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Corttrrtents on the X+-Xe Electromagnetic Mass Shift
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We analyze the E+-I( electromagnetic mass difFerence using (i) hard-kaon current algebra of chiral
SU(3) XSU(3) )with a symmetry-breaking term which transforms as (3, 3~)Q+(3~, 3)] and (ii) dispersion
theory in conjunction with soft-kaon current algebra. The results difFer in that the E* intermediate state
appears in the latter approach but not in the former. Its contribution is analyzed in detail and shown to
have the correct sign. From our analysis we conclude that the mass shift cannot be of the correct sign and
magnitude for a reasonable value of the cutofF unless the contribution of the fr term is large. We also com-
ment on Riazuddin and Sarker s analysis for the V Vt' vertex which appears in our calculations.

' 'HE calculation of the electromagnetic mass shift
of hadrons is complicated by the presence of

strong interactions among hadrons. To incorporate the
strong-interaction effects, various attempts have been
made with approximations by low-energy phenom-
enology and by other means, but it still remains
difFicult to understand the DI= 1 electromagnetic mass
differences, e.g. , mK+ —mKo, m„—m, etc. Here we make
an attempt to analyze the mass shift of kaons within
the framework of once-subtracted dispersion theory
under the assumption that the dispersion integrals get
saturated only by low-lying intermediate states,
namely, E, Eg, and E*.The resulting expression con-
tains, apart from the subtraction term, ' many form
factors. At present, we do not have enough experi-
mental knowledge about these form factors for analysis.
One way out appears through the use of the hard-meson
current-algebra results for these form factors. ' These
results are obtained under the assumptions of local
chiral SU(3) XSU(3) algebra of vector and axial-
vector currents, single-particle dominance, smoothness
of three-point primitive functions, and a symmetry-
breaking term in the Hamiltonian transforming as
(3, 3")Q+(3e, 3).The subtraction term is evaluated from
the soft-kaon current-algebra analysis. We have com-
pared the final expression of the mass shift with that
derived through the hard-kaon current-algebra analysis
of four-point functions. ' We find the two to be identical4
except that the latter contains no contribution due to
the E* intermediate state. Thus, the mass difference is
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' H. Harari, Phys. Rev. Letters 17, 1303 (1966).'I. S. Gerstein, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
175, 1873 (1968); I. S. Gerstein and H. J. Schnitzer, ibid. 175,
1876 (1968), and references quoted therein; see also S. Weinberg
and S. L. Glashow, Phys. Rev. Letters 20, 224 (1968}.

'Under the assumption of meson dominance, I. S. Gerstein
and H. J. Schnitzer LPhys. Rev. 170, 1638 (1968)g have obtained
the results for the four-point functions of current-generating
SU(2) XSU(2) algebra. These can be generalized to SU(3)
&&SU(3) algebra following closely the method of Ref. 2. This
current-algebra analysis for the electromagnetic mass shift does
not take into account the contribution of the vector-meson inter-
mediate states (see Ref. 4, . However, in principle, this should
have been included.

4 Similar observations have been made by K. C. Gupta and
J. S. Vaishya t Phys. Rev. 176, 2125 (1968)j in the context of
~+—qr' mass shift. See also J. S. Vaishya, ibid. 177, 2512 {1969).
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T„,(k,q) =i d'x

Xe "$(It+,k~ T(V„' (x),V,™(0))~E+,k)

(E+ +Z') $— —
=g„.Fr+ q„q,Fs+ (q„k.+q,k„)Fs

+i (q„k„k„q„)F4+k„k—,Fs (2).
Here the F s are functions of q' and v, with v= —

q k.
The gauge invariance of T„„(k,q) demands

FI+q'F2= vF3) q'F, = r F„and F4 0. (3)——

Thus only two of the F s are independent. If we write
unsubtracted dispersion relations for all F;, we would, in
general, fail to obtain a gauge-invariant result for
T„„(k,q). This difhculty is well known, ' and it can be
overcome by introducing one subtraction in the dis-

~ Riazuddin and A. Q. Sarker, Phys. Rev. Letters 20, 1455
(1968).

s R. S. Socolow, Phys. Rev. 137B, 1221 (1965).
Riazuddin, Phys. Rev. 114, 1184 (1959); V. Barger and E.

Kazes, Nuovo Cimento 28, 385 (1963).
8 Unsubtracted dispersion relations for Ff, 2 can lead to a con-

tradictory result at zero photon energy. See, e.g., H. Pagels,
Phys. Rev. Letters 18, 316 (1967);H. Harari, ibid. iS, 319 (1967).
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found to be logarithmically divergent in both ap-
proaches and to be dependent on the E-E~ mixing
parameter 5, the Frr/F ratio, and the scalar tadpole
((Ts) contribution. We have analyzed the VVF vertex
through the Ward-identity approach and have com-
mented on Riazuddin and Sarker's analysis. ' We find
that the E* contribution is convergent and small, but
has the right sign in contradistinction to the previous
analysis of Socolow based on perturbation theory. This
happens because part of the subtraction term gets
mixed with the E*-pole term.

The electromagnetic mass difference of kaons to first
order in n is given by~

~K+ ~K —2mK~~K

d4II gvVv—g„„—), T„„(kq), (f)
(2rr)s q' q'

where T„„(k,q) is the virtual-photon —kaon scattering
amplitude:
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To overcome this difhculty, we make use of the current-
algebra analysis for three-point functions of currents
and their divergences under the assumption of meson
dominance, which has given reasonably good results
for many decay widths and form factors. ' Thus, we
uSe1 1

persion relations for I'1 and F2 at P=o. For fixed q', we
assume that4

v ImF g(v', q')
Iq'g(v, q') —Fg(O, q') =— dv'

7l P P P
(4)

ImFg(v', q')
dV

1
Fg(v, q') =—

gg2mc2
F.(q') = q'(1+6)+2(q'+m. ')

2(q'+m, ') Fir'mq'

I
P V

(9)
m'F '

8m, ' gq
C (q') =

2mo' Fx(q'+m, ')
(10)

We now saturate the dispersion integrals by the pole
contributions due to E, E~(1320) or Q, and E*(890),
and evaluate the right-hand sides of Eqs. (4) and (5).
In doing so, we define the following vertices:

(E,k
~
V„'(0)

~

E', k+q) = 2if'"F.(q')(2k+ q)
(E.,k~ V„(O) ~E, g, kyq, «)

= 2f"{Lg„i((q+k)' —k')+ (2k+ q) „kq jC,(q')

+pg„&q'+q„ki jD,(q ))«(q+k), (6) D,(q') =
and 2 mq' Frr(q'+m, ')

(E',k
i
V„'(0) t

E~, k+q, gx )
= 2d"f, (q') gi,„gq k~grr~" (k+ q),

where F„C„D„and f, are functions of q'. Using the
definitions from above, we calculate the right-hand
sides of (4) and (5), and obtain

F ( gqv') F(o,gq')—
=P +

FDFg mrrg f fg +
2vrr( &vv) 6 virq(vrrq v) 2vo(vo v)

)&fvq'mq-'(C, —D,)(Cg —Dg)

+2vo(2C, Cg+C, Dg+D, Cg)

For determining f,(q'), we first outline the Ward-
identity approach for the VVP vertex, which is similar
in spirit to that of Ref. 2 or 5. For this, we define the
proper AVV vertex I'„„)„PVV vertex F„~, etc. , by
explicitly displaying the pole structures of M„„),"'.

M qg=— d'xd'ye *'*+*"'(T(A (r) V„'(y) V&,'(0)))g

= ~-"'qq)~ '(q)(D" "( q)q~..'( )qq

F q„+ & ' (q,q))s. *

q'+ns,

+scalar-meson pole terms, (12)q'(C, +D,)[C,+D—,)q])+(, —,) (q)
where k=P —q, and A„„vg(P) and 6»" (q) are the
covariant spin-1 parts of the vector and axial-vector
propagators, respectively. In (12), we have not explicitly
written down scalar-meson pole terms which arise if
some of the vector current is not conserved (as a result,
say, of the f~: meson in the case of strangeness-changing
vector currents). It is easily seen that the technique of
algebra of currents gives the Ward-like identity

and

2FFg q' f fg
F,(v,q') =

P& P 6 P&+ P

q„r„„g '(q, p) = F.gg. 'mg. 'I', i,"—
(q,P) . (13)

+ qqC, C,q'+qqqq 'qC, D,)(C,— )])D—
2(vq —v)

+(v ~ —v) (8)

where the subscript 8 stands for the eighth component
of the vector-meson octet and v~=-', (q'+m~' —mar').

However, note that we do not have enough informa-
tion about the form factors' appearing in (7) and (8).

9 The low. -energy theorem implies that q'F&(O, q') t~& 0=2 and
F, 8(q =0) = 1. Now, if one assumes that the off-mass-shell
q'-dependence comes through the electromagnetic form factor
F(q') i,e., q'F2(O, q') =2F(q'), Fp, 8(q') =F(q ) etc. , then the ex-
pression for the mass shift with the dispersion integral saturated by
the K pole only reduces to an expression very similar to the pion-
pole contribution to the m.+-qi- mass di6'erence (Ref. 7). If such is
the case, the treatment of BI=1 and of b,I=2 mass shifts do not
difFer in spirit. In contradistinction, our motivation in the present
paper is to analyze the e6'ect of the symmetry breaking which

modihes the electromagnetic form factors. For example, in the
K form factors F,{q') PEq. (9)j, the e6ect. of the K-Kz mixing
has come through the parameter 8 (which vanishes for b= —1),
and the expression for q'F2(0, q') )Eq. (18)j is distinctly diferent
from 2F(q'), etc.

"See, e.g. , Ref. 2 and H. J. Schnitzer and S. KVeinberg, Phys.
Rev. 164, 1828 (1967); S. Fenster and F. Hussain, ibid. 169,
1314 (1968); K. C. Gupta and J. S.Vaishya, ibid. 170, 1530 (1968)."It may be pointed out that the K&3-decay form factors de-
pend on the ratios of the wave-function renormalization constants
such as Z, /ZE, etc. (see Ref. 2). In contrast, the form factors listed
in Eqs. (9)-(11)do not depend on the wave-function renormaliza-
tion constants. This fact is closely related to the conservation of
electromagnetic current.

'~ Here we follow notation similar to that used by H. J. Schnitzer
and S. %'einberg (Ref. 10).
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TABLE I. Summary of contributions to the E+-X' mass shift for various combinations of Fz/F and B.

F&/F.

1.28

1.17

1.00

—1.0—0.5
—1.0—0.5
—1.0—0.5

E pole

0.89+0.078.
0.89+0.07B
0.78+0.03B
0.83+0.048
0.22
0.47+0.0048

Q pole

—0.05+0.028—0.02+0.028
—0.11+0.058$—0.05+0.03Bf—0.24+0.1 8—0.11+0.078

Soft kaon

—0.36+0.878

0.74+0.448

3.20—0.558

X*pole

—0.01

—0.01

—0.02

Total

0.47+0.968
0.50+0.968
1.40+0.528
1.51+0.518
3.16—0.458
3.54—0.48B

I3 =111(h.2/772x2), where h is a cutofF.

The most general covariant form of F„„z s'(q, k), satisfy-
ing generalized crossing symmetry, is" " getls

gl =0.2585~, g4= —0.71, (17)

'(qP) —d '(Lgtq e ~ s+(gs&+gsp)e ~ s
+(gsp~+gs&~)cpm sjP &s+g«~ ~ (P+&) ) (14)

where the g; may be functions of p', q', and O'. Here,
in the spirit of the smoothness hypothesis, we take them
to be constant. Substituting (14) in (13), we get

F zaa~(q p)
— dase&z F

X(gtq'+2g4)e. ~-sp &' (15)

Further, the definition of I'„),yields

gggvcf (q') = s(gttnx' 2g4)— (16)
Fxnso&(qs+yg s)

For determining g& and g4, we obviously require two
inputs with different pseudoscalar mesons. "We could
select them to be F(s'~ 2y) and F(ps ~ 2y). However,
the latter is not a clean choice in the sense that now we
have to consider g'-Xo mixing" apart from the deter-
mination of F«and mgs. ' From these two imputs, we

"Our expression (14} is different from that of Riazuddin and
Sarker t Eq. (8) of Ref. 5$, where only one coupling g& occurs in
the A VV vertex. However, we would like to point out that their
choice would disallow physical AVV coupling since 6y(g)6 (P)
X~)t(k)l „,~{q,P) =0, where the e's are the polarization vectors for
the axial-vector and vector fields.

'4 We have taken the A VV vertex to be SU(3) symmetric. It
may be that the octet symmetry-breaking effects, as have been
discussed by L. M. Brown, H. Munczek, and P. Singer 1 Phys.
Rev. Letters 21, 707 119681), are important. These introduce
four new parameters e;. However, our result (19) corresponds to
the choice as=0.

"In addition to (13},there are other independent Ward-like
identities. They in turn relate g4 to other parameters, g& and gs
in addition to the scalar-meson couplings (if either of the vector
currents is not conserved). If both vector currents are conserved,
then these interrelate g4 and gs, in other cases nothing much can
be learned because of our meager knowledge about scalar mesons.' We consider go-X mixing as usual: Xo=XI cosn+7Is sinn,
g = —XI cosa+ps sinn, with n——10.3', mes=567
mx, =949 MeV (see Ref. 5). This relates amplitudes of physical
7I' to that corresponding to the octet member qs and the singlet
member X1 through the relation A(2I -+ 2y}=A(ps~ 2y) cosa-A (X1~ 2y) sinn. Noticing that sinn is small, we make a rough
estimate of A(XI~ 2y) through the vector dominance and
U'(12) symmetry, which give A (XI -+ 2p}=242A (7Is —+ 2y). Thus,
we obtain A (gs -+ 2y) =0.67A (g' ~ 2y)."For obtaining F~s and mz„we utilize the results of T. Akiba
and K. Kang, Phys. Rev. 172, 1551 (1968).They have made use
of a modified Weinberg's second sum rule through the octet sym-
metry-breaking term and generalized Weinberg's first sum rule
(Ref. 18). We take F„,=1.15F and mgs=1370 MeV.

which predicts F(IP+ —+ K+y)=0.01 MeV. We note
that the determination of f,(q') would have been more
reliable if F(E*+~E+'y) were known experimentally.

We take Fs(0,q') as determined by the soft-kaon
current algebra":

2FE'. 2'
Fs(0,q') =Fx ' +

q2 gg 2(q2+yg 2) ~ 2(q2+m 2)

gs
(18)

ms'(q' jms')

where the so-called 0 term is neglected. '0

Utilizing (7) and (8) with the form factors (Eqs.
(9)—(11) and (16)j and the subtraction term LEq. (18)j,
as determined from the current-algebra analysis, we
can obtain from (1) the electromagnetic mass shift of
kaons. " Excluding the contribution due to the E~
intermediate state from this expression for the mass
shift, we find it to be (a) identical with the expression
obtained from the analysis of four-point functions of
currents' and (b) logarithmically divergent. "The E*'
contribution is convergent and h.as the right sign, but
the magnitude is small, as shown in Table I. However,
the experimental knowledge of F(Ee+~IC+y) will

~s We have used the generalized form for Weinberg's first
sum rule: g& m& =ggj mg& +F» =gq mg +F~ =gs ms =ggs
Xmas '+Fes', and the KSRF relation g, 2F 'm, '. We have
taken ms=930 MeV as given by the Gell-MannWkubo mass
formula. All other constants are taken from A. H. Rosenfeld et al.,
Rev. Mod. Phys. 40, 77 (1968).

'9 Our soft-kaon result for the mass difference is gauge-invariant
I see, e.g., K. Tanaka, Nuovo Cimento 56, 764 (1968)j. It may be
pointed out that our soft-kaon result F2(O,qs) corresponds to the
point km=0 instead of ks= —m~~. We assume that F2(0, q', k'=0)
=Fg(0, q~, ks= —m~s). We may also mention that the one-
dimensional dispersion relation in the mass variable k' is not
sufBcient to give any extrapolation to F&(O,q ) in this respect.

so The contribution of this term in the cr model $M. Gell-Mann
and M. Levy, Nuovo Cimento 16, 705 (1960}jis related to the
tadpole graph describing the transition of a scalar meson of zero
momentum to the vacuum, where a photon is emitted and re-
absorbed. S. Coleman and S. L. Glashow /Phys. Rev. 1348, 671
(1969)g have argued that such tadpole contributions are important
in understanding the AI = 1 electromagnetic mass shifts.

"See e.g., R. ¹ Chaudhuri and D. Bondyopadhyay, Phys.
Rev. 18, 2342 {19691.They take Fx=t throughout their
analysis.
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bmx
~ x —1.1F(Z~+ —+ X+y) . (19)

In Table I, we have displayed various contributions
to the mass shift hmx for three values of the Fir/F
ratio (namely, 1.28, 1.17, and 1.00,) with h= —1.0 and
—0.5. Notice that the soft-kaon current-algebra result,
i.e., the subtraction term' contribution to be&~, de-
pends sensitively on the Fx/F ratio. Further, in the
absence of a 0 term, the correct sign and magnitude of
the mass shift can be obtained with an unreasonably
high value of the cutoG (A 300 GeV) for Fx/F =1.
The tT-term contribution depends on the strength of the

furnish a reliable estimate of 8m~ due to the & inter-
mediate state through the relation" " tadpole vertex. For this, Patil" has recently made an ap-

proximate estimate in the SU(3)-symmetric limit by
saturating the unsubtracted dispersion relation through
the two-pseudoscalar-meson intermediate state. This
gives a contribution which is an order of magnitude
smaller than the experimental value, but does have the
right sign. "Thus a reliable estimate of the O.-tadpole
contribution and a knowledge of F(It*'+~ Ko+y) are
desirable in understanding the X+-E electromagnetic
mass shift.

The authors are grateful to Professor S. N. Biswas
for helpful discussions and advice. They are also grateful
to Dr. S.H. Patil and Dr. K. Datta for their comments.

~~ S. H. Patil, Phys. Rev. 172, 1528 (1968); see also V. Barger,
Nuovo Cimento 32, 127 (1964).

~ S. H. Patil (unpublished}.
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We present values for the I 0~(2405) couplings to the E-1V and 7r-Z channels. The relative sign is that
appropriate to an SU(3) singlet, but t;he relative magnitude difFers by almost a factor of 3 from the corre-
sponding SU(3) prediction.

w E present here improved values of the Fo*(1405)
couplings to the E Pand w-Z -channels and a

determination of their relative sign. There has been
considerable theoretical interest in the coupling con-
stants of this s-wave resonance because both dynamical
models' ' and charge-algebra considerations" suggest
that their ratio should deviate strongly from the value
predicted by unbroken SU(3). We discuss first the
estimate of these coupling constants and then brieQy
the status of our theoretical understanding of their
ratio.

VALUES OP COUPLING CONSTANTS

There are various definitions of the coupling constants
of a resonance, all of which become identical in the limit

t Research sponsored by the Air Force OfEce of Scientific
Research, Mice of Aerospace Research, U. S. Air Force, under
AFOSR Contract No. F44620-68-C-0075 and the U. S. Atomic
Energy Commission, under Contract No. AEC AT930-1-2752.

~ A. P. Sloan Foundation Fellow.' R. H. Dalitz, T. C. Wong, and G. Rajasekaran, Phys. Rev.
153, 1617 (1967).

s H. W. Wyld, Jr., Phys. Rev. 155, 1649 (2967).' C. Weil, Phys. Rev. 161, 1682 (1967).
4 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,

2295 (1968).

of a narrow resonance isolated from thresholds. An
appropriate definition for an s-wave resonance with
finite width is to relate the (coupling constants)' to
some integral involving the imaginary part of the
resonant amplitude. %e note that, in the narrow-width
approximation, the integral over the imaginary part of
a resonant s-wave scattering amplitude between an
initial baryon-pseudoscalar state 8;-I' and a final state
Bf-I'p is given by

g~agf P
ImT„.(W')dW'=n.

4x

L(E +M ) (Ff+Mf) j'"
X (1)

2M„s

where E;, M;, and Ef, Mf are the c.m. energies and
masses of the initial and final baryons, respectively,
g;, gfp are the coupling constants of the resonance to
the initial and final channels, and W' is the total c.m.
energy. This leads us to a definition for the bilinear


