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The Lindemann melting law is generalized by reformulating it in terms of the statistical-
mechanical partition function. With the reformulated law, a melting curve is calculated for
argon, which is in good agreement with experiment. A number of well-known melting laws

are derived by using this generalized approach.

I. INTRODUCTION

One of the oldest and most widely used attempts
to predict the melting curves of solids is that due
to Lindemann.' Lindemann assumed that a solid
melts when the mean-square amplitude of vibra-
tions of atoms about their equilibrium position be-
comes larger than a certain fraction of the lattice
spacing. He then straightforwardly arrived at a
relationship between the melting temperature T,
the melting volume v,,, and the force constant
of the oscillator.

The purpose of this paper is to present a refor-
mulation of Lindemann’s approach from a more
general statistical-mechanical point of view so
that it may be applicable to any functional form of
the intermolecular potential. Section II presents
this reformulation in terms of the partition func-
tion, and as an application, in Sec. III an inter-
molecular potential of the van der Waals type is
used to calculate the thermodynamic properties
along the melting curve for argon. In Sec. IV,
it is shown that Lindemann’s Law, the Simon equa-
tion, 2 and the melting law recently proposed by
Kraut and Kennedy? all follow from this generalized
Lindemann point of view.

The Lindemann approach to melting is a one-
phase theory. It only treats the solid and says
nothing about the liquid or why the solid becomes
a liquid. Since it does not present a mechanism
for melting, it is not truly a theory of melting.
Instead, it evolves from an intuitive sense of
what must be occurring. The results of this paper
appear to further justify this intuition.

II. FORMULATION OF GENERALIZED
LINDEMANN MELTING CRITERIA

In this section, the Lindemann approach to
melting will be generalized in terms of a statis-
tical-mechanical formalism. In statistical me-
chanics, the configurational partition function @
for a system of N particles is written

Q=@1/N1) [ +-- [ exp[- U(?I,FZ, ...,,N)B]
X dF A7y -y, -
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Defining a set of reduced coordinates X =7%/V /3,
where V is the volume of the entire system, we
may rewrite the configurational partition function
in terms of a reduced configurational partition
function Q*.
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Q*= [fel-[ U(XI,XN)— U(0)] ﬁ}dil- . -diN,
where U(0) is the energy of the system with all
atoms at their lattice sites, and @* is an integral
over the reduced configuration space and can be
thought of as a measure of the fraction of this
space available to the system.

The Lindemann approach to melting takes the
view that if we were able to see the melting tran-
sition on a microscopic level, we would always
see the same scaled picture in the solid. At
different temperatures, because of their ability
to interpenetrate each other’s electronic cores,
the atoms will have different effective sizes.
However, for a given crystal structure, the ratios
of their effective volumes to the total volume of
the system will always remain constant at all
points along the melting curve, and their relative
arrangements in space will always remain the
same. Consequently, the pictures along the melt-
ing curve will always be identical if properly
scaled. We wish to generalize this point of view
which is expressed in terms of real space into
terms of statistical mechanics by reexpressing
Lindemann’s Law in terms of configurational
space.

The Lindemann principle is reformulated by
stating that for a given substance, at all points
along its melting curve, the solid always occupies
the same fraction of configurational phase space.
In other words, in configurational space we would
always see the same scaled picture at all points
along the melting curve. In statistical-mechan-
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ical language we require that @* be a constant at
all melting temperatures Ty, and all volumes Vi
along the melting curve, and this is formally
written

Q*( T, Vm) =const.

One of the advantages of formulating Linde-
mann’s Law in terms of the partition function is
that it is this quantity that provides us with a
direct link to all of the thermodynamic properties
of the system in a straightforward way. Unfortu-
nately, this formulation in terms of the total
partition function @ is too general to be useful in
simple calculations, and, therefore, it becomes
necessary to choose a model for a solid. In this
paper, we will choose the single-particle cell

model. In the cell model the volume V is divided
up into a lattice of N cells with one molecule in

each cell. Each molecule is confined within its
cell and moves in the potential field of its neigh-
bors, but its motion is independent of its neigh-
bors. In the single-particle cell-model approxi-
mation, the configurational partition function now
denoted as Q! may be written*

Q(l) =vae-NE(0)/ZB ,
where vf is the one-particle free volume given by
- j;)e-[E(ﬂ—E(O)] Bz . a)

The integral is over v, the volume of the cell;
E(#) is the potential field in which the particle
moves, and E(0) is the potential at the center of
the cell, Defining a set of reduced coordinates

2 =7/v'/3, where v is the volume of a cell enables
us to express vf as

v =vv}‘, v}‘ = fol e-[E(i)_E(o)]ﬁdi s
2)
or Q(1)=va*Ne-NE(0)/2ﬁ .

f

Here v, is the volume of configuration space
that a single molecule wandering in its cell will
occupy. Then vf is the dimensionless reduced
volume occupied by a single particle and is the
cell-model analog of the many-particle function
Q* defined previously. Consequently, in terms of
the cell model, our melting principle will be pos-
tulated as

v]’f (r,,v, )= const. (3)

In the configuration space of the single particle,
we will always see the same scaled picture at all
points along the melting curve.

The free energy is written

=—kT1InQ" .
Combining with Egs. (1) and (2) we obtain

A =%NE(0)—NkT1nv—NkT1nv}‘ , @)
the free energy of the solid in the single-particle
cell-model approximation. Using Eq. (4) and its
various derivatives we can calculate all of the
thermodynamic properties along the melting curve
once Ty, and vy, have been determined by the
application of Eq. (3). We would like to emphasize
that one of the advantages of the present formalism
is that it allows us to use the full intermolecular
potential and not just the harmonic approximation
as in the Lindemann Law.

The remainder of this paper is devoted to apply-
ing these ideas as expressed in Eqs. (3) and (4)
to a few examples. Equation (3) has been derived
using classical statistical mechanics in the single-
particle approximation, and as a result it is ap-
plicable only to systems in which quantum effects
are negligible.

III. APPLICATION TO SOLID ARGON

In this section, we illustrate the full advantage
of reformulating the Lindemann principle in terms
of the partition function by applying the formula-
tion to calculating the melting curve for argon
and some of the thermodynamic properties along
this curve using the full form of the intermolec-
ular potential.

Our model for the solid is the well-known
Lennard-Jones—-Devonshire® (LJD) cell model
which is a single-particle model of the solid. It
has been discussed extensively by Barker® who
has included all of the thermodynamic relations
for this model. In the LJD cell model, the atom
moves in a potential field obtained by summing
the pair potential over all its stationary neighbors
and then taking a spherical average. This po-
tential is used in Eq. (1), and the thermodynamic
properties are derived from Eq. (4). Although
this model was originally formulated as a model
for the liquid, it is generally recognized to be a
very good model for a molecular solid. Ross and
Alder” have made Monte Carlo calculations for
solid argon along a 65°K isotherm using a
Lennard-Jones-type intermolecular potential and
showed that to within +50 bars, the accuracy of
the Monte Carlo calculations, the LJD calculations
were in agreement. Since the Monte Carlo calcu-
lations are in principle exact, the LJD model may
be considered as a satisfactory representation of
the P, V, T space of the solid.

However, in order to test the theory and calcu-
late the experimental melting curves, it is ob-
viously necessary to have an intermolecular po-
tential which will correctly reproduce the static
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P, V, T measurements independent of the correct-
ness of the melting theory. The intermolecular
potential used was assumed to be pairwise additive
and of the exponential-six functional form.

¢(r)=e{(af6> exp[a(l-r—ﬁ)]
(=) T

The parameters »*, €, and o were obtained by
using the potential in the LJD model to find those
values of the parameters for which the LJD model
best reproduced the static data that had been mea-
sured in P, V, T space near the melting curve.
No attempt has been made to obtain detailed agree-
ment by an exhaustive examination of possible
intermolecular potentials. It appears from this
and the work of others that a high-order agree-
ment over a wide range of thermodynamic prop-
erties can only be possible by a more general po-
tential function, or even preferably a potential in
a numerical form. Table I lists the experimental
P, V, T points of Crawford and Daniels® taken
along the melting curve of argon and some points
of Witzenburg and Stryland® along a high-pres-
sure solid argon isotherm at 120. 08°K near the
melting curve. These data were used to choose

a potential which would best reproduce the experi-
mental pressures along the phase line. Two such
potentials have the parameters a=17, »*=3.7754,
€/k=120°K, and @ =15, »*=3.81 A, and
€/k=126.9°K. The pressures calculated using
these potentials in the LJD model are also shown
in Table I. The fitting of the potential was done
only to ensure that the model could reproduce the
correct equation of state along the melting curve.

In fitting the intermolecular potential, we have
specifically required the model to predict the pres-
sure at the triple point to within +3 bars. This
was done so that the v} (T, v,) at the triple point
could be used as the constant to determine the
melting curve using Eq. (3). The melting curve
was determined by finding for each T,, the volume
vy, at which v; ( Ty vim) =vf (Tg,vg). This then
determines the T,,, vy, curve and it is possible
to calculate all of the thermodynamic properties
along this curve. The P,,, v,,, T, results are
shown in Figs. 1, 2, 4, and 5 where they are
compared with the measurements of Crawford
and Daniels. Also shown are the static P, V, T
points in Table I that were calculated by the LJD
model in obtaining the potential. Since the inter-
molecular potential used does not predict the ex-
perimental data exactly, these calculated values
were also included in the figures to serve as a
measure of the best agreement obtainable by the
calculated melting curve. Figures 3 and 6 com-
pare the P-T curves up to 420°K.

An inspection of the next to the last column in
Table I shows that v} (7)/vf (83.81) increases
from 83.81°K to 108.12°K and then levels off, so
it appears that the low-pressure melting region of
argon might actually be somewhat anomalous.
That this point is anomalous is borne out by the
unusually high heat capacities and apparent va-
cancy formations or premelting'® that occur in
this region.

In the belief that less vacancy formation would
be present at the highest compressions, another
melting curve was calculated by setting vf at
T=201.32°K and v =21.69 cc/mole equal to a
constant along the melting curve, or

v;(Tm, vm)/v}‘ (201. 32, 21.69)=1.

TABLE I. Summary of experimental results and calculations to fit potential parameters.

* a

T Pexpt PLiD" Z‘(i_ PLJDb
(°K) V(ce/mole) (kbar) (kbar) Vf (83.81) (kbar)
83.81 24.61 0.000 0.003 1.0000 0.000
94.73 24.34 0.451 0.443 1.0596 0.436
108.12 24.02 1.051 1.003 1.1184 0.991
120.85 23.65 1.674 1.621 1.1318 1.605
140.88 23.04 2.708 2.738 1.1141 2.711
160.40 22.54 3.805 3.881 1.1071 3.828
180.15 22.08 4.999 5.121 1.0969 5.029
201.32 21.69 6.335 6.421 1.1067 6.274
120.08¢ 23.36 1.884 1.848 1.849
120.08€ 23.22 1.990 1.975 1.982
120.08¢ 23.20 2.032 1.999 2.007

2Calculations made with Eq. (5); a=17, »*=3.775 lgs, €/k=120°K.
bCalculations made with Eq. (5); a=15, »*=3.81 A, €/k=126.9°K.
CData of Witzenburg and Stryland (Ref. 9) taken along the 120.08°K isotherm. All other data are those of Crawford

and Daniels (Ref. 8) taken along the melting curve.
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FIG. 1. Melting pressure versus melting temperature
for argon, calculated for ¢ =17; @, data of Crawford
and Daniels as listed in Table I; O, LJD calculations
listed in Table I. Solid curve, melting curve calculated
by setting v; (83.81, 24.61) to a consiant. Dashed curve,
melting curve calculated by setting vf (201.32, 21.69)
to a constant.

These results, also shown in Figs. 1-6, are
clearly in excellent agreement with the experi-
mental melting curves of Crawford and Daniels
in the region of the phase diagram in which the
potential has been determined. It is interesting
to note that with v# fixed at 201.32°K, a triple
point of 86.8°K is predicted, which would point
to a phenomenon leading to an effective premelt-
ing in argon. The disagreement at the high-pres-
sure, high-temperature end of the P-T curve of
Figs. 3 and 6 probably results because our po-
tentials are not correct for these conditions,
having been adjusted to predict lower-pressure,
lower-temperature P, V, T points.

It should be noted that a potential may correctly
predict the pressure but at the same time not cor-
rectly predict of. This is because the maximum
contributions to the integrals occur at different
regions of the potential. Consequently two po-
tentials that predict almost identical P, V, T
points may predict different melting curves. This
is apparently so in the present case where the
a =17 curve gives better agreement with the ex-
perimental melting curves. This difficulty is
inherent in the use of a phenomenological potential
for applications where the exact potential is not
known.

Postulating that vf* is a constant along the melt-
ing curve is identical to assuming that the re-
duced free energy A*/kT =~ lnvf is a constant.
There are, of course, other possible reformula-
tions of Lindemann’s Law, such as reformulation
in terms of the reduced entropy S*/k, or the re-
duced energy E*/kT, where

w5 w F -G

, and —— = .
k aT Jyp k 81/T Jy
Calculations made assuming a constant reduced
entropy give melting pressures differing by about
3% from the results for constant vf, and poorer
in agreement with experiment. These results are
not shown. However, some calculations assuming
that E*/RT is a constant (shown in Fig. 3) are in
poorest agreement. The present investigation is
not so comprehensive nor so rigorous that it is
possible to conclude that the first reformulation
in terms of the partition function is superior to
these two latter reformulations. This point is
not pursued any further in this publication and we
restrict ourselves to a literal reformulation in
terms of the free volume.

P — kbar

o1 1 | |
22 23 24 25
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FIG. 2. Melting pressure versus melting volume for
argon, calculated for a=17; @, data of Crawford and
Daniels as listed in Table I; O, LJD calculations listed
in Table I. Solid curve, melting curve calculated by
setting v; (83.81, 24.61) to a constant. Dashed curve,
melting curve calculated by setting v; (201.32, 21.69)
to a constant.
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FIG. 3. Melting pressure versus melting temperature
for argon up to 420°K, calculated for @ =17. Bold solid
curve, data of Lahr and Eversole (Ref. 11), and Grace
and Kennedy (Ref. 12). Solid curve, melting curve cal-
culated by setting v; (83.81, 24.61) to a conszant. Dashed
curve, melting curve calculated by setting v, (201.32,
21.69) to a constant.* Dotted curve, melting curve cal-
culated by setting E /kT (83.81, 24.61) to a constant.

IV. APPLICATIONS TO SIMPLE PO-
TENTIAL FUNCTIONS

In this section, the generalized Lindemann
principle is applied to some potential functions to
derive a few well-known melting laws. InSec. IVA
it will be shown that for the Einstein oscillator,
Eq. (3), leads immediately to Lindemann’s Law
as it should. In Secs. IVB and IVC, we derive
forms of the Kraut-Kennedy melting law for two
cases: IV B, systems in which the neighboring
atoms interact via strong core-core repulsions
and the force law is given by an inverse power
repulsion, and IVC, systems in which core-core
interactions are negligible and the properties of
the system are determined primarily by the con-
duction-band electrons. In this case, recent
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FIG. 4. Melting pressure versus melting temperature
for argon, calculated for o =15; @, data of Crawford
and Daniels as listed in Table I; O, LJD calculations
listed in Table I. Solid curve, melting curve calculated
by setting vf (201.32, 21.69) to a constant. Dashed
curve, melting curve calculated by setting v; (201.32,
21.69) to a constant.

developments in the theory or metals show that
we may treat such systems as hard spheres. In
IV D, starting from this same generalized princi-
ple, we derive the Simon equation and illustrate
its limitations.

A. Einstein Solid and Lindemann’s Law
In the case for which the atom moves in an iso-
tropic parabolic potential (Einstein solid) with
force constant K,

E(r)-E(0)=% Kr?,

and in reduced coordinates as defined before
E(\)-E(0)=12 v?°K )2 . (6)

For Eq. (3) to remain a constant along the melting
curve, it is necessary that at the melting volume
V,, and melting temperatwre T,
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FIG. 5. Melting pressure versus melting volume for
argon, calculated for o=17; @, data of Crawford and
Daniels as listed in Table I; O, LJD calculations listed
in Table I. Solid curve, melting curve calculated by
setting vf* (83.81, 24.61) to a constant. Dashed curve,
melting curve calculated by setting vf (201.32, 21.69)
to a constant.

. v
* _ _ m LI T 23y
vf —471]; exp[ < 3 kT)x] A2d) = const,

which can be satisfied by

3V 2K/ET =const (7
m m
and is Lindemann’s Law.

B. For Atoms With Strong Core-Core
Repulsions

If the atoms of the solid interact by pairwise
additive repulsive forces of the inverse power
form

o(r)=e(r*/r)", (8)

and the Z nearest neighbors surrounding an atom
in its cage are considered to be smeared over that
shell, then the potential in which the atom in the
cell moves is given by**®
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FIG. 6. Melting pressure versus melting temperature
for argon up to 420°K, calculated for @=15. Bold solid
curve, data of Lahr and Eversole (Ref. 11) and Grace
and Kennedy (Ref. 12). Solid curve, melting curve cal-
culated by setting v; (83.81, 24.61) to a constant. Dashed
curve, melting curve calculated by setting v; (201.32,
21.69) to a constant.

/3 (x2) .

E(\)-E(0)=Ze(v*/v)
Here »*, €, and n are constants, and v*=7*3/d;
d depends on the crystal structure, I(2?) is a
polynomial expansion in A% and can be written in
a closed form.

In the limit of the harmonic approximation, it
can be shown that

n/3 2
a

E(\)-E(0)=2z€ (v*/v) M )

where a,, is a constant depending on the crystal
structure and the number of neighboring shells
included. It should be noted that smearing the
neighbors over a shell makes the potential field
isotropic. Consequently, Eq. (9) differs from
Eq. (6) only in that the force constant now has an
explicit volume dependence.
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To satisfy the melting condition of Eq. (3), it is
necessary that

(Ze/kT”?(v"‘/vm)n/3 an=const. (10)

In what follows, T( and v will refer to some
standardized point along the melting curve, specif-
ically the triple point unless otherwise stated.
Now
v =v,-Av, where Av=v.-v .
m 0 m

0
Substituting in Eq. (10), we get

n/3

4 * a =const
kT v,(1 - Av/v,) n ’

We may evaluate the constant at Av =0 for which
Ty =To and vy, =vp. Then

T/Ty=(og/o 13- = mom)™3. (1)

This, when expanded, leads directly to a relation-
ship [Eq. (12)] similar to the one proposed by
Kraut and Kennedy, but containing higher-order
terms:

—,IT7 =l+in8v/vg+5n(3n+1)3(Av/v 2+ (12)
1]

The Kraut-Kennedy relationship is
T/Ty=1+C Av/v, .

An inspection of the ratio of the quadratic to
the linear term in Eq. (12) reveals that for any
reasonable value of n, for example, n=9, the
quadratic term becomes 10% of the linear at Av/
v, of about 0.05. For transition metals such as
iron and other substances in which core-core
interactions are important, such as aluminum,
zinc, and tin, the volume data do not extend to
large compressions, so that Eq. (12) with higher-
order terms neglected appears to be an adequate
description of the Kraut-Kennedy law. However,
the remarkable feature of the Kraut-Kennedy re-
lationship is that the alkali metals obey the linear
expression up to compressions of 0.4, wherein
quadratic and higher terms, if present, should
have begun to manifest themselves. Vaidya and
Gopal'® attempted to derive the Kraut-Kennedy
law by differentiating the Lindemann Law with
respect to volume, using the Grilineisen hypothesis
that the frequency spectrum of a solid depends
only on the volume and then making a binomial ex-
pansion. They then obtained Eq. (11) where 32

=2(y - %) and y is the Griineisen parameter [ see
Eq. (15)]. However, these authors neglect the
higher-order terms; this is incorrect for the
alkali metals. These results indicate that any at-
tempted derivation of the Kraut-Kennedy law
starting from a harmonic-oscillator model must
result in an expansion in Av/v,.

It is well known that at normal densities there
is no appreciable core-core interaction in the
alkali metals.  Consequently Eq. (12), which is
derived from a potential that is appropriate to a
system in which strong core-core repulsions
dominate, should not be applicable to the alkali
metals. In Sec. IVC, we shall derive a melting
law using a potential that is more appropriate to
such systems.

C. For Alkali Metals (Hard Spheres)

In this section, we make use of some recent
developments in the theory of metals. In particu-
lar, we draw heavily from the results of Ashcroft
and co-workers.!%1¢ Ashcroft and Langreth calcu-
lated the ion-ion potential for a number of alkali
metals and showed that these potentials to a good
approximation may be represented by a hard-
sphere potential. In this approximation, the ion
may be thought of as moving through an electron
fluid about its equilibrium postion in a weakly
varying potential to which it is confined by a steep
repulsion. With this model Ashcroft has been
able to successfully calculate the electrical re-
sistivities of a number of alkali metals and their
alloys. The model will be appropriate for the
alkali metals as long as there are no strong core-
core repulsions when the atoms are near their
equilibrium positions. For this potential in the
spherical-cell approximation, the free volume
vy of a hard-sphere solid is given by®

°f
where o is the diameter of the hard-sphere atom,
a is the nearest-neighbor separation, and v =a3g
where ¢ depends on the crystal structure. In
order for the melting criterion, Eq. (3), to apply,
it must have at the melting temperature,

=% ma*(1 -o/a) ,

vf/a3 =const, or of T)3/vm =const. (13)

This is Lindemann’s Law for hard spheres, for
which case it is exact. On the basis of their
empirically determined o (see below), Ashcroft
and co-workers's,'® have shown that Eq. (13) with
vy, equal to the volume of the liquid at melting
holds for a number of alkali metals. They note
that this “is a statement of Lindemann’s melting
law viewed from the liquid side of the phase tran-
sition.” In Eq. (13), o is a function of tempera-
ture because of the ability of the colliding atoms
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to further interpenetrate at higher kinetic energies,
and we will express this phenomenological char-
acter as

o(T¥=-cT+b, where c=-d(0)}/dT.
Substituting into Eq. (13)

(- T, +b)/vm =const.

Using the properties at the triple point as was
done in obtaining Eq. (11)

(- ch +b)/vm =0(T0)3/vo ,
T, =[b-0a( T0)3] /c+ (Av/vo)cr( To)s/c .

Since T [b-0(T,)?]/c,
then T/T,=1+(Av/vy)o(T,)}/cT, . (14)
Equation (14) is identical to the Kraut-Kennedy

melting law and o(7,)%/cT, is equal to the constant
C which has been determined from experiment for

a number of substances as well as the alkali metals.

In deriving Eq. (14), a number of approximations
were made: (1) that a generalized Lindemann
formulation is applicable, (2) that the interion
potential can be approximated by a hard-sphere
potential, and (3) that the hard-sphere volume
decreases proportionally as the temperature. We
will attempt to vindicate these approximations by
calculating the Kraut-Kennedy law constant for the
alkali metals.

Ashcroft and Lekner?!® evaluated o for the alkali
metals in the liquid near the melting point by find-
ing that value of o at which the first peak of the
hard-sphere liquid-structure factor agrees with
the one experimentally determined from neutron-
diffraction experiments. These authors also
determined o for sodium at a number of different
temperatures from liquid compressibility data,
so that it is possible to estimate do3/dT for Na.
Also, for Rb, o was estimated from neutron-
diffraction experiments at a number of different
temperatures by determining the o which gives
the correct height of the structure factor. From
these numbers we calculated do3/dT for Rb. In
the spirit of the hard-sphere model, we assume
that the hard-sphere radii are only functions of
temperature, and the values determined by Ash-
croft and Lekner for the liquid near the melting
point will be used in the solid at the melting point
to calculate the melting-law constant in Eq. (14).
To circumvent the lack of temperature-dependent
experimental data for Li and K, do3/dT was esti-
mated for these materials by assuming that do3/
dT varies linearly with 03, interpolating for K,
and extrapolating for Li. The results (Table II)

TABLE II. Summary of calculations of melting-law
constant using hard-sphere data of Ashcroft and Lekner
(see Ref. 15). Values in parentheses were estimated
as discussed in the text.

da®
o 3,83 9 d0”
TR RH 10 TE Cyle Cexpt

Li 453 19.68 (=1.24) 3.5 1.3
Na 373 35.29 -1.69 6.0 6.3
K 338 67.40 (-2.32) 8.6 8.7
Rb 313 79.51 -2.71 9.4 13.2

are in good agreement with the experimentally
determined values. While in absolute terms the
agreement ranges from very good in the case of
Na and K to poor in Li and fair in Rb, the over-
all agreement and the correct qualitative trend
in this group of elements does appear to vindicate
the approximations that have been made. Because
no volumes are known along the curve, Kraut and
Kennedy in applying their relationship to experi-
ment use as the melting volumes the volumes for
the solids at 25°C measured by Bridgman that are
at the same pressure as at the melting temperature.
Consequently, the agreement between theory and
experiment must be considered satisfactory.
Equations (7), (11), and (14) were all derived
froma generalized Lindemann point of view, and
consequently all are equivalent models of melting,
differing only because of the form of the potential
field in which the atom wanders. For metals in
which the free-electron character dominates,
Eq. (14) is correct provided that there are no
strong core-core interactions between the ions.
At compressions at which these interactions are
no longer negligible and the neighboring cores
strongly repel one another, then Eq. (12) is a
more appropriate form of the melting law, and
the melting-law constantis directly related to the
power of the repulsive parameter. Since this
will be the case at some compression for all sub-
stances, then Eq. (11) correctly predicts that the
melting temperature will become unbounded as
the melting volume goes to zero and no solid-to-
fluid critical point will exist.

D. Simon Melting Law

The Lindemann Law and the Kraut-Kennedy law
relate the melting volume and the melting tempera-
ture via some intermediate parameters. In this
section we again demonstrate one of the advantages
of reformulating the Lindemann principle in terms
of the partition function by straightforwardly de-
riving a relationship between pressure and tem-
perature and show that it leads to a form of the
Simon equation.
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Using the potential function [Eq. (9)], and differ-
entiating Eq. (4) with respect to volume, we ob-
tain an expression for pressure

P=P(0,v)+(8kT/v) (kn+%), (15)

where P(0, v) is the pressure at 0°K and volume v.

The term in brackets is a constant and is the
Grineisen parameter y for this model. Equation
(15) is an equation of state and only relates the
allowable values of P, V, and 7. To get the melt-
ing conditions or the allowable P, V, T along the
melting curve, we must impose the melting con-
dition that vf = const. This condition is equivalent
to requiring that Eq. (11) be obeyed.

Substituting Eq. (11) into Eq. (15), we get

3kT0 » 143/n ., .
Pm =P, vm) * v, T, (? * T) ’
(16)
which may be rewritten
d
Pm—P(O, vm)+a(Tm/T0) , a7

where d=1+3/n; a=3 (kT,/v,) (n/6+3) and n
are constants. Equation (17) can be recognized
as the Simon equation. In the application of the
Simon equation to experimental data, P(0,v,,)
is always taken as a constant, and it is for this
reason that the equation has apparently proven
unreliable when extended to large pressures.
The Simon equation was originally proposed on
empirical grounds and later derived by Salter. 7
Salter combined the Gruneisen equation of state
with Lindemann’s Law, then assumed y and
P(0, v,,) to be constants for all volumes and
arrived at Simon’s equation. His derivation is
equivalent to starting with Eq. (6) rather than
Eq. (9). The results of calculations from Sec. HI

illustrate why the Sim*gn equation fails. For the

a =17 potential with v¢ set to a constant for
T=201.32°K, y and P(0, v,,) were calculated in
Sec. III by the LJD cell model along with the melt-
ing curve from the triple point (83.81°K) up to
420°K. The total variation of P(0, V,,) over this
range is 11. 6 kbar, while the total pressure varia-
tion is only 26 kbar. The calculated y changes by
about 25%. Obviously these terms cannot be taken
as constants. At higher pressure P(0, Vm) will
rise even more sharply with compression. Con-
sequently the Simon equation as generally applied
cannot be extrapolated with any confidence.

V. DISCUSSION

What we have tried to do in this paper is to show
how the Lindemann point of view of melting may
be generalized so that it is applicable to any inter-
molecular potential and not only to the harmonic-
oscillator form. The application to solid argon
results in a melting curve which is in good agree-
ment with experiment. This reformulation also
provides a unifying framework which facilitates
the theoretical derivation of other melting laws
such as the Kraut-Kennedy law and the Simon equa-
tion. It has been possible to show that these laws
follow directly from the Lindemann point of view
and also to show their limitations. These results
appear to further justify the Lindemann approach
and also to suggest that, since the arrangement
of the atoms in space is the central feature in
melting and the criteria for melting may be estab-
lished by only considering one phase, then the
melting problem is essentially a packing problem,
the essence of which is contained within the hard-
sphere melting results. ¢
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’

A comparative study has been made of the ionization cross section of ions Lit, Nat, K
Rb+, cst, Ne+, Nt and Mgt using different velocity distribution functions for the atomic
electrons in classical impulse approximation. The results are discussed in the light of the
available experimental and theoretical results.

1. INTRODUCTION plicated, because of the effects of the residual

The problem of the theoretical treatment of
electron-impact ionization of neutral atoms has
received much interest.! The simple classical
binary encounter model? 3 provides a simple
framework for estimating ionization cross sec-
tions of atoms which turn out to be reliable spe-
cially at high energies and reasonable for almost
all incident energies. However, not many at-
tempts have been made for the calculation of ion-
ization cross section of ions by electron impact.
In the case of ions, the problem becomes com-

ionic field. Very recently, Thomas and Garcia*
obtained a model solution within the framework
of binary encounter theory in which the effect of
residual ionic field was explicitly taken into ac-
count. We have used the model of Thomas and
Garcia to calculate the cross sections for the
ionization of the ions Li*, Na*, K* Rb*, Cst,
Net, N*, and Mg*. We have studied the use of
6-function distribution function, and in two cases
the use of a quantal momentum distribution func-
tion for the bound electrons.

2. THEORY

Thomas and Garcia studied a model in which they consider the impact of an electron of kinetic energy
E, on a fixed ion of net charge Z’. The incident electron undergoes a binary collision with the bound elec-
tron of energy U, at a distance £ from the nucleus and results in an energy transfer AE >U, The kinetic
energy of the incident electron at the collision radius £ is E/=E,+Z’/£E >2E,. The cross section for the

ionization of the ion is given by

BT LB -B,

’ ’ 12 n/2
T=ix 1+{1+2Z "[ Z ((B’Z s
1

-8 m

/ 1/2\2 E E’
) ]} ) Bl=7jL, B]I:_[]L- (1)

Here the factor in parentheses represents the magnification of the cross section due to the curvature of



