. Hameka' has ob-
tained a Legendre expansion of this function, and
Hostler' has given a closed-form expression.
Both Hameka and Hostler obtained their expres-
sions for the reduced Green's function by apply-
ing appropriate limiting procedures to the corre-
sponding expression for the full Coulomb Green's
function. There is a much simpler alternative
approach which yields the reduced Green's func-
tion directly as the solution of a differential equa-
tion and this approach mill be outlined here.

The reduced Green's function for the ground
state of a one-electron atom with nuclear charge
Z is the solution of the equation, in atomic units

(V,'+ 2Z/r, —Z ')G '(r„r, )

) ( 3/) -Z(r +r)

G'(r„r, ) =g'(I r, —r, I ) + F(r„r,)

such that g'(i r, —r, I ) satisfies the equation

(V,' —Z')g'(I r, —r, i ) = P(r, —r, ) .

(2)

The solution of this equation is well known and is

g (r„)=-(4x) e "/r„, (4)

and thus the equation for F(r„r,) becomes

(V,'+ 2Z/r, —Z')F(r„r„r„)

together with suitable regularity conditions at the
origin and at infinity. Rotational invariance and
uniqueness require that G'(r„r, ) depend only on
r„r,, and r„= ir, —r, (. Symmetry requires that
G'(r„r, ) be symmetric in r, and r, The r.educed
Green's function is unique except for an arbitrary
multiple of the homogenous solution of (I), and
this may be fixed by requiring G'(r„r, ) be orthog-
onal to that homogenous solution.

We partition G'(r„r, ) into two parts

+ (Z/2w) e "/r, r„.
We now put

F(r„r„r»)= (Z/x) e ' ' f(r„r„r»),Z(r, +r,-)

and express the resulting equation for f(r„r„r»)
in terms of the variables'

u=Z(r, +r, +r»), and v=Z(r, +r, —r„), (6)

finally obtaining

[D(u) -D(v)j f(u, v, r, )

2 y 2= —,e ——,(u —2r,u) + —,(v —2r,v),
x 8 -x 2 8D(x) = e —e (x —2r~)—ex ex

The form of (7) suggests that we look for solu-
tions which are sumseparable and so we write
f(u, v, r, ) in the form

f(u, v, r, ) = U(u, r, ) + V(v, r, ) + e, (s)

where U+ V is a particular solutions of (7) satis-
fying the regularity conditions at the origin and
at infinity, and c is a constant to be determined
by the orthogonality condition on G'(r„r, ). It
is now a simple matter to show that

v e —1
Um+ ~ lnu, and V= —,'v ——,

' f dt (9)2

form a permissible particular solution of (7),
and to determine c. The latter task is facilitated
by the observation that G'(r„0) must be orthogonal
to e i and using this fact we are led to the value
c = 2 y —

~4 where y is the Euler- Mascheroni constant.
The resulting expression for G'(r„r, ) is
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yZ(r, r, —r( e —(
)

in agreement with the result derived by Hostler. '

H. F. Hameka, J. Chem. Phys. 47 2728 (1967);
48, 4810 (1968).

L. C. Hostler, Phys. Rev. 178, 126 (1969).

These variables are also of importance for the full

Coulomb Green's function as shown by L. C. Hostler
and R. H. Pratt, Phys. Rev. Letters 10, 469 {1963).
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The photodetachment cross section for the negative ion of lithium is calculated following
Geltman using an improved value of the electron affinity (0.62 eV) obtained by Weiss.

The photodetachment cross section of the nega-
tive ion of lithium was calculated by Geltman'
employing a value 0.384 eV for the electron af-
finity of the lithium atom (or the binding energy
of the negative lithium ion). This value was ob-
tained by Geltman by extrapolating along the
isoelectronic sequence and seemed to be con-
siderably smaller than various other theoretical
determinations. Thus, Moiseiwitsch obtained
0.74 eV, Weiss' obtained 0.62 eV and Edlen' ob-
tained 0.8 eV. Recently, experiments with elec-
trically exploded lithium wires' indicated that
the affinity of lithium is about 0.6 eV, close to
the value calculated by Weiss. ' The latter's
method of calculation seems to be the most direct
and elaborate and since it best agrees with the
experiment, it will be adopted here as the best
value of the electron affinity of lithium. A re-
vised calculation of the photodetachment cross
section seems appropriate. The much larger
value of electron affinity, as compared with that
of Geltman, would shift the photodetachment
threshold and the continuum associated with the
inverse process to much shorter wavelengths of
the spectrum.

The photodetachment cross section of Li- has
not been measured. However, Geltman's calcu-
lations, as applied to the hydrogen negative ion,
yielded good agreement with other methods and
with the experiment. It can, thus, be expected

=0, r 0.
The potential is chosen such as to give one

bound state of energy equal to the electron af-
finity of the neutral atom. The choice of func-
tions assures the fulfillment of certain necessary
conditions on the absorption coefficient' but not
that of minimal energy. The photodetachment
cross section is then obtained as

&(&) = s(32'')oa, '(0 ' 0')/k

that following the simple procedure employed by
Geltman and using an improved value of the elec-
tron affinity would give reliable results.

It is assumed that the lithium (and the hydrogen)
negative ion has only one bound state and there-
fore the total absorption coefficient (per unit
density of negative ions) and the photodetachment
cross section coincide. A further assumption is
that the two 1s electron merge with the nucleus
or that the lithium negative ion is likened to a
hydrogen negative ion with the two electrons in
the 2s orbital.

Geltman constructs eigenfunctions out of bound
and free one-electron functions and assumes the
potential in the one-electron Schrodinger equa-
tion to be a cutoff Coulomb potential


